hipdf.MultiIndex#
70 min read time
- class hipdf.MultiIndex(levels=None, codes=None, sortorder=None, names=None, dtype=None, copy=False, name=None, verify_integrity=True)#
Bases:
Frame,BaseIndex,NotIterableA multi-level or hierarchical index.
Provides N-Dimensional indexing into Series and DataFrame objects.
Parameters#
- levelssequence of arrays
The unique labels for each level.
- codes: sequence of arrays
Integers for each level designating which label at each location.
- sortorderoptional int
Not yet supported
- names: optional sequence of objects
Names for each of the index levels.
- copybool, default False
Copy the levels and codes.
- verify_integritybool, default True
Check that the levels/codes are consistent and valid. Not yet supported
Attributes#
names nlevels dtypes levels codes
Methods#
from_arrays from_tuples from_product from_frame set_levels set_codes to_frame to_flat_index sortlevel droplevel swaplevel reorder_levels remove_unused_levels get_level_values get_loc drop
Returns#
MultiIndex
Examples#
>>> import cudf >>> cudf.MultiIndex( ... levels=[[1, 2], ['blue', 'red']], codes=[[0, 0, 1, 1], [1, 0, 1, 0]]) MultiIndex([(1, 'red'), (1, 'blue'), (2, 'red'), (2, 'blue')], )
- __init__(levels=None, codes=None, sortorder=None, names=None, dtype=None, copy=False, name=None, verify_integrity=True)#
Methods
__init__([levels, codes, sortorder, names, ...])all([axis, skipna])Return whether all elements are True in DataFrame.
any([axis, skipna])Return whether any elements is True in DataFrame.
append(other)Append a collection of MultiIndex objects together
argsort([by, axis, kind, order, ascending, ...])Return the integer indices that would sort the Series values.
astype(dtype[, copy])Create an Index with values cast to dtypes.
copy([names, deep, name])Returns copy of MultiIndex object.
deserialize(header, frames)Generate an object from a serialized representation.
device_deserialize(header, frames)Perform device-side deserialization tasks.
device_serialize()Serialize data and metadata associated with device memory.
difference(other[, sort])Return a new Index with elements from the index that are not in other.
drop_duplicates([keep, nulls_are_equal])Drop duplicate rows in index.
droplevel([level])Removes the specified levels from the MultiIndex.
dropna([how])Drop null rows from Index.
duplicated([keep])Indicate duplicate index values.
equals(other)Test whether two objects contain the same elements.
factorize([sort, use_na_sentinel])fillna(value)Fill null values with the specified value.
find_label_range(loc)Translate a label-based slice to an index-based slice
from_arrays(arrays[, sortorder, names])Convert arrays to MultiIndex.
from_arrow(data)Convert from PyArrow Table to Frame
from_frame(df[, sortorder, names])Make a MultiIndex from a DataFrame.
from_pandas(multiindex[, nan_as_null])Convert from a Pandas MultiIndex
from_product(iterables[, sortorder, names])Make a MultiIndex from the cartesian product of multiple iterables.
from_tuples(tuples[, sortorder, names])Convert list of tuples to MultiIndex.
get_indexer(target[, method, limit, tolerance])Compute indexer and mask for new index given the current index.
get_level_values(level)Return the values at the requested level
get_loc(key)Get integer location, slice or boolean mask for requested label.
get_slice_bound(label, side)Calculate slice bound that corresponds to given label.
host_deserialize(header, frames)Perform device-side deserialization tasks.
host_serialize()Serialize data and metadata associated with host memory.
intersection(other[, sort])Form the intersection of two Index objects.
Check if the Index only consists of booleans.
Check if the Index holds categorical data.
Check if the Index is a floating type.
Check if the Index only consists of integers.
Check if the Index holds Interval objects.
Check if the Index only consists of numeric data.
Check if the Index is of the object dtype.
isin(values[, level])Return a boolean array where the index values are in values.
isna()Identify missing values.
isnull()Identify missing values.
join(other[, how, level, return_indexers, sort])Compute join_index and indexers to conform data structures to the new index.
max([axis, skipna, numeric_only])Return the maximum of the values in the DataFrame.
memory_usage([deep])Return the memory usage of an object.
min([axis, skipna, numeric_only])Return the minimum of the values in the DataFrame.
notna()Identify non-missing values.
notnull()Identify non-missing values.
nunique([dropna])Returns a per column mapping with counts of unique values for each column.
rename(names[, inplace])Alter MultiIndex level names
repeat(repeats[, axis])Repeat elements of a Index.
searchsorted(values[, side, sorter, ...])Find indices where elements should be inserted to maintain order
serialize()Generate an equivalent serializable representation of an object.
set_names(names[, level, inplace])Set Index or MultiIndex name.
shift([periods, freq])Not yet implemented
sort_values([return_indexer, ascending, ...])Return a sorted copy of the index, and optionally return the indices that sorted the index itself.
swaplevel([i, j])Swap level i with level j.
take(indices)Return a new index containing the rows specified by indices
to_arrow()Convert to arrow Table
to_cupy([dtype, copy, na_value])Convert the Frame to a CuPy array.
Converts a cuDF object into a DLPack tensor.
Convert a MultiIndex to an Index of Tuples containing the level values.
to_frame([index, name, allow_duplicates])Create a DataFrame with the levels of the MultiIndex as columns.
to_list()to_numpy()Convert the Frame to a NumPy array.
to_pandas(*[, nullable, arrow_type])Convert to a Pandas Index.
to_series([index, name])Create a Series with both index and values equal to the index keys.
tolist()union(other[, sort])Form the union of two Index objects.
unique([level])Return unique values in the index.
where(cond[, other, inplace])Replace values where the condition is False.
Attributes
Returns the codes of the underlying MultiIndex.
Return True if there are any NaNs or nulls.
Return if the index is monotonic decreasing (only equal or decreasing) values.
Return if the index is monotonic increasing (only equal or increasing) values.
Return if the index has unique values.
Returns list of levels in the MultiIndex
Returns the name of the Index.
Returns a FrozenList containing the name of the Index.
Dimension of the data.
Integer number of levels in this MultiIndex.
Get a tuple representing the dimensionality of the data.
Return the number of elements in the underlying data.
Not yet implemented.
Return a CuPy representation of the MultiIndex.
Return a numpy representation of the MultiIndex.
- __init__(levels=None, codes=None, sortorder=None, names=None, dtype=None, copy=False, name=None, verify_integrity=True)#
- property names#
Returns a FrozenList containing the name of the Index.
- to_series(index=None, name=None)#
Create a Series with both index and values equal to the index keys. Useful with map for returning an indexer based on an index.
Parameters#
- indexIndex, optional
Index of resulting Series. If None, defaults to original index.
- namestr, optional
Name of resulting Series. If None, defaults to name of original index.
Returns#
- Series
The dtype will be based on the type of the Index values.
- astype(dtype, copy: bool = True) Self#
Create an Index with values cast to dtypes.
The class of a new Index is determined by dtype. When conversion is impossible, a ValueError exception is raised.
Parameters#
- dtype
numpy.dtype Use a
numpy.dtypeto cast entire Index object to.- copybool, default False
By default, astype always returns a newly allocated object. If copy is set to False and internal requirements on dtype are satisfied, the original data is used to create a new Index or the original Index is returned.
Returns#
- Index
Index with values cast to specified dtype.
Examples#
>>> import cudf >>> index = cudf.Index([1, 2, 3]) >>> index Index([1, 2, 3], dtype='int64') >>> index.astype('float64') Index([1.0, 2.0, 3.0], dtype='float64')
- dtype
- rename(names, inplace: bool = False) Self | None#
Alter MultiIndex level names
Parameters#
- nameslist of label
Names to set, length must be the same as number of levels
- inplacebool, default False
If True, modifies objects directly, otherwise returns a new
MultiIndexinstance
Returns#
None or MultiIndex
Examples#
Renaming each levels of a MultiIndex to specified name:
>>> midx = cudf.MultiIndex.from_product( ... [('A', 'B'), (2020, 2021)], names=['c1', 'c2']) >>> midx.rename(['lv1', 'lv2']) MultiIndex([('A', 2020), ('A', 2021), ('B', 2020), ('B', 2021)], names=['lv1', 'lv2']) >>> midx.rename(['lv1', 'lv2'], inplace=True) >>> midx MultiIndex([('A', 2020), ('A', 2021), ('B', 2020), ('B', 2021)], names=['lv1', 'lv2'])
namesargument must be a list, and must have same length asMultiIndex.levels:>>> midx.rename(['lv0']) Traceback (most recent call last): ValueError: Length of names must match number of levels in MultiIndex.
- set_names(names, level=None, inplace: bool = False) Self | None#
Set Index or MultiIndex name. Able to set new names partially and by level.
Parameters#
- nameslabel or list of label
Name(s) to set.
- levelint, label or list of int or label, optional
If the index is a MultiIndex, level(s) to set (None for all levels). Otherwise level must be None.
- inplacebool, default False
Modifies the object directly, instead of creating a new Index or MultiIndex.
Returns#
- Index
The same type as the caller or None if inplace is True.
See Also#
cudf.Index.rename : Able to set new names without level.
Examples#
>>> import cudf >>> idx = cudf.Index([1, 2, 3, 4]) >>> idx Index([1, 2, 3, 4], dtype='int64') >>> idx.set_names('quarter') Index([1, 2, 3, 4], dtype='int64', name='quarter') >>> idx = cudf.MultiIndex.from_product([['python', 'cobra'], ... [2018, 2019]]) >>> idx MultiIndex([('python', 2018), ('python', 2019), ( 'cobra', 2018), ( 'cobra', 2019)], ) >>> idx.names FrozenList([None, None]) >>> idx.set_names(['kind', 'year'], inplace=True) >>> idx.names FrozenList(['kind', 'year']) >>> idx.set_names('species', level=0, inplace=True) >>> idx.names FrozenList(['species', 'year'])
- property name#
Returns the name of the Index.
- copy(names=None, deep=False, name=None) Self#
Returns copy of MultiIndex object.
Returns a copy of MultiIndex. The levels and codes value can be set to the provided parameters. When they are provided, the returned MultiIndex is always newly constructed.
Parameters#
- namessequence of objects, optional (default None)
Names for each of the index levels.
- deepBool (default False)
If True, ._data, ._levels, ._codes will be copied. Ignored if levels or codes are specified.
- nameobject, optional (default None)
Kept for compatibility with 1-dimensional Index. Should not be used.
Returns#
Copy of MultiIndex Instance
Examples#
>>> df = cudf.DataFrame({'Close': [3400.00, 226.58, 3401.80, 228.91]}) >>> idx1 = cudf.MultiIndex( ... levels=[['2020-08-27', '2020-08-28'], ['AMZN', 'MSFT']], ... codes=[[0, 0, 1, 1], [0, 1, 0, 1]], ... names=['Date', 'Symbol']) >>> idx2 = idx1.copy( ... names=['col1', 'col2'])
>>> df.index = idx1 >>> df Close Date Symbol 2020-08-27 AMZN 3400.00 MSFT 226.58 2020-08-28 AMZN 3401.80 MSFT 228.91
>>> df.index = idx2 >>> df Close col1 col2 2020-08-27 AMZN 3400.00 MSFT 226.58 2020-08-28 AMZN 3401.80 MSFT 228.91
- property codes: FrozenList#
Returns the codes of the underlying MultiIndex.
Examples#
>>> import cudf >>> df = cudf.DataFrame({'a':[1, 2, 3], 'b':[10, 11, 12]}) >>> midx = cudf.MultiIndex.from_frame(df) >>> midx MultiIndex([(1, 10), (2, 11), (3, 12)], names=['a', 'b']) >>> midx.codes FrozenList([[0, 1, 2], [0, 1, 2]])
- get_slice_bound(label, side)#
Calculate slice bound that corresponds to given label. Returns leftmost (one-past-the-rightmost if
side=='right') position of given label.Parameters#
label : object side : {‘left’, ‘right’}
Returns#
- int
Index of label.
- property levels: list[Index]#
Returns list of levels in the MultiIndex
Returns#
List of Index objects
Examples#
>>> import cudf >>> df = cudf.DataFrame({'a':[1, 2, 3], 'b':[10, 11, 12]}) >>> cudf.MultiIndex.from_frame(df) MultiIndex([(1, 10), (2, 11), (3, 12)], names=['a', 'b']) >>> midx = cudf.MultiIndex.from_frame(df) >>> midx MultiIndex([(1, 10), (2, 11), (3, 12)], names=['a', 'b']) >>> midx.levels [Index([1, 2, 3], dtype='int64', name='a'), Index([10, 11, 12], dtype='int64', name='b')]
- isin(values, level=None) ndarray#
Return a boolean array where the index values are in values.
Compute boolean array of whether each index value is found in the passed set of values. The length of the returned boolean array matches the length of the index.
Parameters#
- valuesset, list-like, Index or Multi-Index
Sought values.
- levelstr or int, optional
Name or position of the index level to use (if the index is a MultiIndex).
Returns#
- is_containedcupy array
CuPy array of boolean values.
Notes#
When level is None, values can only be MultiIndex, or a set/list-like tuples. When level is provided, values can be Index or MultiIndex, or a set/list-like tuples.
Examples#
>>> import cudf >>> import pandas as pd >>> midx = cudf.from_pandas(pd.MultiIndex.from_arrays([[1,2,3], ... ['red', 'blue', 'green']], ... names=('number', 'color'))) >>> midx MultiIndex([(1, 'red'), (2, 'blue'), (3, 'green')], names=['number', 'color'])
Check whether the strings in the ‘color’ level of the MultiIndex are in a list of colors.
>>> midx.isin(['red', 'orange', 'yellow'], level='color') array([ True, False, False])
To check across the levels of a MultiIndex, pass a list of tuples:
>>> midx.isin([(1, 'red'), (3, 'red')]) array([ True, False, False])
- where(cond, other=None, inplace=False)#
Replace values where the condition is False.
Parameters#
- condbool Series/DataFrame, array-like
Where cond is True, keep the original value. Where False, replace with corresponding value from other. Callables are not supported.
- other: scalar, list of scalars, Series/DataFrame
Entries where cond is False are replaced with corresponding value from other. Callables are not supported. Default is None.
DataFrame expects only Scalar or array like with scalars or dataframe with same dimension as self.
Series expects only scalar or series like with same length
- inplacebool, default False
Whether to perform the operation in place on the data.
Returns#
Same type as caller
Examples#
>>> import cudf >>> df = cudf.DataFrame({"A":[1, 4, 5], "B":[3, 5, 8]}) >>> df.where(df % 2 == 0, [-1, -1]) A B 0 -1 -1 1 4 -1 2 -1 8
>>> ser = cudf.Series([4, 3, 2, 1, 0]) >>> ser.where(ser > 2, 10) 0 4 1 3 2 10 3 10 4 10 dtype: int64 >>> ser.where(ser > 2) 0 4 1 3 2 <NA> 3 <NA> 4 <NA> dtype: int64
- property size: int#
Return the number of elements in the underlying data.
Returns#
size : Size of the DataFrame / Index / Series / MultiIndex
Examples#
Size of an empty dataframe is 0.
>>> import cudf >>> df = cudf.DataFrame() >>> df Empty DataFrame Columns: [] Index: [] >>> df.size 0 >>> df = cudf.DataFrame(index=[1, 2, 3]) >>> df Empty DataFrame Columns: [] Index: [1, 2, 3] >>> df.size 0
DataFrame with values
>>> df = cudf.DataFrame({'a': [10, 11, 12], ... 'b': ['hello', 'rapids', 'ai']}) >>> df a b 0 10 hello 1 11 rapids 2 12 ai >>> df.size 6 >>> df.index RangeIndex(start=0, stop=3) >>> df.index.size 3
Size of an Index
>>> index = cudf.Index([]) >>> index Index([], dtype='float64') >>> index.size 0 >>> index = cudf.Index([1, 2, 3, 10]) >>> index Index([1, 2, 3, 10], dtype='int64') >>> index.size 4
Size of a MultiIndex
>>> midx = cudf.MultiIndex( ... levels=[["a", "b", "c", None], ["1", None, "5"]], ... codes=[[0, 0, 1, 2, 3], [0, 2, 1, 1, 0]], ... names=["x", "y"], ... ) >>> midx MultiIndex([( 'a', '1'), ( 'a', '5'), ( 'b', <NA>), ( 'c', <NA>), (<NA>, '1')], names=['x', 'y']) >>> midx.size 5
- take(indices) Self#
Return a new index containing the rows specified by indices
Parameters#
- indicesarray-like
Array of ints indicating which positions to take.
- axisint
The axis over which to select values, always 0.
allow_fill : Unsupported fill_value : Unsupported
Returns#
- outIndex
New object with desired subset of rows.
Examples#
>>> idx = cudf.Index(['a', 'b', 'c', 'd', 'e']) >>> idx.take([2, 0, 4, 3]) Index(['c', 'a', 'e', 'd'], dtype='object')
- __getitem__(index)#
- to_frame(index: bool = True, name=<no_default>, allow_duplicates: bool = False) DataFrame#
Create a DataFrame with the levels of the MultiIndex as columns.
Column ordering is determined by the DataFrame constructor with data as a dict.
Parameters#
- indexbool, default True
Set the index of the returned DataFrame as the original MultiIndex.
- namelist / sequence of str, optional
The passed names should substitute index level names.
- allow_duplicatesbool, optional default False
Allow duplicate column labels to be created. Note that this parameter is non-functional because duplicates column labels aren’t supported in cudf.
Returns#
DataFrame
Examples#
>>> import cudf >>> mi = cudf.MultiIndex.from_tuples([('a', 'c'), ('b', 'd')]) >>> mi MultiIndex([('a', 'c'), ('b', 'd')], )
>>> df = mi.to_frame() >>> df 0 1 a c a c b d b d
>>> df = mi.to_frame(index=False) >>> df 0 1 0 a c 1 b d
>>> df = mi.to_frame(name=['x', 'y']) >>> df x y a c a c b d b d
- get_level_values(level) Index#
Return the values at the requested level
Parameters#
level : int or label
Returns#
An Index containing the values at the requested level.
- classmethod from_tuples(tuples, sortorder: int | None = None, names=None) Self#
Convert list of tuples to MultiIndex.
Parameters#
- tupleslist / sequence of tuple-likes
Each tuple is the index of one row/column.
- sortorderint or None
Level of sortedness (must be lexicographically sorted by that level).
- nameslist / sequence of str, optional
Names for the levels in the index.
Returns#
MultiIndex
See Also#
MultiIndex.from_arrays : Convert list of arrays to MultiIndex. MultiIndex.from_product : Make a MultiIndex from cartesian product
of iterables.
MultiIndex.from_frame : Make a MultiIndex from a DataFrame.
Examples#
>>> tuples = [(1, 'red'), (1, 'blue'), ... (2, 'red'), (2, 'blue')] >>> cudf.MultiIndex.from_tuples(tuples, names=('number', 'color')) MultiIndex([(1, 'red'), (1, 'blue'), (2, 'red'), (2, 'blue')], names=['number', 'color'])
- to_numpy() ndarray#
Convert the Frame to a NumPy array.
Parameters#
- dtypestr or
numpy.dtype, optional The dtype to pass to
numpy.asarray().- copybool, default True
Whether to ensure that the returned value is not a view on another array. This parameter must be
Truesince cuDF must copy device memory to host to provide a numpy array.- na_valueAny, default None
The value to use for missing values. The default value depends on dtype and the dtypes of the DataFrame columns.
Returns#
numpy.ndarray
- dtypestr or
- to_flat_index()#
Convert a MultiIndex to an Index of Tuples containing the level values.
This is not currently implemented
- property values_host: ndarray#
Return a numpy representation of the MultiIndex.
Only the values in the MultiIndex will be returned.
Returns#
- outnumpy.ndarray
The values of the MultiIndex.
Examples#
>>> import cudf >>> midx = cudf.MultiIndex( ... levels=[[1, 3, 4, 5], [1, 2, 5]], ... codes=[[0, 0, 1, 2, 3], [0, 2, 1, 1, 0]], ... names=["x", "y"], ... ) >>> midx.values_host array([(1, 1), (1, 5), (3, 2), (4, 2), (5, 1)], dtype=object) >>> type(midx.values_host) <class 'numpy.ndarray'>
- property values: ndarray#
Return a CuPy representation of the MultiIndex.
Only the values in the MultiIndex will be returned.
Returns#
- out: cupy.ndarray
The values of the MultiIndex.
Examples#
>>> import cudf >>> midx = cudf.MultiIndex( ... levels=[[1, 3, 4, 5], [1, 2, 5]], ... codes=[[0, 0, 1, 2, 3], [0, 2, 1, 1, 0]], ... names=["x", "y"], ... ) >>> midx.values array([[1, 1], [1, 5], [3, 2], [4, 2], [5, 1]]) >>> type(midx.values) <class 'cupy...ndarray'>
- classmethod from_frame(df: pd.DataFrame | cudf.DataFrame, sortorder: int | None = None, names=None) Self#
Make a MultiIndex from a DataFrame.
Parameters#
- dfDataFrame
DataFrame to be converted to MultiIndex.
- sortorderint, optional
Level of sortedness (must be lexicographically sorted by that level).
- nameslist-like, optional
If no names are provided, use the column names, or tuple of column names if the columns is a MultiIndex. If a sequence, overwrite names with the given sequence.
Returns#
- MultiIndex
The MultiIndex representation of the given DataFrame.
See Also#
MultiIndex.from_arrays : Convert list of arrays to MultiIndex. MultiIndex.from_tuples : Convert list of tuples to MultiIndex. MultiIndex.from_product : Make a MultiIndex from cartesian product
of iterables.
Examples#
>>> import cudf >>> df = cudf.DataFrame([['HI', 'Temp'], ['HI', 'Precip'], ... ['NJ', 'Temp'], ['NJ', 'Precip']], ... columns=['a', 'b']) >>> df a b 0 HI Temp 1 HI Precip 2 NJ Temp 3 NJ Precip >>> cudf.MultiIndex.from_frame(df) MultiIndex([('HI', 'Temp'), ('HI', 'Precip'), ('NJ', 'Temp'), ('NJ', 'Precip')], names=['a', 'b'])
Using explicit names, instead of the column names
>>> cudf.MultiIndex.from_frame(df, names=['state', 'observation']) MultiIndex([('HI', 'Temp'), ('HI', 'Precip'), ('NJ', 'Temp'), ('NJ', 'Precip')], names=['state', 'observation'])
- classmethod from_product(iterables, sortorder: int | None = None, names=None) Self#
Make a MultiIndex from the cartesian product of multiple iterables.
Parameters#
- iterableslist / sequence of iterables
Each iterable has unique labels for each level of the index.
- sortorderint or None
Level of sortedness (must be lexicographically sorted by that level).
- nameslist / sequence of str, optional
Names for the levels in the index. If not explicitly provided, names will be inferred from the elements of iterables if an element has a name attribute
Returns#
MultiIndex
See Also#
MultiIndex.from_tuples : Convert list of tuples to MultiIndex. MultiIndex.from_frame : Make a MultiIndex from a DataFrame.
Examples#
>>> numbers = [0, 1, 2] >>> colors = ['green', 'purple'] >>> cudf.MultiIndex.from_product([numbers, colors], ... names=['number', 'color']) MultiIndex([(0, 'green'), (0, 'purple'), (1, 'green'), (1, 'purple'), (2, 'green'), (2, 'purple')], names=['number', 'color'])
- classmethod from_arrays(arrays, sortorder=None, names=None) Self#
Convert arrays to MultiIndex.
Parameters#
- arrayslist / sequence of array-likes
Each array-like gives one level’s value for each data point. len(arrays) is the number of levels.
- sortorderoptional int
Not yet supported
- nameslist / sequence of str, optional
Names for the levels in the index.
Returns#
MultiIndex
See Also#
MultiIndex.from_tuples : Convert list of tuples to MultiIndex. MultiIndex.from_product : Make a MultiIndex from cartesian product
of iterables.
MultiIndex.from_frame : Make a MultiIndex from a DataFrame.
Examples#
>>> arrays = [[1, 1, 2, 2], ['red', 'blue', 'red', 'blue']] >>> cudf.MultiIndex.from_arrays(arrays, names=('number', 'color')) MultiIndex([(1, 'red'), (1, 'blue'), (2, 'red'), (2, 'blue')], names=['number', 'color'])
- swaplevel(i=-2, j=-1) Self#
Swap level i with level j. Calling this method does not change the ordering of the values.
Parameters#
- iint or str, default -2
First level of index to be swapped.
- jint or str, default -1
Second level of index to be swapped.
Returns#
- MultiIndex
A new MultiIndex.
Examples#
>>> import cudf >>> mi = cudf.MultiIndex(levels=[['a', 'b'], ['bb', 'aa']], ... codes=[[0, 0, 1, 1], [0, 1, 0, 1]]) >>> mi MultiIndex([('a', 'bb'), ('a', 'aa'), ('b', 'bb'), ('b', 'aa')], ) >>> mi.swaplevel(0, 1) MultiIndex([('bb', 'a'), ('aa', 'a'), ('bb', 'b'), ('aa', 'b')], )
- droplevel(level=-1) Self | cudf.Index#
Removes the specified levels from the MultiIndex.
