# hipblaszgetrfbatched Interface Reference#

HIPFORT API Reference: hipfort_hipblas::hipblaszgetrfbatched Interface Reference
hipfort_hipblas::hipblaszgetrfbatched Interface Reference

SOLVER API. More...

## Public Member Functions

integer(kind(hipblas_status_success)) function hipblaszgetrfbatched_ (handle, n, A, lda, ipiv, myInfo, batchCount)

integer(kind(hipblas_status_success)) function hipblaszgetrfbatched_full_rank (handle, n, A, lda, ipiv, myInfo, batchCount)

integer(kind(hipblas_status_success)) function hipblaszgetrfbatched_rank_0 (handle, n, A, lda, ipiv, myInfo, batchCount)

integer(kind(hipblas_status_success)) function hipblaszgetrfbatched_rank_1 (handle, n, A, lda, ipiv, myInfo, batchCount)

## Detailed Description

SOLVER API.

getrfBatched computes the LU factorization of a batch of general n-by-n matrices using partial pivoting with row interchanges. The LU factorization can be done without pivoting if ipiv is passed as a nullptr.

In the case that ipiv is not null, the factorization of matrix $$A_i$$ in the batch has the form:

$A_i = P_iL_iU_i$

where $$P_i$$ is a permutation matrix, $$L_i$$ is lower triangular with unit diagonal elements, and $$U_i$$ is upper triangular.

In the case that ipiv is null, the factorization is done without pivoting:

$A_i = L_iU_i$

Parameters
 [in] handle hipblasHandle_t. [in] n int. n >= 0. The number of columns and rows of all matrices A_i in the batch. [in,out] A array of pointers to type. Each pointer points to an array on the GPU of dimension lda*n. On entry, the n-by-n matrices A_i to be factored. On exit, the factors L_i and U_i from the factorizations. The unit diagonal elements of L_i are not stored. [in] lda int. lda >= n. Specifies the leading dimension of matrices A_i. [out] ipiv pointer to int. Array on the GPU. Contains the vectors of pivot indices ipiv_i (corresponding to A_i). Dimension of ipiv_i is n. Elements of ipiv_i are 1-based indices. For each instance A_i in the batch and for 1 <= j <= n, the row j of the matrix A_i was interchanged with row ipiv_i[j]. Matrix P_i of the factorization can be derived from ipiv_i. The factorization here can be done without pivoting if ipiv is passed in as a nullptr. [out] info pointer to int. Array of batchCount integers on the GPU. If info[i] = 0, successful exit for factorization of A_i. If info[i] = j > 0, U_i is singular. U_i[j,j] is the first zero pivot. [in] batchCount int. batchCount >= 0. Number of matrices in the batch.

## ◆ hipblaszgetrfbatched_()

 integer(kind(hipblas_status_success)) function hipfort_hipblas::hipblaszgetrfbatched::hipblaszgetrfbatched_ ( type(c_ptr), value handle, integer(c_int), value n, type(c_ptr) A, integer(c_int), value lda, type(c_ptr), value ipiv, type(c_ptr), value myInfo, integer(c_int), value batchCount )

## ◆ hipblaszgetrfbatched_full_rank()

 integer(kind(hipblas_status_success)) function hipfort_hipblas::hipblaszgetrfbatched::hipblaszgetrfbatched_full_rank ( type(c_ptr) handle, integer(c_int) n, complex(c_double_complex), dimension(:,:,:), target A, integer(c_int) lda, type(c_ptr) ipiv, type(c_ptr) myInfo, integer(c_int) batchCount )

## ◆ hipblaszgetrfbatched_rank_0()

 integer(kind(hipblas_status_success)) function hipfort_hipblas::hipblaszgetrfbatched::hipblaszgetrfbatched_rank_0 ( type(c_ptr) handle, integer(c_int) n, complex(c_double_complex), target A, integer(c_int) lda, type(c_ptr) ipiv, type(c_ptr) myInfo, integer(c_int) batchCount )

## ◆ hipblaszgetrfbatched_rank_1()

 integer(kind(hipblas_status_success)) function hipfort_hipblas::hipblaszgetrfbatched::hipblaszgetrfbatched_rank_1 ( type(c_ptr) handle, integer(c_int) n, complex(c_double_complex), dimension(:), target A, integer(c_int) lda, type(c_ptr) ipiv, type(c_ptr) myInfo, integer(c_int) batchCount )

The documentation for this interface was generated from the following file: