hipdf.DataFrame.ewm#
22 min read time
- DataFrame.ewm(com: float | None = None, span: float | None = None, halflife: float | None = None, alpha: float | None = None, min_periods: int | None = 0, adjust: bool = True, ignore_na: bool = False, axis: int = 0, times: str | ndarray | None = None, method: Literal['single', 'table'] = 'single')#
Provide exponential weighted (EW) functions. Available EW functions:
mean()Exactly one parameter:com,span,halflife, oralphamust be provided.Parameters#
- comfloat, optional
Specify decay in terms of center of mass, \(\alpha = 1 / (1 + com)\), for \(com \geq 0\).
- spanfloat, optional
Specify decay in terms of span, \(\alpha = 2 / (span + 1)\), for \(span \geq 1\).
- halflifefloat, str, timedelta, optional
Specify decay in terms of half-life, \(\alpha = 1 - \exp\left(-\ln(2) / halflife\right)\), for \(halflife > 0\).
- alphafloat, optional
Specify smoothing factor \(\alpha\) directly, \(0 < \alpha \leq 1\).
- min_periodsint, default 0
Not Supported
- adjustbool, default True
Controls assumptions about the first value in the sequence. https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.ewm.html for details.
- ignore_nabool, default False
Not Supported
- axis{0, 1}, default 0
Not Supported
- timesstr, np.ndarray, Series, default None
Not Supported
Returns#
ExponentialMovingWindowobjectNotes#
cuDF input data may contain both nulls and nan values. For the purposes of this method, they are taken to have the same meaning, meaning nulls in cuDF will affect the result the same way that nan values would using the equivalent pandas method.
Examples#
>>> df = cudf.DataFrame({'B': [0, 1, 2, cudf.NA, 4]}) >>> df B 0 0 1 1 2 2 3 <NA> 4 4 >>> df.ewm(com=0.5).mean() B 0 0.000000 1 0.750000 2 1.615385 3 1.615385 4 3.670213
>>> df.ewm(com=0.5, adjust=False).mean() B 0 0.000000 1 0.666667 2 1.555556 3 1.555556 4 3.650794