Parameters#
- levellevel name or index, list-like
Integer, name or list of such, specifying one or more levels to drop from the MultiIndex
Returns#
A MultiIndex or Index object, depending on the number of remaining levels.
Examples#
>>> import cudf >>> idx = cudf.MultiIndex.from_frame( ... cudf.DataFrame( ... { ... "first": ["a", "a", "a", "b", "b", "b"], ... "second": [1, 1, 2, 2, 3, 3], ... "third": [0, 1, 2, 0, 1, 2], ... } ... ) ... )
Dropping level by index:
>>> idx.droplevel(0) MultiIndex([(1, 0), (1, 1), (2, 2), (2, 0), (3, 1), (3, 2)], names=['second', 'third'])
Dropping level by name:
>>> idx.droplevel("first") MultiIndex([(1, 0), (1, 1), (2, 2), (2, 0), (3, 1), (3, 2)], names=['second', 'third'])
Dropping multiple levels:
>>> idx.droplevel(["first", "second"]) Index([0, 1, 2, 0, 1, 2], dtype='int64', name='third')
- to_pandas(*, nullable: bool = False, arrow_type: bool = False) MultiIndex#
Convert to a Pandas Index.
Parameters#
- nullablebool, Default False
If
nullableisTrue, the resulting index will have a corresponding nullable Pandas dtype. If there is no corresponding nullable Pandas dtype present, the resulting dtype will be a regular pandas dtype. IfnullableisFalse, the resulting index will either convert null values tonp.nanorNonedepending on the dtype.- arrow_typebool, Default False
Return the Index with a
pandas.ArrowDtype
Notes#
nullable and arrow_type cannot both be set to
TrueExamples#
>>> import cudf >>> idx = cudf.Index([-3, 10, 15, 20]) >>> idx Index([-3, 10, 15, 20], dtype='int64') >>> idx.to_pandas() Index([-3, 10, 15, 20], dtype='int64') >>> type(idx.to_pandas()) <class 'pandas.core.indexes.base.Index'> >>> type(idx) <class 'cudf.core.index.Index'> >>> idx.to_pandas(arrow_type=True) Index([-3, 10, 15, 20], dtype='int64[pyarrow]')
- classmethod from_pandas(multiindex: pd.MultiIndex, nan_as_null=<no_default>) Self#
Convert from a Pandas MultiIndex
Raises#
TypeError for invalid input type.
Examples#
>>> import cudf >>> import pandas as pd >>> pmi = pd.MultiIndex(levels=[['a', 'b'], ['c', 'd']], ... codes=[[0, 1], [1, 1]]) >>> cudf.from_pandas(pmi) MultiIndex([('a', 'd'), ('b', 'd')], )
- property dtype: dtype#
- property is_monotonic_increasing: bool#
Return if the index is monotonic increasing (only equal or increasing) values.
- property is_monotonic_decreasing: bool#
Return if the index is monotonic decreasing (only equal or decreasing) values.
- fillna(value) Self#
Fill null values with the specified value.
Parameters#
- valuescalar
Scalar value to use to fill nulls. This value cannot be a list-likes.
Returns#
filled : MultiIndex
Examples#
>>> import cudf >>> index = cudf.MultiIndex( ... levels=[["a", "b", "c", None], ["1", None, "5"]], ... codes=[[0, 0, 1, 2, 3], [0, 2, 1, 1, 0]], ... names=["x", "y"], ... ) >>> index MultiIndex([( 'a', '1'), ( 'a', '5'), ( 'b', <NA>), ( 'c', <NA>), (<NA>, '1')], names=['x', 'y']) >>> index.fillna('hello') MultiIndex([( 'a', '1'), ( 'a', '5'), ( 'b', 'hello'), ( 'c', 'hello'), ('hello', '1')], names=['x', 'y'])
- unique(level: int | None = None) Self | cudf.Index#
Return unique values in the index.
Returns#
Index without duplicates
- nunique(dropna: bool = True) int#
Returns a per column mapping with counts of unique values for each column.
Parameters#
- dropnabool, default True
Don’t include NaN in the counts.
Returns#
- dict
Name and unique value counts of each column in frame.
- memory_usage(deep: bool = False) int#
Return the memory usage of an object.
Parameters#
- deepbool
The deep parameter is ignored and is only included for pandas compatibility.
Returns#
The total bytes used.
- difference(other, sort=None) Self#
Return a new Index with elements from the index that are not in other.
This is the set difference of two Index objects.
Parameters#
other : Index or array-like sort : False or None, default None
Whether to sort the resulting index. By default, the values are attempted to be sorted, but any TypeError from incomparable elements is caught by cudf.
None : Attempt to sort the result, but catch any TypeErrors from comparing incomparable elements.
False : Do not sort the result.
True : Sort the result (which may raise TypeError).
Returns#
difference : Index
Examples#
>>> import cudf >>> idx1 = cudf.Index([2, 1, 3, 4]) >>> idx1 Index([2, 1, 3, 4], dtype='int64') >>> idx2 = cudf.Index([3, 4, 5, 6]) >>> idx2 Index([3, 4, 5, 6], dtype='int64') >>> idx1.difference(idx2) Index([1, 2], dtype='int64') >>> idx1.difference(idx2, sort=False) Index([2, 1], dtype='int64')
- append(other) Self#
Append a collection of MultiIndex objects together
Parameters#
other : MultiIndex or list/tuple of MultiIndex objects
Returns#
appended : Index
Examples#
>>> import cudf >>> idx1 = cudf.MultiIndex( ... levels=[[1, 2], ['blue', 'red']], ... codes=[[0, 0, 1, 1], [1, 0, 1, 0]] ... ) >>> idx2 = cudf.MultiIndex( ... levels=[[3, 4], ['blue', 'red']], ... codes=[[0, 0, 1, 1], [1, 0, 1, 0]] ... ) >>> idx1 MultiIndex([(1, 'red'), (1, 'blue'), (2, 'red'), (2, 'blue')], ) >>> idx2 MultiIndex([(3, 'red'), (3, 'blue'), (4, 'red'), (4, 'blue')], ) >>> idx1.append(idx2) MultiIndex([(1, 'red'), (1, 'blue'), (2, 'red'), (2, 'blue'), (3, 'red'), (3, 'blue'), (4, 'red'), (4, 'blue')], )
- get_indexer(target, method=None, limit=None, tolerance=None)#
Compute indexer and mask for new index given the current index.
The indexer should be then used as an input to ndarray.take to align the current data to the new index.
Parameters#
target : Index method : {None, ‘pad’/’fill’, ‘backfill’/’bfill’, ‘nearest’}, optional
default: exact matches only.
pad / ffill: find the PREVIOUS index value if no exact match.
backfill / bfill: use NEXT index value if no exact match.
nearest: use the NEAREST index value if no exact match. Tied distances are broken by preferring the larger index value.
- toleranceint or float, optional
Maximum distance from index value for inexact matches. The value of the index at the matching location must satisfy the equation
abs(index[loc] - target) <= tolerance.
Returns#
- cupy.ndarray
Integers from 0 to n - 1 indicating that the index at these positions matches the corresponding target values. Missing values in the target are marked by -1.
Examples#
>>> import cudf >>> index = cudf.Index(['c', 'a', 'b']) >>> index Index(['c', 'a', 'b'], dtype='object') >>> index.get_indexer(['a', 'b', 'x']) array([ 1, 2, -1], dtype=int32)
- get_loc(key)#
Get integer location, slice or boolean mask for requested label.
Parameters#
key : label
Returns#
- int or slice or boolean mask
If result is unique, return integer index
If index is monotonic, loc is returned as a slice object
Otherwise, a boolean mask is returned
Examples#
>>> import cudf >>> unique_index = cudf.Index(list('abc')) >>> unique_index.get_loc('b') 1 >>> monotonic_index = cudf.Index(list('abbc')) >>> monotonic_index.get_loc('b') slice(1, 3, None) >>> non_monotonic_index = cudf.Index(list('abcb')) >>> non_monotonic_index.get_loc('b') array([False, True, False, True]) >>> numeric_unique_index = cudf.Index([1, 2, 3]) >>> numeric_unique_index.get_loc(3) 2
MultiIndex
>>> multi_index = cudf.MultiIndex.from_tuples([('a', 'd'), ('b', 'e'), ('b', 'f')]) >>> multi_index MultiIndex([('a', 'd'), ('b', 'e'), ('b', 'f')], ) >>> multi_index.get_loc('b') slice(1, 3, None) >>> multi_index.get_loc(('b', 'e')) 1
- union(other, sort=None) Self#
Form the union of two Index objects.
