hipdf.DataFrame#
217 min read time
- class hipdf.DataFrame(data=None, index=None, columns=None, dtype=None, nan_as_null=True)#
Bases:
IndexedFrame
,Serializable
,GetAttrGetItemMixin
A GPU Dataframe object.
Parameters#
- dataarray-like, Iterable, dict, or DataFrame.
Dict can contain Series, arrays, constants, or list-like objects.
- indexIndex or array-like
Index to use for resulting frame. Will default to RangeIndex if no indexing information part of input data and no index provided.
- columnsIndex or array-like
Column labels to use for resulting frame. Will default to RangeIndex (0, 1, 2, …, n) if no column labels are provided.
- dtypedtype, default None
Data type to force. Only a single dtype is allowed. If None, infer.
- nan_as_nullbool, Default True
If
None
/True
, convertsnp.nan
values tonull
values. IfFalse
, leavesnp.nan
values as is.
Examples#
Build dataframe with
__setitem__
:>>> import cudf >>> df = cudf.DataFrame() >>> df['key'] = [0, 1, 2, 3, 4] >>> df['val'] = [float(i + 10) for i in range(5)] # insert column >>> df key val 0 0 10.0 1 1 11.0 2 2 12.0 3 3 13.0 4 4 14.0
Build DataFrame via dict of columns:
>>> import numpy as np >>> from datetime import datetime, timedelta >>> t0 = datetime.strptime('2018-10-07 12:00:00', '%Y-%m-%d %H:%M:%S') >>> n = 5 >>> df = cudf.DataFrame({ ... 'id': np.arange(n), ... 'datetimes': np.array( ... [(t0+ timedelta(seconds=x)) for x in range(n)]) ... }) >>> df id datetimes 0 0 2018-10-07 12:00:00 1 1 2018-10-07 12:00:01 2 2 2018-10-07 12:00:02 3 3 2018-10-07 12:00:03 4 4 2018-10-07 12:00:04
Build DataFrame via list of rows as tuples:
>>> df = cudf.DataFrame([ ... (5, "cats", "jump", np.nan), ... (2, "dogs", "dig", 7.5), ... (3, "cows", "moo", -2.1, "occasionally"), ... ]) >>> df 0 1 2 3 4 0 5 cats jump <NA> <NA> 1 2 dogs dig 7.5 <NA> 2 3 cows moo -2.1 occasionally
Convert from a Pandas DataFrame:
>>> import pandas as pd >>> pdf = pd.DataFrame({'a': [0, 1, 2, 3],'b': [0.1, 0.2, None, 0.3]}) >>> pdf a b 0 0 0.1 1 1 0.2 2 2 NaN 3 3 0.3 >>> df = cudf.from_pandas(pdf) >>> df a b 0 0 0.1 1 1 0.2 2 2 <NA> 3 3 0.3
- __init__(data=None, index=None, columns=None, dtype=None, nan_as_null=True)#
Methods
__init__
([data, index, columns, dtype, ...])abs
()Return a Series/DataFrame with absolute numeric value of each element.
add
(other[, axis, level, fill_value])Get Addition of DataFrame or Series and other, element-wise (binary operator add).
add_prefix
(prefix)Prefix labels with string prefix.
add_suffix
(suffix)Suffix labels with string suffix.
agg
(aggs[, axis])Aggregate using one or more operations over the specified axis.
all
([axis, bool_only, skipna, level])Return whether all elements are True in DataFrame.
any
([axis, bool_only, skipna, level])Return whether any elements is True in DataFrame.
append
(other[, ignore_index, ...])Append rows of other to the end of caller, returning a new object.
apply
(func[, axis, raw, result_type, args])Apply a function along an axis of the DataFrame.
apply_chunks
(func, incols, outcols[, ...])Transform user-specified chunks using the user-provided function.
apply_rows
(func, incols, outcols, kwargs[, ...])Apply a row-wise user defined function.
applymap
(func[, na_action])Apply a function to a Dataframe elementwise.
argsort
([by, axis, kind, order, ascending, ...])Return the integer indices that would sort the Series values.
assign
(**kwargs)Assign columns to DataFrame from keyword arguments.
astype
(dtype[, copy, errors])Cast the object to the given dtype.
backfill
([value, axis, inplace, limit])Synonym for
Series.fillna()
withmethod='bfill'
.bfill
([value, axis, inplace, limit])Synonym for
Series.fillna()
withmethod='bfill'
.clip
([lower, upper, inplace, axis])Trim values at input threshold(s).
convert_dtypes
([infer_objects, ...])Convert columns to the best possible nullable dtypes.
copy
([deep])Make a copy of this object's indices and data.
corr
([method, min_periods])Compute the correlation matrix of a DataFrame.
count
([axis, level, numeric_only])Count
non-NA
cells for each column or row.cov
(**kwargs)Compute the covariance matrix of a DataFrame.
cummax
([axis])Return cumulative max of the IndexedFrame.
cummin
([axis])Return cumulative min of the IndexedFrame.
cumprod
([axis])Return cumulative product of the IndexedFrame.
cumsum
([axis])Return cumulative sum of the IndexedFrame.
describe
([percentiles, include, exclude, ...])Generate descriptive statistics.
deserialize
(header, frames)Generate an object from a serialized representation.
device_deserialize
(header, frames)Perform device-side deserialization tasks.
Serialize data and metadata associated with device memory.
diff
([periods, axis])First discrete difference of element.
div
(other[, axis, level, fill_value])Get Floating division of DataFrame or Series and other, element-wise (binary operator truediv).
divide
(other[, axis, level, fill_value])Get Floating division of DataFrame or Series and other, element-wise (binary operator truediv).
dot
(other[, reflect])Get dot product of frame and other, (binary operator dot).
drop
([labels, axis, index, columns, level, ...])Drop specified labels from rows or columns.
drop_duplicates
([subset, keep, inplace, ...])Return DataFrame with duplicate rows removed.
dropna
([axis, how, thresh, subset, inplace])Drop rows (or columns) containing nulls from a Column.
duplicated
([subset, keep])Return boolean Series denoting duplicate rows.
eq
(other[, axis, level, fill_value])Get Equal to of DataFrame or Series and other, element-wise (binary operator eq).
equals
(other, **kwargs)Test whether two objects contain the same elements.
eval
(expr[, inplace])Evaluate a string describing operations on DataFrame columns.
explode
(column[, ignore_index])Transform each element of a list-like to a row, replicating index values.
ffill
([value, axis, inplace, limit])Synonym for
Series.fillna()
withmethod='ffill'
.fillna
([value, method, axis, inplace, limit])Fill null values with
value
or specifiedmethod
.first
(offset)Select initial periods of time series data based on a date offset.
floordiv
(other[, axis, level, fill_value])Get Integer division of DataFrame or Series and other, element-wise (binary operator floordiv).
from_arrow
(table)Convert from PyArrow Table to DataFrame.
from_dict
(data[, orient, dtype, columns])Construct DataFrame from dict of array-like or dicts.
from_pandas
(dataframe[, nan_as_null])Convert from a Pandas DataFrame.
from_records
(data[, index, columns, nan_as_null])Convert structured or record ndarray to DataFrame.
ge
(other[, axis, level, fill_value])Get Greater than or equal to of DataFrame or Series and other, element-wise (binary operator ge).
groupby
([by, axis, level, as_index, sort, ...])Group using a mapper or by a Series of columns.
gt
(other[, axis, level, fill_value])Get Greater than of DataFrame or Series and other, element-wise (binary operator gt).
hash_values
([method, seed])Compute the hash of values in this column.
head
([n])Return the first n rows.
host_deserialize
(header, frames)Perform device-side deserialization tasks.
Serialize data and metadata associated with host memory.
info
([verbose, buf, max_cols, memory_usage, ...])Print a concise summary of a DataFrame.
insert
(loc, name, value[, nan_as_null])Add a column to DataFrame at the index specified by loc.
Interleave Series columns of a table into a single column.
interpolate
([method, axis, limit, inplace, ...])Interpolate data values between some points.
isin
(values)Whether each element in the DataFrame is contained in values.
isna
()Identify missing values.
isnull
()Identify missing values.
items
()Iterate over column names and series pairs
iterrows
()Iteration is unsupported.
itertuples
([index, name])Iteration is unsupported.
join
(other[, on, how, lsuffix, rsuffix, sort])Join columns with other DataFrame on index or on a key column.
keys
()Get the columns.
kurt
([axis, skipna, level, numeric_only])Return Fisher's unbiased kurtosis of a sample.
kurtosis
([axis, skipna, level, numeric_only])Return Fisher's unbiased kurtosis of a sample.
last
(offset)Select final periods of time series data based on a date offset.
le
(other[, axis, level, fill_value])Get Less than or equal to of DataFrame or Series and other, element-wise (binary operator le).
lt
(other[, axis, level, fill_value])Get Less than of DataFrame or Series and other, element-wise (binary operator lt).
mask
(cond[, other, inplace])Replace values where the condition is True.
max
([axis, skipna, level, numeric_only])Return the maximum of the values in the DataFrame.
mean
([axis, skipna, level, numeric_only])Return the mean of the values for the requested axis.
median
([axis, skipna, level, numeric_only])Return the median of the values for the requested axis.
melt
(**kwargs)Unpivots a DataFrame from wide format to long format, optionally leaving identifier variables set.
memory_usage
([index, deep])Return the memory usage of an object.
merge
(right[, on, left_on, right_on, ...])Merge GPU DataFrame objects by performing a database-style join operation by columns or indexes.
min
([axis, skipna, level, numeric_only])Return the minimum of the values in the DataFrame.
mod
(other[, axis, level, fill_value])Get Modulo of DataFrame or Series and other, element-wise (binary operator mod).
mode
([axis, numeric_only, dropna])Get the mode(s) of each element along the selected axis.
mul
(other[, axis, level, fill_value])Get Multiplication of DataFrame or Series and other, element-wise (binary operator mul).
multiply
(other[, axis, level, fill_value])Get Multiplication of DataFrame or Series and other, element-wise (binary operator mul).
Convert nans (if any) to nulls
ne
(other[, axis, level, fill_value])Get Not equal to of DataFrame or Series and other, element-wise (binary operator ne).
nlargest
(n, columns[, keep])Return the first n rows ordered by columns in descending order.
notna
()Identify non-missing values.
notnull
()Identify non-missing values.
nsmallest
(n, columns[, keep])Return the first n rows ordered by columns in ascending order.
nunique
([axis, dropna])Count number of distinct elements in specified axis.
pad
([value, axis, inplace, limit])Synonym for
Series.fillna()
withmethod='ffill'
.partition_by_hash
(columns, nparts[, keep_index])Partition the dataframe by the hashed value of data in columns.
pct_change
([periods, fill_method, limit, freq])Calculates the percent change between sequential elements in the DataFrame.
pipe
(func, *args, **kwargs)Apply
func(self, *args, **kwargs)
.pivot
(index, columns[, values])Return reshaped DataFrame organized by the given index and column values.
pivot_table
([values, index, columns, ...])Create a spreadsheet-style pivot table as a DataFrame.
pop
(item)Return a column and drop it from the DataFrame.
pow
(other[, axis, level, fill_value])Get Exponential of DataFrame or Series and other, element-wise (binary operator pow).
prod
([axis, skipna, dtype, level, ...])Return product of the values in the DataFrame.
product
([axis, skipna, dtype, level, ...])Return product of the values in the DataFrame.
quantile
([q, axis, numeric_only, ...])Return values at the given quantile.
query
(expr[, local_dict])Query with a boolean expression using Numba to compile a GPU kernel.
radd
(other[, axis, level, fill_value])Get Addition of DataFrame or Series and other, element-wise (binary operator radd).
rank
([axis, method, numeric_only, ...])Compute numerical data ranks (1 through n) along axis.
rdiv
(other[, axis, level, fill_value])Get Floating division of DataFrame or Series and other, element-wise (binary operator rtruediv).
reindex
([labels, index, columns, axis, ...])Conform DataFrame to new index.
rename
([mapper, index, columns, axis, copy, ...])Alter column and index labels.
repeat
(repeats[, axis])Repeats elements consecutively.
replace
([to_replace, value, inplace, limit, ...])Replace values given in
to_replace
withvalue
.resample
(rule[, axis, closed, label, ...])Convert the frequency of ("resample") the given time series data.
reset_index
([level, drop, inplace, ...])Reset the index of the DataFrame, or a level of it.
rfloordiv
(other[, axis, level, fill_value])Get Integer division of DataFrame or Series and other, element-wise (binary operator rfloordiv).
rmod
(other[, axis, level, fill_value])Get Modulo of DataFrame or Series and other, element-wise (binary operator rmod).
rmul
(other[, axis, level, fill_value])Get Multiplication of DataFrame or Series and other, element-wise (binary operator rmul).
rolling
(window[, min_periods, center, axis, ...])Rolling window calculations.
round
([decimals, how])Round to a variable number of decimal places.
rpow
(other[, axis, level, fill_value])Get Exponential of DataFrame or Series and other, element-wise (binary operator rpow).
rsub
(other[, axis, level, fill_value])Get Subtraction of DataFrame or Series and other, element-wise (binary operator rsub).
rtruediv
(other[, axis, level, fill_value])Get Floating division of DataFrame or Series and other, element-wise (binary operator rtruediv).
sample
([n, frac, replace, weights, ...])Return a random sample of items from an axis of object.
scale
()Scale values to [0, 1] in float64
scatter_by_map
(map_index[, map_size, keep_index])Scatter to a list of dataframes.
searchsorted
(values[, side, ascending, ...])Find indices where elements should be inserted to maintain order
select_dtypes
([include, exclude])Return a subset of the DataFrame's columns based on the column dtypes.
Generate an equivalent serializable representation of an object.
set_index
(keys[, drop, append, inplace, ...])Return a new DataFrame with a new index
shift
([periods, freq, axis, fill_value])Shift values by periods positions.
skew
([axis, skipna, level, numeric_only])Return unbiased Fisher-Pearson skew of a sample.
sort_index
([axis, level, ascending, ...])Sort object by labels (along an axis).
sort_values
(by[, axis, ascending, inplace, ...])Sort by the values along either axis.
stack
([level, dropna])Stack the prescribed level(s) from columns to index
std
([axis, skipna, level, ddof, numeric_only])Return sample standard deviation of the DataFrame.
sub
(other[, axis, level, fill_value])Get Subtraction of DataFrame or Series and other, element-wise (binary operator sub).
subtract
(other[, axis, level, fill_value])Get Subtraction of DataFrame or Series and other, element-wise (binary operator sub).
sum
([axis, skipna, dtype, level, ...])Return sum of the values in the DataFrame.
swaplevel
([i, j, axis])Swap level i with level j.
tail
([n])Returns the last n rows as a new DataFrame or Series
take
(indices[, axis])Return a new frame containing the rows specified by indices.
tile
(count)Repeats the rows count times to form a new Frame.
to_arrow
([preserve_index])Convert to a PyArrow Table.
to_csv
([path_or_buf, sep, na_rep, columns, ...])Write a dataframe to csv file format.
to_cupy
([dtype, copy, na_value])Convert the Frame to a CuPy array.
to_dict
([orient, into])Convert the DataFrame to a dictionary.
Converts a cuDF object into a DLPack tensor.
to_feather
(path, *args, **kwargs)Write a DataFrame to the feather format.
to_hdf
(path_or_buf, key, *args, **kwargs)Write the contained data to an HDF5 file using HDFStore.
to_json
([path_or_buf])Convert the cuDF object to a JSON string.
to_numpy
([dtype, copy, na_value])Convert the Frame to a NumPy array.
to_orc
(fname[, compression, statistics, ...])Write a DataFrame to the ORC format.
to_pandas
([nullable])Convert to a Pandas DataFrame.
to_parquet
(path[, engine, compression, ...])Write a DataFrame to the parquet format.
to_records
([index])Convert to a numpy recarray
Convert to string
to_struct
([name])Return a struct Series composed of the columns of the DataFrame.
Transpose index and columns.
truediv
(other[, axis, level, fill_value])Get Floating division of DataFrame or Series and other, element-wise (binary operator truediv).
truncate
([before, after, axis, copy])Truncate a Series or DataFrame before and after some index value.
unstack
([level, fill_value])Pivot one or more levels of the (necessarily hierarchical) index labels.
update
(other[, join, overwrite, ...])Modify a DataFrame in place using non-NA values from another DataFrame.
value_counts
([subset, normalize, sort, ...])Return a Series containing counts of unique rows in the DataFrame.
var
([axis, skipna, level, ddof, numeric_only])Return unbiased variance of the DataFrame.
where
(cond[, other, inplace])Replace values where the condition is False.
Attributes
Transpose index and columns.
Alias for
DataFrame.loc
; provided for compatibility with Pandas.Return a list representing the axes of the DataFrame.
Returns a tuple of columns
Return the dtypes in this object.
Indicator whether DataFrame or Series is empty.
Alias for
DataFrame.iloc
; provided for compatibility with Pandas.Select values by position.
Get the labels for the rows.
Select rows and columns by label or boolean mask.
Dimension of the data.
Returns a tuple representing the dimensionality of the DataFrame.
Return the number of elements in the underlying data.
Return a CuPy representation of the DataFrame.
Return a NumPy representation of the data.
- __init__(data=None, index=None, columns=None, dtype=None, nan_as_null=True)#
- property shape#
Returns a tuple representing the dimensionality of the DataFrame.
- property dtypes#
Return the dtypes in this object.
Returns#
- pandas.Series
The data type of each column.
Examples#
>>> import cudf >>> import pandas as pd >>> df = cudf.DataFrame({'float': [1.0], ... 'int': [1], ... 'datetime': [pd.Timestamp('20180310')], ... 'string': ['foo']}) >>> df float int datetime string 0 1.0 1 2018-03-10 foo >>> df.dtypes float float64 int int64 datetime datetime64[us] string object dtype: object
- property ndim#
Dimension of the data. DataFrame ndim is always 2.
- __getitem__(arg)#
If arg is a
str
orint
type, return the column Series. If arg is aslice
, return a new DataFrame with all columns sliced to the specified range. If arg is anarray
containing column names, return a new DataFrame with the corresponding columns. If arg is adtype.bool array
, return the rows marked TrueExamples#
>>> df = cudf.DataFrame({ ... 'a': list(range(10)), ... 'b': list(range(10)), ... 'c': list(range(10)), ... })
Get first 4 rows of all columns.
>>> df[:4] a b c 0 0 0 0 1 1 1 1 2 2 2 2 3 3 3 3
Get last 5 rows of all columns.
>>> df[-5:] a b c 5 5 5 5 6 6 6 6 7 7 7 7 8 8 8 8 9 9 9 9
Get columns a and c.
>>> df[['a', 'c']] a c 0 0 0 1 1 1 2 2 2 3 3 3 4 4 4 5 5 5 6 6 6 7 7 7 8 8 8 9 9 9
Return the rows specified in the boolean mask.
>>> df[[True, False, True, False, True, ... False, True, False, True, False]] a b c 0 0 0 0 2 2 2 2 4 4 4 4 6 6 6 6 8 8 8 8
- memory_usage(index=True, deep=False)#
Return the memory usage of an object.
Parameters#
- indexbool, default True
Specifies whether to include the memory usage of the index.
- deepbool, default False
The deep parameter is ignored and is only included for pandas compatibility.
Returns#
- Series or scalar
For DataFrame, a Series whose index is the original column names and whose values is the memory usage of each column in bytes. For a Series the total memory usage.
Examples#
DataFrame
>>> dtypes = ['int64', 'float64', 'object', 'bool'] >>> data = dict([(t, np.ones(shape=5000).astype(t)) ... for t in dtypes]) >>> df = cudf.DataFrame(data) >>> df.head() int64 float64 object bool 0 1 1.0 1.0 True 1 1 1.0 1.0 True 2 1 1.0 1.0 True 3 1 1.0 1.0 True 4 1 1.0 1.0 True >>> df.memory_usage(index=False) int64 40000 float64 40000 object 40000 bool 5000 dtype: int64
Use a Categorical for efficient storage of an object-dtype column with many repeated values.
>>> df['object'].astype('category').memory_usage(deep=True) 5008
Series >>> s = cudf.Series(range(3), index=[‘a’,’b’,’c’]) >>> s.memory_usage() 43
Not including the index gives the size of the rest of the data, which is necessarily smaller:
>>> s.memory_usage(index=False) 24
- assign(**kwargs: Callable[[Self], Any] | Any)#
Assign columns to DataFrame from keyword arguments.
Parameters#
- **kwargs: dict mapping string column names to values
The value for each key can either be a literal column (or something that can be converted to a column), or a callable of one argument that will be given the dataframe as an argument and should return the new column (without modifying the input argument). Columns are added in-order, so callables can refer to column names constructed in the assignment.
Examples#
>>> import cudf >>> df = cudf.DataFrame() >>> df = df.assign(a=[0, 1, 2], b=[3, 4, 5]) >>> df a b 0 0 3 1 1 4 2 2 5
- astype(dtype, copy=False, errors='raise', **kwargs)#
Cast the object to the given dtype.
Parameters#
- dtypedata type, or dict of column name -> data type
Use a
numpy.dtype
or Python type to cast entire DataFrame object to the same type. Alternatively, use{col: dtype, ...}
, where col is a column label and dtype is anumpy.dtype
or Python type to cast one or more of the DataFrame’s columns to column-specific types.- copybool, default False
Return a deep-copy when
copy=True
. Note by defaultcopy=False
setting is used and hence changes to values then may propagate to other cudf objects.- errors{‘raise’, ‘ignore’, ‘warn’}, default ‘raise’
Control raising of exceptions on invalid data for provided dtype.
raise
: allow exceptions to be raisedignore
: suppress exceptions. On error return original object.
**kwargs : extra arguments to pass on to the constructor
Returns#
DataFrame/Series
Examples#
DataFrame
>>> import cudf >>> df = cudf.DataFrame({'a': [10, 20, 30], 'b': [1, 2, 3]}) >>> df a b 0 10 1 1 20 2 2 30 3 >>> df.dtypes a int64 b int64 dtype: object
Cast all columns to int32:
>>> df.astype('int32').dtypes a int32 b int32 dtype: object
Cast a to float32 using a dictionary:
>>> df.astype({'a': 'float32'}).dtypes a float32 b int64 dtype: object >>> df.astype({'a': 'float32'}) a b 0 10.0 1 1 20.0 2 2 30.0 3
Series
>>> import cudf >>> series = cudf.Series([1, 2], dtype='int32') >>> series 0 1 1 2 dtype: int32 >>> series.astype('int64') 0 1 1 2 dtype: int64
Convert to categorical type:
>>> series.astype('category') 0 1 1 2 dtype: category Categories (2, int64): [1, 2]
Convert to ordered categorical type with custom ordering:
>>> cat_dtype = cudf.CategoricalDtype(categories=[2, 1], ordered=True) >>> series.astype(cat_dtype) 0 1 1 2 dtype: category Categories (2, int64): [2 < 1]
Note that using
copy=False
(enabled by default) and changing data on a new Series will propagate changes:>>> s1 = cudf.Series([1, 2]) >>> s1 0 1 1 2 dtype: int64 >>> s2 = s1.astype('int64', copy=False) >>> s2[0] = 10 >>> s1 0 10 1 2 dtype: int64
- classmethod from_dict(data: dict, orient: str = 'columns', dtype: Dtype | None = None, columns: list | None = None) DataFrame #
Construct DataFrame from dict of array-like or dicts. Creates DataFrame object from dictionary by columns or by index allowing dtype specification.
Parameters#
- datadict
Of the form {field : array-like} or {field : dict}.
- orient{‘columns’, ‘index’, ‘tight’}, default ‘columns’
The “orientation” of the data. If the keys of the passed dict should be the columns of the resulting DataFrame, pass ‘columns’ (default). Otherwise if the keys should be rows, pass ‘index’. If ‘tight’, assume a dict with keys [‘index’, ‘columns’, ‘data’, ‘index_names’, ‘column_names’].
- dtypedtype, default None
Data type to force, otherwise infer.
- columnslist, default None
Column labels to use when
orient='index'
. Raises aValueError
if used withorient='columns'
ororient='tight'
.
Returns#
DataFrame
See Also#
- DataFrame.from_recordsDataFrame from structured ndarray, sequence
of tuples or dicts, or DataFrame.
DataFrame : DataFrame object creation using constructor. DataFrame.to_dict : Convert the DataFrame to a dictionary.
Examples#
By default the keys of the dict become the DataFrame columns:
>>> import cudf >>> data = {'col_1': [3, 2, 1, 0], 'col_2': ['a', 'b', 'c', 'd']} >>> cudf.DataFrame.from_dict(data) col_1 col_2 0 3 a 1 2 b 2 1 c 3 0 d
Specify
orient='index'
to create the DataFrame using dictionary keys as rows:>>> data = {'row_1': [3, 2, 1, 0], 'row_2': [10, 11, 12, 13]} >>> cudf.DataFrame.from_dict(data, orient='index') 0 1 2 3 row_1 3 2 1 0 row_2 10 11 12 13
When using the ‘index’ orientation, the column names can be specified manually:
>>> cudf.DataFrame.from_dict(data, orient='index', ... columns=['A', 'B', 'C', 'D']) A B C D row_1 3 2 1 0 row_2 10 11 12 13
Specify
orient='tight'
to create the DataFrame using a ‘tight’ format:>>> data = {'index': [('a', 'b'), ('a', 'c')], ... 'columns': [('x', 1), ('y', 2)], ... 'data': [[1, 3], [2, 4]], ... 'index_names': ['n1', 'n2'], ... 'column_names': ['z1', 'z2']} >>> cudf.DataFrame.from_dict(data, orient='tight') z1 x y z2 1 2 n1 n2 a b 1 3 c 2 4
- to_dict(orient: str = 'dict', into: type[dict] = <class 'dict'>) dict | list[dict] #
Convert the DataFrame to a dictionary.
The type of the key-value pairs can be customized with the parameters (see below).
Parameters#
- orientstr {‘dict’, ‘list’, ‘series’, ‘split’, ‘tight’, ‘records’, ‘index’}
Determines the type of the values of the dictionary.
‘dict’ (default) : dict like {column -> {index -> value}}
‘list’ : dict like {column -> [values]}
‘series’ : dict like {column -> Series(values)}
‘split’ : dict like {‘index’ -> [index], ‘columns’ -> [columns], ‘data’ -> [values]}
‘tight’ : dict like {‘index’ -> [index], ‘columns’ -> [columns], ‘data’ -> [values], ‘index_names’ -> [index.names], ‘column_names’ -> [column.names]}
‘records’ : list like [{column -> value}, … , {column -> value}]
‘index’ : dict like {index -> {column -> value}}
Abbreviations are allowed. s indicates series and sp indicates split.
- intoclass, default dict
The collections.abc.Mapping subclass used for all Mappings in the return value. Can be the actual class or an empty instance of the mapping type you want. If you want a collections.defaultdict, you must pass it initialized.
Returns#
- dict, list or collections.abc.Mapping
Return a collections.abc.Mapping object representing the DataFrame. The resulting transformation depends on the orient parameter.
See Also#
DataFrame.from_dict: Create a DataFrame from a dictionary. DataFrame.to_json: Convert a DataFrame to JSON format.
Examples#
>>> import cudf >>> df = cudf.DataFrame({'col1': [1, 2], ... 'col2': [0.5, 0.75]}, ... index=['row1', 'row2']) >>> df col1 col2 row1 1 0.50 row2 2 0.75 >>> df.to_dict() {'col1': {'row1': 1, 'row2': 2}, 'col2': {'row1': 0.5, 'row2': 0.75}}
You can specify the return orientation.
>>> df.to_dict('series') {'col1': row1 1 row2 2 Name: col1, dtype: int64, 'col2': row1 0.50 row2 0.75 Name: col2, dtype: float64}
>>> df.to_dict('split') {'index': ['row1', 'row2'], 'columns': ['col1', 'col2'], 'data': [[1, 0.5], [2, 0.75]]}
>>> df.to_dict('records') [{'col1': 1, 'col2': 0.5}, {'col1': 2, 'col2': 0.75}]
>>> df.to_dict('index') {'row1': {'col1': 1, 'col2': 0.5}, 'row2': {'col1': 2, 'col2': 0.75}}
>>> df.to_dict('tight') {'index': ['row1', 'row2'], 'columns': ['col1', 'col2'], 'data': [[1, 0.5], [2, 0.75]], 'index_names': [None], 'column_names': [None]}
You can also specify the mapping type.
>>> from collections import OrderedDict, defaultdict >>> df.to_dict(into=OrderedDict) OrderedDict([('col1', OrderedDict([('row1', 1), ('row2', 2)])), ('col2', OrderedDict([('row1', 0.5), ('row2', 0.75)]))])
If you want a defaultdict, you need to initialize it:
>>> dd = defaultdict(list) >>> df.to_dict('records', into=dd) [defaultdict(<class 'list'>, {'col1': 1, 'col2': 0.5}), defaultdict(<class 'list'>, {'col1': 2, 'col2': 0.75})]
- scatter_by_map(map_index, map_size=None, keep_index=True, **kwargs)#
Scatter to a list of dataframes.
Uses map_index to determine the destination of each row of the original DataFrame.
Parameters#
- map_indexSeries, str or list-like
Scatter assignment for each row
- map_sizeint
Length of output list. Must be >= uniques in map_index
- keep_indexbool
Conserve original index values for each row
Returns#
A list of cudf.DataFrame objects.
Raises#
- ValueError
If the map_index has invalid entries (not all in [0, num_partitions)).
- update(other, join='left', overwrite=True, filter_func=None, errors='ignore')#
Modify a DataFrame in place using non-NA values from another DataFrame.
Aligns on indices. There is no return value.
Parameters#
- otherDataFrame, or object coercible into a DataFrame
Should have at least one matching index/column label with the original DataFrame. If a Series is passed, its name attribute must be set, and that will be used as the column name to align with the original DataFrame.
- join{‘left’}, default ‘left’
Only left join is implemented, keeping the index and columns of the original object.
- overwrite{True, False}, default True
How to handle non-NA values for overlapping keys: True: overwrite original DataFrame’s values with values from other. False: only update values that are NA in the original DataFrame.
- filter_funcNone
filter_func is not supported yet Return True for values that should be updated.S
- errors{‘raise’, ‘ignore’}, default ‘ignore’
If ‘raise’, will raise a ValueError if the DataFrame and other both contain non-NA data in the same place.
Returns#
None : method directly changes calling object
Raises#
- ValueError
When
errors
= ‘raise’ and there’s overlapping non-NA data.When
errors
is not either ‘ignore’ or ‘raise’
- NotImplementedError
If
join
!= ‘left’
- items()#
Iterate over column names and series pairs
- equals(other, **kwargs)#
Test whether two objects contain the same elements.
This function allows two objects to be compared against each other to see if they have the same shape and elements. NaNs in the same location are considered equal. The column headers do not need to have the same type.
Parameters#
- otherIndex, Series, DataFrame
The other object to be compared with.
Returns#
- bool
True if all elements are the same in both objects, False otherwise.
Examples#
>>> import cudf
Comparing Series with equals:
>>> s = cudf.Series([1, 2, 3]) >>> other = cudf.Series([1, 2, 3]) >>> s.equals(other) True >>> different = cudf.Series([1.5, 2, 3]) >>> s.equals(different) False
Comparing DataFrames with equals:
>>> df = cudf.DataFrame({1: [10], 2: [20]}) >>> df 1 2 0 10 20 >>> exactly_equal = cudf.DataFrame({1: [10], 2: [20]}) >>> exactly_equal 1 2 0 10 20 >>> df.equals(exactly_equal) True
For two DataFrames to compare equal, the types of column values must be equal, but the types of column labels need not:
>>> different_column_type = cudf.DataFrame({1.0: [10], 2.0: [20]}) >>> different_column_type 1.0 2.0 0 10 20 >>> df.equals(different_column_type) True
- property iat#
Alias for
DataFrame.iloc
; provided for compatibility with Pandas.
- property at#
Alias for
DataFrame.loc
; provided for compatibility with Pandas.
- property columns#
Returns a tuple of columns
- reindex(labels=None, index=None, columns=None, axis=None, method=None, copy=True, level=None, fill_value=<NA>, limit=None, tolerance=None)#
Conform DataFrame to new index. Places NA/NaN in locations having no value in the previous index. A new object is produced unless the new index is equivalent to the current one and copy=False.
Parameters#
- labelsIndex, Series-convertible, optional, default None
New labels / index to conform the axis specified by
axis
to.- indexIndex, Series-convertible, optional, default None
The index labels specifying the index to conform to.
- columnsarray-like, optional, default None
The column labels specifying the columns to conform to.
- axisAxis to target.
Can be either the axis name (
index
,columns
) or number (0, 1).
method : Not supported copy : boolean, default True
Return a new object, even if the passed indexes are the same.
level : Not supported fill_value : Value to use for missing values.
Defaults to
NA
, but can be any “compatible” value.limit : Not supported tolerance : Not supported
Returns#
DataFrame with changed index.
Examples#
DataFrame.reindex
supports two calling conventions *(index=index_labels, columns=column_labels, ...)
*(labels, axis={'index', 'columns'}, ...)
We _highly_ recommend using keyword arguments to clarify your intent.Create a dataframe with some fictional data.
>>> index = ['Firefox', 'Chrome', 'Safari', 'IE10', 'Konqueror'] >>> df = cudf.DataFrame({'http_status': [200, 200, 404, 404, 301], ... 'response_time': [0.04, 0.02, 0.07, 0.08, 1.0]}, ... index=index) >>> df http_status response_time Firefox 200 0.04 Chrome 200 0.02 Safari 404 0.07 IE10 404 0.08 Konqueror 301 1.00 >>> new_index = ['Safari', 'Iceweasel', 'Comodo Dragon', 'IE10', ... 'Chrome'] >>> df.reindex(new_index) http_status response_time Safari 404 0.07 Iceweasel <NA> <NA> Comodo Dragon <NA> <NA> IE10 404 0.08 Chrome 200 0.02
We can fill in the missing values by passing a value to the keyword
fill_value
.>>> df.reindex(new_index, fill_value=0) http_status response_time Safari 404 0.07 Iceweasel 0 0.00 Comodo Dragon 0 0.00 IE10 404 0.08 Chrome 200 0.02
We can also reindex the columns.
>>> df.reindex(columns=['http_status', 'user_agent']) http_status user_agent Firefox 200 <NA> Chrome 200 <NA> Safari 404 <NA> IE10 404 <NA> Konqueror 301 <NA>
Or we can use “axis-style” keyword arguments
>>> df.reindex(columns=['http_status', 'user_agent']) http_status user_agent Firefox 200 <NA> Chrome 200 <NA> Safari 404 <NA> IE10 404 <NA> Konqueror 301 <NA>
- set_index(keys, drop=True, append=False, inplace=False, verify_integrity=False)#
Return a new DataFrame with a new index
Parameters#
- keysIndex, Series-convertible, label-like, or list
Index : the new index. Series-convertible : values for the new index. Label-like : Label of column to be used as index. List : List of items from above.
- dropboolean, default True
Whether to drop corresponding column for str index argument
- appendboolean, default True
Whether to append columns to the existing index, resulting in a MultiIndex.
- inplaceboolean, default False
Modify the DataFrame in place (do not create a new object).
- verify_integrityboolean, default False
Check for duplicates in the new index.
Examples#
>>> df = cudf.DataFrame({ ... "a": [1, 2, 3, 4, 5], ... "b": ["a", "b", "c", "d","e"], ... "c": [1.0, 2.0, 3.0, 4.0, 5.0] ... }) >>> df a b c 0 1 a 1.0 1 2 b 2.0 2 3 c 3.0 3 4 d 4.0 4 5 e 5.0
Set the index to become the ‘b’ column:
>>> df.set_index('b') a c b a 1 1.0 b 2 2.0 c 3 3.0 d 4 4.0 e 5 5.0
Create a MultiIndex using columns ‘a’ and ‘b’:
>>> df.set_index(["a", "b"]) c a b 1 a 1.0 2 b 2.0 3 c 3.0 4 d 4.0 5 e 5.0
Set new Index instance as index:
>>> df.set_index(cudf.RangeIndex(10, 15)) a b c 10 1 a 1.0 11 2 b 2.0 12 3 c 3.0 13 4 d 4.0 14 5 e 5.0
Setting append=True will combine current index with column a:
>>> df.set_index("a", append=True) b c a 0 1 a 1.0 1 2 b 2.0 2 3 c 3.0 3 4 d 4.0 4 5 e 5.0
set_index supports inplace parameter too:
>>> df.set_index("a", inplace=True) >>> df b c a 1 a 1.0 2 b 2.0 3 c 3.0 4 d 4.0 5 e 5.0
- where(cond, other=None, inplace=False)#
Replace values where the condition is False.
Parameters#
- condbool Series/DataFrame, array-like
Where cond is True, keep the original value. Where False, replace with corresponding value from other. Callables are not supported.
- other: scalar, list of scalars, Series/DataFrame
Entries where cond is False are replaced with corresponding value from other. Callables are not supported. Default is None.
DataFrame expects only Scalar or array like with scalars or dataframe with same dimension as self.
Series expects only scalar or series like with same length
- inplacebool, default False
Whether to perform the operation in place on the data.
Returns#
Same type as caller
Examples#
>>> import cudf >>> df = cudf.DataFrame({"A":[1, 4, 5], "B":[3, 5, 8]}) >>> df.where(df % 2 == 0, [-1, -1]) A B 0 -1 -1 1 4 -1 2 -1 8
>>> ser = cudf.Series([4, 3, 2, 1, 0]) >>> ser.where(ser > 2, 10) 0 4 1 3 2 10 3 10 4 10 dtype: int64 >>> ser.where(ser > 2) 0 4 1 3 2 <NA> 3 <NA> 4 <NA> dtype: int64
- reset_index(level=None, drop=False, inplace=False, col_level=0, col_fill='')#
Reset the index of the DataFrame, or a level of it.
Parameters#
- levelint, str, tuple, or list, default None
Only remove the given levels from the index. Removes all levels by default.
- dropbool, default False
Do not try to insert index into dataframe columns. This resets the index to the default integer index.
- inplacebool, default False
Modify the DataFrame in place (do not create a new object).
Returns#
- DataFrame or None
DataFrame with the new index or None if
inplace=True
.
Examples#
>>> df = cudf.DataFrame([('bird', 389.0), ... ('bird', 24.0), ... ('mammal', 80.5), ... ('mammal', np.nan)], ... index=['falcon', 'parrot', 'lion', 'monkey'], ... columns=('class', 'max_speed')) >>> df class max_speed falcon bird 389.0 parrot bird 24.0 lion mammal 80.5 monkey mammal <NA> >>> df.reset_index() index class max_speed 0 falcon bird 389.0 1 parrot bird 24.0 2 lion mammal 80.5 3 monkey mammal <NA> >>> df.reset_index(drop=True) class max_speed 0 bird 389.0 1 bird 24.0 2 mammal 80.5 3 mammal <NA>
You can also use
reset_index
with MultiIndex.>>> index = cudf.MultiIndex.from_tuples([('bird', 'falcon'), ... ('bird', 'parrot'), ... ('mammal', 'lion'), ... ('mammal', 'monkey')], ... names=['class', 'name']) >>> df = cudf.DataFrame([(389.0, 'fly'), ... ( 24.0, 'fly'), ... ( 80.5, 'run'), ... (np.nan, 'jump')], ... index=index, ... columns=('speed', 'type')) >>> df speed type class name bird falcon 389.0 fly parrot 24.0 fly mammal lion 80.5 run monkey <NA> jump >>> df.reset_index(level='class') class speed type name falcon bird 389.0 fly parrot bird 24.0 fly lion mammal 80.5 run monkey mammal <NA> jump
- insert(loc, name, value, nan_as_null=None)#
Add a column to DataFrame at the index specified by loc.
Parameters#
- locint
location to insert by index, cannot be greater then num columns + 1
- namenumber or string
name or label of column to be inserted
value : Series or array-like nan_as_null : bool, Default None
If
None
/True
, convertsnp.nan
values tonull
values. IfFalse
, leavesnp.nan
values as is.
- property axes#
Return a list representing the axes of the DataFrame.
DataFrame.axes returns a list of two elements: element zero is the row index and element one is the columns.
Examples#
>>> import cudf >>> cdf1 = cudf.DataFrame() >>> cdf1["key"] = [0,0,1,1] >>> cdf1["k2"] = [1,2,2,3] >>> cdf1["val"] = [1,2,3,4] >>> cdf1["temp"] = [-1,2,2,3] >>> cdf1.axes [RangeIndex(start=0, stop=4, step=1), Index(['key', 'k2', 'val', 'temp'], dtype='object')]
- diff(periods=1, axis=0)#
First discrete difference of element.
Calculates the difference of a DataFrame element compared with another element in the DataFrame (default is element in previous row).
Parameters#
- periodsint, default 1
Periods to shift for calculating difference, accepts negative values.
- axis{0 or ‘index’, 1 or ‘columns’}, default 0
Take difference over rows (0) or columns (1). Only row-wise (0) shift is supported.
Returns#
- DataFrame
First differences of the DataFrame.
Notes#
Diff currently only supports numeric dtype columns.
Examples#
>>> import cudf >>> gdf = cudf.DataFrame({'a': [1, 2, 3, 4, 5, 6], ... 'b': [1, 1, 2, 3, 5, 8], ... 'c': [1, 4, 9, 16, 25, 36]}) >>> gdf a b c 0 1 1 1 1 2 1 4 2 3 2 9 3 4 3 16 4 5 5 25 5 6 8 36 >>> gdf.diff(periods=2) a b c 0 <NA> <NA> <NA> 1 <NA> <NA> <NA> 2 2 1 8 3 2 2 12 4 2 3 16 5 2 5 20
- drop_duplicates(subset=None, keep='first', inplace=False, ignore_index=False)#
Return DataFrame with duplicate rows removed.
Considering certain columns is optional. Indexes, including time indexes are ignored.
Parameters#
- subsetcolumn label or sequence of labels, optional
Only consider certain columns for identifying duplicates, by default use all of the columns.
- keep{‘first’, ‘last’,
False
}, default ‘first’ Determines which duplicates (if any) to keep. - ‘first’ : Drop duplicates except for the first occurrence. - ‘last’ : Drop duplicates except for the last occurrence. -
False
: Drop all duplicates.- inplacebool, default
False
Whether to drop duplicates in place or to return a copy.
- ignore_indexbool, default
False
If True, the resulting axis will be labeled 0, 1, …, n - 1.
Returns#
- DataFrame or None
DataFrame with duplicates removed or None if
inplace=True
.
See Also#
DataFrame.value_counts: Count unique combinations of columns.
Examples#
Consider a dataset containing ramen ratings.
>>> import cudf >>> df = cudf.DataFrame({ ... 'brand': ['Yum Yum', 'Yum Yum', 'Indomie', 'Indomie', 'Indomie'], ... 'style': ['cup', 'cup', 'cup', 'pack', 'pack'], ... 'rating': [4, 4, 3.5, 15, 5] ... }) >>> df brand style rating 0 Yum Yum cup 4.0 1 Yum Yum cup 4.0 2 Indomie cup 3.5 3 Indomie pack 15.0 4 Indomie pack 5.0
By default, it removes duplicate rows based on all columns.
>>> df.drop_duplicates() brand style rating 0 Yum Yum cup 4.0 2 Indomie cup 3.5 3 Indomie pack 15.0 4 Indomie pack 5.0
To remove duplicates on specific column(s), use
subset
.>>> df.drop_duplicates(subset=['brand']) brand style rating 0 Yum Yum cup 4.0 2 Indomie cup 3.5
To remove duplicates and keep last occurrences, use
keep
.>>> df.drop_duplicates(subset=['brand', 'style'], keep='last') brand style rating 1 Yum Yum cup 4.0 2 Indomie cup 3.5 4 Indomie pack 5.0
- pop(item)#
Return a column and drop it from the DataFrame.
- rename(mapper=None, index=None, columns=None, axis=0, copy=True, inplace=False, level=None, errors='ignore')#
Alter column and index labels.