Parameters#
other : Index or array-like sort : bool or None, default None
Whether to sort the resulting Index.
None : Sort the result, except when
self and other are equal.
self or other has length 0.
False : do not sort the result.
True : Sort the result (which may raise TypeError).
Returns#
union : Index
Examples#
Union of an Index >>> import cudf >>> import pandas as pd >>> idx1 = cudf.Index([1, 2, 3, 4]) >>> idx2 = cudf.Index([3, 4, 5, 6]) >>> idx1.union(idx2) Index([1, 2, 3, 4, 5, 6], dtype=’int64’)
MultiIndex case
>>> idx1 = cudf.MultiIndex.from_pandas( ... pd.MultiIndex.from_arrays( ... [[1, 1, 2, 2], ["Red", "Blue", "Red", "Blue"]] ... ) ... ) >>> idx1 MultiIndex([(1, 'Red'), (1, 'Blue'), (2, 'Red'), (2, 'Blue')], ) >>> idx2 = cudf.MultiIndex.from_pandas( ... pd.MultiIndex.from_arrays( ... [[3, 3, 2, 2], ["Red", "Green", "Red", "Green"]] ... ) ... ) >>> idx2 MultiIndex([(3, 'Red'), (3, 'Green'), (2, 'Red'), (2, 'Green')], ) >>> idx1.union(idx2) MultiIndex([(1, 'Blue'), (1, 'Red'), (2, 'Blue'), (2, 'Green'), (2, 'Red'), (3, 'Green'), (3, 'Red')], ) >>> idx1.union(idx2, sort=False) MultiIndex([(1, 'Red'), (1, 'Blue'), (2, 'Red'), (2, 'Blue'), (3, 'Red'), (3, 'Green'), (2, 'Green')], )
- all(axis=0, skipna=True, **kwargs)#
Return whether all elements are True in DataFrame.
Parameters#
- axis{0 or ‘index’, 1 or ‘columns’, None}, default 0
Indicate which axis or axes should be reduced. For Series this parameter is unused and defaults to 0.
- 0 or ‘index’reduce the index, return a Series
whose index is the original column labels.
- 1 or ‘columns’reduce the columns, return a Series
whose index is the original index.
None : reduce all axes, return a scalar.
- skipna: bool, default True
Exclude NA/null values. If the entire row/column is NA and skipna is True, then the result will be True, as for an empty row/column. If skipna is False, then NA are treated as True, because these are not equal to zero.
Returns#
Series
Notes#
Parameters currently not supported are bool_only.
Examples#
>>> import cudf >>> df = cudf.DataFrame({'a': [3, 2, 3, 4], 'b': [7, 0, 10, 10]}) >>> df.all() a True b False dtype: bool
- any(axis=0, skipna=True, **kwargs)#
Return whether any elements is True in DataFrame.
Parameters#
- axis{0 or ‘index’, 1 or ‘columns’, None}, default 0
Indicate which axis or axes should be reduced. For Series this parameter is unused and defaults to 0.
- 0 or ‘index’reduce the index, return a Series
whose index is the original column labels.
- 1 or ‘columns’reduce the columns, return a Series
whose index is the original index.
None : reduce all axes, return a scalar.
- skipna: bool, default True
Exclude NA/null values. If the entire row/column is NA and skipna is True, then the result will be False, as for an empty row/column. If skipna is False, then NA are treated as True, because these are not equal to zero.
Returns#
Series
Notes#
Parameters currently not supported are bool_only.
Examples#
>>> import cudf >>> df = cudf.DataFrame({'a': [3, 2, 3, 4], 'b': [7, 0, 10, 10]}) >>> df.any() a True b True dtype: bool
- argsort(by=None, axis=0, kind='quicksort', order=None, ascending=True, na_position='last') ndarray#
Return the integer indices that would sort the Series values.
Parameters#
- bystr or list of str, default None
Name or list of names to sort by. If None, sort by all columns.
- axis{0 or “index”}
Has no effect but is accepted for compatibility with numpy.
- kind{‘mergesort’, ‘quicksort’, ‘heapsort’, ‘stable’}, default ‘quicksort’
Choice of sorting algorithm. See
numpy.sort()for more information. ‘mergesort’ and ‘stable’ are the only stable algorithms. Only quicksort is supported in cuDF.- orderNone
Has no effect but is accepted for compatibility with numpy.
- ascendingbool or list of bool, default True
If True, sort values in ascending order, otherwise descending.
- na_position{‘first’ or ‘last’}, default ‘last’
Argument ‘first’ puts NaNs at the beginning, ‘last’ puts NaNs at the end.
Returns#
cupy.ndarray: The indices sorted based on input.
Examples#
Series
>>> import cudf >>> s = cudf.Series([3, 1, 2]) >>> s 0 3 1 1 2 2 dtype: int64 >>> s.argsort() 0 1 1 2 2 0 dtype: int32 >>> s[s.argsort()] 1 1 2 2 0 3 dtype: int64
DataFrame >>> import cudf >>> df = cudf.DataFrame({‘foo’: [3, 1, 2]}) >>> df.argsort() array([1, 2, 0], dtype=int32)
Index >>> import cudf >>> idx = cudf.Index([3, 1, 2]) >>> idx.argsort() array([1, 2, 0], dtype=int32)
- drop_duplicates(keep='first', nulls_are_equal=True)#
Drop duplicate rows in index.
- keep{“first”, “last”, False}, default “first”
‘first’ : Drop duplicates except for the first occurrence.
‘last’ : Drop duplicates except for the last occurrence.
False: Drop all duplicates.
- nulls_are_equal: bool, default True
Null elements are considered equal to other null elements.
- dropna(how='any')#
Drop null rows from Index.
- how{“any”, “all”}, default “any”
Specifies how to decide whether to drop a row. “any” (default) drops rows containing at least one null value. “all” drops only rows containing all null values.
- duplicated(keep='first') cupy.ndarray#
Indicate duplicate index values.
Duplicated values are indicated as
Truevalues in the resulting array. Either all duplicates, all except the first, or all except the last occurrence of duplicates can be indicated.Parameters#
- keep{‘first’, ‘last’, False}, default ‘first’
The value or values in a set of duplicates to mark as missing.
'first': Mark duplicates asTrueexcept for the first occurrence.'last': Mark duplicates asTrueexcept for the last occurrence.False: Mark all duplicates asTrue.
Returns#
cupy.ndarray[bool]
See Also#
Series.duplicated : Equivalent method on cudf.Series. DataFrame.duplicated : Equivalent method on cudf.DataFrame. Index.drop_duplicates : Remove duplicate values from Index.
Examples#
By default, for each set of duplicated values, the first occurrence is set to False and all others to True:
>>> import cudf >>> idx = cudf.Index(['lama', 'cow', 'lama', 'beetle', 'lama']) >>> idx.duplicated() array([False, False, True, False, True])
which is equivalent to
>>> idx.duplicated(keep='first') array([False, False, True, False, True])
By using ‘last’, the last occurrence of each set of duplicated values is set to False and all others to True:
>>> idx.duplicated(keep='last') array([ True, False, True, False, False])
By setting keep to
False, all duplicates are True:>>> idx.duplicated(keep=False) array([ True, False, True, False, True])
- property empty#
- equals(other) bool#
Test whether two objects contain the same elements.
This function allows two objects to be compared against each other to see if they have the same shape and elements. NaNs in the same location are considered equal. The column headers do not need to have the same type.
Parameters#
- otherIndex, Series, DataFrame
The other object to be compared with.
Returns#
- bool
True if all elements are the same in both objects, False otherwise.
Examples#
>>> import cudf
Comparing Series with equals:
>>> s = cudf.Series([1, 2, 3]) >>> other = cudf.Series([1, 2, 3]) >>> s.equals(other) True >>> different = cudf.Series([1.5, 2, 3]) >>> s.equals(different) False
Comparing DataFrames with equals:
>>> df = cudf.DataFrame({1: [10], 2: [20]}) >>> df 1 2 0 10 20 >>> exactly_equal = cudf.DataFrame({1: [10], 2: [20]}) >>> exactly_equal 1 2 0 10 20 >>> df.equals(exactly_equal) True
For two DataFrames to compare equal, the types of column values must be equal, but the types of column labels need not:
>>> different_column_type = cudf.DataFrame({1.0: [10], 2.0: [20]}) >>> different_column_type 1.0 2.0 0 10 20 >>> df.equals(different_column_type) True
- find_label_range(loc: slice) slice#
Translate a label-based slice to an index-based slice
Parameters#
- loc
slice to search for.
Notes#
As with all label-based searches, the slice is right-closed.
Returns#
New slice translated into integer indices of the index (right-open).
- classmethod from_arrow(data: Table) Self#
Convert from PyArrow Table to Frame
Parameters#
data : PyArrow Table
Raises#
TypeError for invalid input type.
Examples#
>>> import cudf >>> import pyarrow as pa >>> data = pa.table({"a":[1, 2, 3], "b":[4, 5, 6]}) >>> cudf.core.frame.Frame.from_arrow(data) a b 0 1 4 1 2 5 2 3 6
- property has_duplicates#
- property hasnans#
Return True if there are any NaNs or nulls.
Returns#
- outbool
If Series has at least one NaN or null value, return True, if not return False.
Examples#
>>> import cudf >>> import numpy as np >>> index = cudf.Index([1, 2, np.nan, 3, 4], nan_as_null=False) >>> index Index([1.0, 2.0, nan, 3.0, 4.0], dtype='float64') >>> index.hasnans True
hasnans returns True for the presence of any NA values:
>>> index = cudf.Index([1, 2, None, 3, 4]) >>> index Index([1, 2, <NA>, 3, 4], dtype='int64') >>> index.hasnans True
- intersection(other, sort=False)#
Form the intersection of two Index objects.
This returns a new Index with elements common to the index and other.
Parameters#
other : Index or array-like sort : False or None, default False
Whether to sort the resulting index.
False : do not sort the result.
None : sort the result, except when self and other are equal or when the values cannot be compared.
True : Sort the result (which may raise TypeError).
Returns#
intersection : Index
Examples#
>>> import cudf >>> import pandas as pd >>> idx1 = cudf.Index([1, 2, 3, 4]) >>> idx2 = cudf.Index([3, 4, 5, 6]) >>> idx1.intersection(idx2) Index([3, 4], dtype='int64')
MultiIndex case
>>> idx1 = cudf.MultiIndex.from_pandas( ... pd.MultiIndex.from_arrays( ... [[1, 1, 3, 4], ["Red", "Blue", "Red", "Blue"]] ... ) ... ) >>> idx2 = cudf.MultiIndex.from_pandas( ... pd.MultiIndex.from_arrays( ... [[1, 1, 2, 2], ["Red", "Blue", "Red", "Blue"]] ... ) ... ) >>> idx1 MultiIndex([(1, 'Red'), (1, 'Blue'), (3, 'Red'), (4, 'Blue')], ) >>> idx2 MultiIndex([(1, 'Red'), (1, 'Blue'), (2, 'Red'), (2, 'Blue')], ) >>> idx1.intersection(idx2) MultiIndex([(1, 'Red'), (1, 'Blue')], ) >>> idx1.intersection(idx2, sort=False) MultiIndex([(1, 'Red'), (1, 'Blue')], )
- is_boolean()#
Check if the Index only consists of booleans.
Deprecated since version 23.04: Use cudf.api.types.is_bool_dtype instead.
Returns#
- bool
Whether or not the Index only consists of booleans.
See Also#
is_integer : Check if the Index only consists of integers. is_floating : Check if the Index is a floating type. is_numeric : Check if the Index only consists of numeric data. is_object : Check if the Index is of the object dtype. is_categorical : Check if the Index holds categorical data. is_interval : Check if the Index holds Interval objects.
Examples#
>>> import cudf >>> idx = cudf.Index([True, False, True]) >>> idx.is_boolean() True >>> idx = cudf.Index(["True", "False", "True"]) >>> idx.is_boolean() False >>> idx = cudf.Index([1, 2, 3]) >>> idx.is_boolean() False
- is_categorical()#
Check if the Index holds categorical data.
Deprecated since version 23.04: Use cudf.api.types.is_categorical_dtype instead.
Returns#
- bool
True if the Index is categorical.
See Also#
CategoricalIndex : Index for categorical data. is_boolean : Check if the Index only consists of booleans. is_integer : Check if the Index only consists of integers. is_floating : Check if the Index is a floating type. is_numeric : Check if the Index only consists of numeric data. is_object : Check if the Index is of the object dtype. is_interval : Check if the Index holds Interval objects.
Examples#
>>> import cudf >>> idx = cudf.Index(["Watermelon", "Orange", "Apple", ... "Watermelon"]).astype("category") >>> idx.is_categorical() True >>> idx = cudf.Index([1, 3, 5, 7]) >>> idx.is_categorical() False >>> s = cudf.Series(["Peter", "Victor", "Elisabeth", "Mar"]) >>> s 0 Peter 1 Victor 2 Elisabeth 3 Mar dtype: object >>> s.index.is_categorical() False
- is_floating()#
Check if the Index is a floating type.
The Index may consist of only floats, NaNs, or a mix of floats, integers, or NaNs.
Deprecated since version 23.04: Use cudf.api.types.is_float_dtype instead.
Returns#
- bool
Whether or not the Index only consists of only consists of floats, NaNs, or a mix of floats, integers, or NaNs.
See Also#
is_boolean : Check if the Index only consists of booleans. is_integer : Check if the Index only consists of integers. is_numeric : Check if the Index only consists of numeric data. is_object : Check if the Index is of the object dtype. is_categorical : Check if the Index holds categorical data. is_interval : Check if the Index holds Interval objects.
Examples#
>>> import cudf >>> idx = cudf.Index([1.0, 2.0, 3.0, 4.0]) >>> idx.is_floating() True >>> idx = cudf.Index([1.0, 2.0, np.nan, 4.0]) >>> idx.is_floating() True >>> idx = cudf.Index([1, 2, 3, 4, np.nan], nan_as_null=False) >>> idx.is_floating() True >>> idx = cudf.Index([1, 2, 3, 4]) >>> idx.is_floating() False
- is_integer()#
Check if the Index only consists of integers.
Deprecated since version 23.04: Use cudf.api.types.is_integer_dtype instead.
Returns#
- bool
Whether or not the Index only consists of integers.
See Also#
is_boolean : Check if the Index only consists of booleans. is_floating : Check if the Index is a floating type. is_numeric : Check if the Index only consists of numeric data. is_object : Check if the Index is of the object dtype. is_categorical : Check if the Index holds categorical data. is_interval : Check if the Index holds Interval objects.
Examples#
>>> import cudf >>> idx = cudf.Index([1, 2, 3, 4]) >>> idx.is_integer() True >>> idx = cudf.Index([1.0, 2.0, 3.0, 4.0]) >>> idx.is_integer() False >>> idx = cudf.Index(["Apple", "Mango", "Watermelon"]) >>> idx.is_integer() False
- is_interval()#
Check if the Index holds Interval objects.
Deprecated since version 23.04: Use cudf.api.types.is_interval_dtype instead.
Returns#
- bool
Whether or not the Index holds Interval objects.
See Also#
IntervalIndex : Index for Interval objects. is_boolean : Check if the Index only consists of booleans. is_integer : Check if the Index only consists of integers. is_floating : Check if the Index is a floating type. is_numeric : Check if the Index only consists of numeric data. is_object : Check if the Index is of the object dtype. is_categorical : Check if the Index holds categorical data.
Examples#
>>> import cudf >>> import pandas as pd >>> idx = cudf.from_pandas( ... pd.Index([pd.Interval(left=0, right=5), ... pd.Interval(left=5, right=10)]) ... ) >>> idx.is_interval() True >>> idx = cudf.Index([1, 3, 5, 7]) >>> idx.is_interval() False
- is_numeric()#
Check if the Index only consists of numeric data.
Deprecated since version 23.04: Use cudf.api.types.is_any_real_numeric_dtype instead.
Returns#
- bool
Whether or not the Index only consists of numeric data.
See Also#
is_boolean : Check if the Index only consists of booleans. is_integer : Check if the Index only consists of integers. is_floating : Check if the Index is a floating type. is_object : Check if the Index is of the object dtype. is_categorical : Check if the Index holds categorical data. is_interval : Check if the Index holds Interval objects.
Examples#
>>> import cudf >>> idx = cudf.Index([1.0, 2.0, 3.0, 4.0]) >>> idx.is_numeric() True >>> idx = cudf.Index([1, 2, 3, 4.0]) >>> idx.is_numeric() True >>> idx = cudf.Index([1, 2, 3, 4]) >>> idx.is_numeric() True >>> idx = cudf.Index([1, 2, 3, 4.0, np.nan]) >>> idx.is_numeric() True >>> idx = cudf.Index(["Apple", "cold"]) >>> idx.is_numeric() False
- is_object()#
Check if the Index is of the object dtype.
Deprecated since version 23.04: Use cudf.api.types.is_object_dtype instead.
Returns#
- bool
Whether or not the Index is of the object dtype.
See Also#
is_boolean : Check if the Index only consists of booleans. is_integer : Check if the Index only consists of integers. is_floating : Check if the Index is a floating type. is_numeric : Check if the Index only consists of numeric data. is_categorical : Check if the Index holds categorical data. is_interval : Check if the Index holds Interval objects.
Examples#
>>> import cudf >>> idx = cudf.Index(["Apple", "Mango", "Watermelon"]) >>> idx.is_object() True >>> idx = cudf.Index(["Watermelon", "Orange", "Apple", ... "Watermelon"]).astype("category") >>> idx.is_object() False >>> idx = cudf.Index([1.0, 2.0, 3.0, 4.0]) >>> idx.is_object() False
- isna()#
Identify missing values.
Return a boolean same-sized object indicating if the values are
<NA>.<NA>values gets mapped toTruevalues. Everything else gets mapped toFalsevalues.<NA>values include:Values where null mask is set.
NaNin float dtype.NaTin datetime64 and timedelta64 types.
Characters such as empty strings
''orinfin case of float are not considered<NA>values.Returns#
- DataFrame/Series/Index
Mask of bool values for each element in the object that indicates whether an element is an NA value.
Examples#
Show which entries in a DataFrame are NA.
>>> import cudf >>> import numpy as np >>> import pandas as pd >>> df = cudf.DataFrame({'age': [5, 6, np.nan], ... 'born': [pd.NaT, pd.Timestamp('1939-05-27'), ... pd.Timestamp('1940-04-25')], ... 'name': ['Alfred', 'Batman', ''], ... 'toy': [None, 'Batmobile', 'Joker']}) >>> df age born name toy 0 5 <NA> Alfred <NA> 1 6 1939-05-27 00:00:00.000000 Batman Batmobile 2 <NA> 1940-04-25 00:00:00.000000 Joker >>> df.isna() age born name toy 0 False True False True 1 False False False False 2 True False False False
Show which entries in a Series are NA.
>>> ser = cudf.Series([5, 6, np.nan, np.inf, -np.inf]) >>> ser 0 5.0 1 6.0 2 <NA> 3 Inf 4 -Inf dtype: float64 >>> ser.isna() 0 False 1 False 2 True 3 False 4 False dtype: bool
Show which entries in an Index are NA.
>>> idx = cudf.Index([1, 2, None, np.nan, 0.32, np.inf]) >>> idx Index([1.0, 2.0, <NA>, <NA>, 0.32, Inf], dtype='float64') >>> idx.isna() array([False, False, True, True, False, False])
- isnull()#
Identify missing values.
Return a boolean same-sized object indicating if the values are
<NA>.<NA>values gets mapped toTruevalues. Everything else gets mapped toFalsevalues.<NA>values include:Values where null mask is set.
NaNin float dtype.NaTin datetime64 and timedelta64 types.
Characters such as empty strings
''orinfin case of float are not considered<NA>values.Returns#
- DataFrame/Series/Index
Mask of bool values for each element in the object that indicates whether an element is an NA value.
Examples#
Show which entries in a DataFrame are NA.
>>> import cudf >>> import numpy as np >>> import pandas as pd >>> df = cudf.DataFrame({'age': [5, 6, np.nan], ... 'born': [pd.NaT, pd.Timestamp('1939-05-27'), ... pd.Timestamp('1940-04-25')], ... 'name': ['Alfred', 'Batman', ''], ... 'toy': [None, 'Batmobile', 'Joker']}) >>> df age born name toy 0 5 <NA> Alfred <NA> 1 6 1939-05-27 00:00:00.000000 Batman Batmobile 2 <NA> 1940-04-25 00:00:00.000000 Joker >>> df.isna() age born name toy 0 False True False True 1 False False False False 2 True False False False
Show which entries in a Series are NA.
>>> ser = cudf.Series([5, 6, np.nan, np.inf, -np.inf]) >>> ser 0 5.0 1 6.0 2 <NA> 3 Inf 4 -Inf dtype: float64 >>> ser.isna() 0 False 1 False 2 True 3 False 4 False dtype: bool
Show which entries in an Index are NA.
>>> idx = cudf.Index([1, 2, None, np.nan, 0.32, np.inf]) >>> idx Index([1.0, 2.0, <NA>, <NA>, 0.32, Inf], dtype='float64') >>> idx.isna() array([False, False, True, True, False, False])
- join(other, how='left', level=None, return_indexers=False, sort=False)#
Compute join_index and indexers to conform data structures to the new index.
Parameters#
other : Index. how : {‘left’, ‘right’, ‘inner’, ‘outer’} return_indexers : bool, default False sort : bool, default False
Sort the join keys lexicographically in the result Index. If False, the order of the join keys depends on the join type (how keyword).
Returns: index
Examples#
>>> import cudf >>> lhs = cudf.DataFrame({ ... "a": [2, 3, 1], ... "b": [3, 4, 2], ... }).set_index(['a', 'b']).index >>> lhs MultiIndex([(2, 3), (3, 4), (1, 2)], names=['a', 'b']) >>> rhs = cudf.DataFrame({"a": [1, 4, 3]}).set_index('a').index >>> rhs Index([1, 4, 3], dtype='int64', name='a') >>> lhs.join(rhs, how='inner') MultiIndex([(3, 4), (1, 2)], names=['a', 'b'])
- max(axis=0, skipna=True, numeric_only=False, **kwargs)#
Return the maximum of the values in the DataFrame.
Parameters#
- axis: {index (0), columns(1)}
Axis for the function to be applied on.
- skipna: bool, default True
Exclude NA/null values when computing the result.
- numeric_only: bool, default False
If True, includes only float, int, boolean columns. If False, will raise error in-case there are non-numeric columns.
Returns#
Series
Examples#
>>> import cudf >>> df = cudf.DataFrame({'a': [1, 2, 3, 4], 'b': [7, 8, 9, 10]}) >>> df.max() a 4 b 10 dtype: int64
- min(axis=0, skipna=True, numeric_only=False, **kwargs)#
Return the minimum of the values in the DataFrame.
Parameters#
- axis: {index (0), columns(1)}
Axis for the function to be applied on.
- skipna: bool, default True
Exclude NA/null values when computing the result.
- numeric_only: bool, default False
If True, includes only float, int, boolean columns. If False, will raise error in-case there are non-numeric columns.
Returns#
Series
Examples#
>>> import cudf >>> df = cudf.DataFrame({'a': [1, 2, 3, 4], 'b': [7, 8, 9, 10]}) >>> min_series = df.min() >>> min_series a 1 b 7 dtype: int64 >>> min_series.min() 1
- notna()#
Identify non-missing values.
Return a boolean same-sized object indicating if the values are not
<NA>. Non-missing values get mapped toTrue.<NA>values get mapped toFalsevalues.<NA>values include:Values where null mask is set.
NaNin float dtype.NaTin datetime64 and timedelta64 types.
Characters such as empty strings
''orinfin case of float are not considered<NA>values.Returns#
- DataFrame/Series/Index
Mask of bool values for each element in the object that indicates whether an element is not an NA value.
Examples#
Show which entries in a DataFrame are NA.
>>> import cudf >>> import numpy as np >>> import pandas as pd >>> df = cudf.DataFrame({'age': [5, 6, np.nan], ... 'born': [pd.NaT, pd.Timestamp('1939-05-27'), ... pd.Timestamp('1940-04-25')], ... 'name': ['Alfred', 'Batman', ''], ... 'toy': [None, 'Batmobile', 'Joker']}) >>> df age born name toy 0 5 <NA> Alfred <NA> 1 6 1939-05-27 00:00:00.000000 Batman Batmobile 2 <NA> 1940-04-25 00:00:00.000000 Joker >>> df.notna() age born name toy 0 True False True False 1 True True True True 2 False True True True
Show which entries in a Series are NA.
>>> ser = cudf.Series([5, 6, np.nan, np.inf, -np.inf]) >>> ser 0 5.0 1 6.0 2 <NA> 3 Inf 4 -Inf dtype: float64 >>> ser.notna() 0 True 1 True 2 False 3 True 4 True dtype: bool
Show which entries in an Index are NA.
>>> idx = cudf.Index([1, 2, None, np.nan, 0.32, np.inf]) >>> idx Index([1.0, 2.0, <NA>, <NA>, 0.32, Inf], dtype='float64') >>> idx.notna() array([ True, True, False, False, True, True])
- notnull()#
Identify non-missing values.
Return a boolean same-sized object indicating if the values are not
<NA>. Non-missing values get mapped toTrue.<NA>values get mapped toFalsevalues.<NA>values include:Values where null mask is set.
NaNin float dtype.NaTin datetime64 and timedelta64 types.
Characters such as empty strings
''orinfin case of float are not considered<NA>values.Returns#
- DataFrame/Series/Index
Mask of bool values for each element in the object that indicates whether an element is not an NA value.
Examples#
Show which entries in a DataFrame are NA.
>>> import cudf >>> import numpy as np >>> import pandas as pd >>> df = cudf.DataFrame({'age': [5, 6, np.nan], ... 'born': [pd.NaT, pd.Timestamp('1939-05-27'), ... pd.Timestamp('1940-04-25')], ... 'name': ['Alfred', 'Batman', ''], ... 'toy': [None, 'Batmobile', 'Joker']}) >>> df age born name toy 0 5 <NA> Alfred <NA> 1 6 1939-05-27 00:00:00.000000 Batman Batmobile 2 <NA> 1940-04-25 00:00:00.000000 Joker >>> df.notna() age born name toy 0 True False True False 1 True True True True 2 False True True True
Show which entries in a Series are NA.
>>> ser = cudf.Series([5, 6, np.nan, np.inf, -np.inf]) >>> ser 0 5.0 1 6.0 2 <NA> 3 Inf 4 -Inf dtype: float64 >>> ser.notna() 0 True 1 True 2 False 3 True 4 True dtype: bool
Show which entries in an Index are NA.
>>> idx = cudf.Index([1, 2, None, np.nan, 0.32, np.inf]) >>> idx Index([1.0, 2.0, <NA>, <NA>, 0.32, Inf], dtype='float64') >>> idx.notna() array([ True, True, False, False, True, True])
- searchsorted(values, side: Literal['left', 'right'] = 'left', sorter=None, ascending: bool = True, na_position: Literal['first', 'last'] = 'last') ScalarLike | cupy.ndarray#
Find indices where elements should be inserted to maintain order
Parameters#
- valueFrame (Shape must be consistent with self)
Values to be hypothetically inserted into Self
- sidestr {‘left’, ‘right’} optional, default ‘left’
If ‘left’, the index of the first suitable location found is given If ‘right’, return the last such index
- sorter1-D array-like, optional
Optional array of integer indices that sort self into ascending order. They are typically the result of
np.argsort. Currently not supported.- ascendingbool optional, default True
Sorted Frame is in ascending order (otherwise descending)
- na_positionstr {‘last’, ‘first’} optional, default ‘last’
Position of null values in sorted order
Returns#
1-D cupy array of insertion points
Examples#
>>> s = cudf.Series([1, 2, 3]) >>> s.searchsorted(4) 3 >>> s.searchsorted([0, 4]) array([0, 3], dtype=int32) >>> s.searchsorted([1, 3], side='left') array([0, 2], dtype=int32) >>> s.searchsorted([1, 3], side='right') array([1, 3], dtype=int32)
If the values are not monotonically sorted, wrong locations may be returned:
>>> s = cudf.Series([2, 1, 3]) >>> s.searchsorted(1) 0 # wrong result, correct would be 1
>>> df = cudf.DataFrame({'a': [1, 3, 5, 7], 'b': [10, 12, 14, 16]}) >>> df a b 0 1 10 1 3 12 2 5 14 3 7 16 >>> values_df = cudf.DataFrame({'a': [0, 2, 5, 6], ... 'b': [10, 11, 13, 15]}) >>> values_df a b 0 0 10 1 2 17 2 5 13 3 6 15 >>> df.searchsorted(values_df, ascending=False) array([4, 4, 4, 0], dtype=int32)
- property shape#
Get a tuple representing the dimensionality of the data.
- shift(periods=1, freq=None)#
Not yet implemented
- sort_values(return_indexer=False, ascending=True, na_position='last', key=None) Self | tuple[Self, cupy.ndarray]#
Return a sorted copy of the index, and optionally return the indices that sorted the index itself.
Parameters#
- return_indexerbool, default False
Should the indices that would sort the index be returned.
- ascendingbool, default True
Should the index values be sorted in an ascending order.
- na_position{‘first’ or ‘last’}, default ‘last’
Argument ‘first’ puts NaNs at the beginning, ‘last’ puts NaNs at the end.
- keyNone, optional
This parameter is NON-FUNCTIONAL.
Returns#
- sorted_indexIndex
Sorted copy of the index.
- indexercupy.ndarray, optional
The indices that the index itself was sorted by.
See Also#
cudf.Series.min : Sort values of a Series. cudf.DataFrame.sort_values : Sort values in a DataFrame.
Examples#
>>> import cudf >>> idx = cudf.Index([10, 100, 1, 1000]) >>> idx Index([10, 100, 1, 1000], dtype='int64')
Sort values in ascending order (default behavior).
>>> idx.sort_values() Index([1, 10, 100, 1000], dtype='int64')
Sort values in descending order, and also get the indices idx was sorted by.
>>> idx.sort_values(ascending=False, return_indexer=True) (Index([1000, 100, 10, 1], dtype='int64'), array([3, 1, 0, 2], dtype=int32))
Sorting values in a MultiIndex:
>>> midx = cudf.MultiIndex( ... levels=[[1, 3, 4, -10], [1, 11, 5]], ... codes=[[0, 0, 1, 2, 3], [0, 2, 1, 1, 0]], ... names=["x", "y"], ... ) >>> midx MultiIndex([( 1, 1), ( 1, 5), ( 3, 11), ( 4, 11), (-10, 1)], names=['x', 'y']) >>> midx.sort_values() MultiIndex([(-10, 1), ( 1, 1), ( 1, 5), ( 3, 11), ( 4, 11)], names=['x', 'y']) >>> midx.sort_values(ascending=False) MultiIndex([( 4, 11), ( 3, 11), ( 1, 5), ( 1, 1), (-10, 1)], names=['x', 'y'])
- property str#
Not yet implemented.
- to_arrow() Table#
Convert to arrow Table
Examples#
>>> import cudf >>> df = cudf.DataFrame( ... {"a":[1, 2, 3], "b":[4, 5, 6]}, index=[1, 2, 3]) >>> df.to_arrow() pyarrow.Table a: int64 b: int64 index: int64 ---- a: [[1,2,3]] b: [[4,5,6]] index: [[1,2,3]]
- to_cupy(dtype: Dtype | None = None, copy: bool = False, na_value=None) cupy.ndarray#
Convert the Frame to a CuPy array.
Parameters#
- dtypestr or
numpy.dtype, optional The dtype to pass to
numpy.asarray().- copybool, default False
Whether to ensure that the returned value is not a view on another array. Note that
copy=Falsedoes not ensure thatto_cupy()is no-copy. Rather,copy=Trueensure that a copy is made, even if not strictly necessary.- na_valueAny, default None
The value to use for missing values. The default value depends on dtype and the dtypes of the DataFrame columns.
Returns#
cupy.ndarray
- dtypestr or
- to_dlpack()#
Converts a cuDF object into a DLPack tensor.
DLPack is an open-source memory tensor structure: dmlc/dlpack.
This function takes a cuDF object and converts it to a PyCapsule object which contains a pointer to a DLPack tensor. This function deep copies the data into the DLPack tensor from the cuDF object.
Parameters#
cudf_obj : DataFrame, Series, Index, or Column
Returns#
- pycapsule_objPyCapsule
Output DLPack tensor pointer which is encapsulated in a PyCapsule object.
- to_list()#
- tolist()#
- repeat(repeats, axis=None) Self#
Repeat elements of a Index.
Returns a new Index where each element of the current Index is repeated consecutively a given number of times.
Parameters#
- repeatsint, or array of ints
The number of repetitions for each element. This should be a non-negative integer. Repeating 0 times will return an empty object.
Returns#
- Index
A newly created object of same type as caller with repeated elements.
Examples#
>>> index = cudf.Index([10, 22, 33, 55]) >>> index Index([10, 22, 33, 55], dtype='int64') >>> index.repeat(5) Index([10, 10, 10, 10, 10, 22, 22, 22, 22, 22, 33, 33, 33, 33, 33, 55, 55, 55, 55, 55], dtype='int64')