Function / dict values must be unique (1-to-1). Labels not contained in a dict / Series will be left as-is. Extra labels listed don’t throw an error.
DataFrame.rename
supports two calling conventions:(index=index_mapper, columns=columns_mapper, ...)
(mapper, axis={0/'index' or 1/'column'}, ...)
We highly recommend using keyword arguments to clarify your intent.
Parameters#
- mapperdict-like or function, default None
optional dict-like or functions transformations to apply to the index/column values depending on selected
axis
.- indexdict-like, default None
Optional dict-like transformations to apply to the index axis’ values. Does not support functions for axis 0 yet.
- columnsdict-like or function, default None
optional dict-like or functions transformations to apply to the columns axis’ values.
- axisint, default 0
Axis to rename with mapper. 0 or ‘index’ for index 1 or ‘columns’ for columns
- copyboolean, default True
Also copy underlying data
- inplaceboolean, default False
Return new DataFrame. If True, assign columns without copy
- levelint or level name, default None
In case of a MultiIndex, only rename labels in the specified level.
- errors{‘raise’, ‘ignore’, ‘warn’}, default ‘ignore’
Only ‘ignore’ supported Control raising of exceptions on invalid data for provided dtype.
raise
: allow exceptions to be raisedignore
: suppress exceptions. On error return original object.warn
: prints last exceptions as warnings and return original object.
Returns#
DataFrame
Notes#
- Difference from pandas:
Not supporting: level
Rename will not overwrite column names. If a list with duplicates is passed, column names will be postfixed with a number.
Examples#
>>> import cudf >>> df = cudf.DataFrame({"A": [1, 2, 3], "B": [4, 5, 6]}) >>> df A B 0 1 4 1 2 5 2 3 6
Rename columns using a mapping:
>>> df.rename(columns={"A": "a", "B": "c"}) a c 0 1 4 1 2 5 2 3 6
Rename index using a mapping:
>>> df.rename(index={0: 10, 1: 20, 2: 30}) A B 10 1 4 20 2 5 30 3 6
- add_prefix(prefix)#
Prefix labels with string prefix.
For Series, the row labels are prefixed. For DataFrame, the column labels are prefixed.
Parameters#
- prefixstr
The string to add before each label.
Returns#
- Series or DataFrame
New Series with updated labels or DataFrame with updated labels.
See Also#
Series.add_suffix: Suffix row labels with string ‘suffix’. DataFrame.add_suffix: Suffix column labels with string ‘suffix’.
Examples#
Series
>>> s = cudf.Series([1, 2, 3, 4]) >>> s 0 1 1 2 2 3 3 4 dtype: int64 >>> s.add_prefix('item_') item_0 1 item_1 2 item_2 3 item_3 4 dtype: int64
DataFrame
>>> df = cudf.DataFrame({'A': [1, 2, 3, 4], 'B': [3, 4, 5, 6]}) >>> df A B 0 1 3 1 2 4 2 3 5 3 4 6 >>> df.add_prefix('col_') col_A col_B 0 1 3 1 2 4 2 3 5 3 4 6
- add_suffix(suffix)#
Suffix labels with string suffix.
For Series, the row labels are suffixed. For DataFrame, the column labels are suffixed.
Parameters#
- prefixstr
The string to add after each label.
Returns#
- Series or DataFrame
New Series with updated labels or DataFrame with updated labels.
See Also#
Series.add_prefix: prefix row labels with string ‘prefix’. DataFrame.add_prefix: Prefix column labels with string ‘prefix’.
Examples#
Series
>>> s = cudf.Series([1, 2, 3, 4]) >>> s 0 1 1 2 2 3 3 4 dtype: int64 >>> s.add_suffix('_item') 0_item 1 1_item 2 2_item 3 3_item 4 dtype: int64
DataFrame
>>> df = cudf.DataFrame({'A': [1, 2, 3, 4], 'B': [3, 4, 5, 6]}) >>> df A B 0 1 3 1 2 4 2 3 5 3 4 6 >>> df.add_suffix('_col') A_col B_col 0 1 3 1 2 4 2 3 5 3 4 6
- agg(aggs, axis=None)#
Aggregate using one or more operations over the specified axis.
Parameters#
- aggsIterable (set, list, string, tuple or dict)
- Function to use for aggregating data. Accepted types are:
string name, e.g.
"sum"
list of functions, e.g.
["sum", "min", "max"]
dict of axis labels specified operations per column, e.g.
{"a": "sum"}
axis : not yet supported
Returns#
- Aggregation Result
Series
orDataFrame
When
DataFrame.agg
is called with single agg,Series
is returned. WhenDataFrame.agg
is called with several aggs,DataFrame
is returned.
Notes#
- Difference from pandas:
Not supporting:
axis
,*args
,**kwargs
- nlargest(n, columns, keep='first')#
Return the first n rows ordered by columns in descending order.
Return the first n rows with the largest values in columns, in descending order. The columns that are not specified are returned as well, but not used for ordering.
Parameters#
- nint
Number of rows to return.
- columnslabel or list of labels
Column label(s) to order by.
- keep{‘first’, ‘last’}, default ‘first’
Where there are duplicate values:
first : prioritize the first occurrence(s)
last : prioritize the last occurrence(s)
Returns#
- DataFrame
The first n rows ordered by the given columns in descending order.
Notes#
- Difference from pandas:
Only a single column is supported in columns
Examples#
>>> import cudf >>> df = cudf.DataFrame({'population': [59000000, 65000000, 434000, ... 434000, 434000, 337000, 11300, ... 11300, 11300], ... 'GDP': [1937894, 2583560 , 12011, 4520, 12128, ... 17036, 182, 38, 311], ... 'alpha-2': ["IT", "FR", "MT", "MV", "BN", ... "IS", "NR", "TV", "AI"]}, ... index=["Italy", "France", "Malta", ... "Maldives", "Brunei", "Iceland", ... "Nauru", "Tuvalu", "Anguilla"]) >>> df population GDP alpha-2 Italy 59000000 1937894 IT France 65000000 2583560 FR Malta 434000 12011 MT Maldives 434000 4520 MV Brunei 434000 12128 BN Iceland 337000 17036 IS Nauru 11300 182 NR Tuvalu 11300 38 TV Anguilla 11300 311 AI >>> df.nlargest(3, 'population') population GDP alpha-2 France 65000000 2583560 FR Italy 59000000 1937894 IT Malta 434000 12011 MT >>> df.nlargest(3, 'population', keep='last') population GDP alpha-2 France 65000000 2583560 FR Italy 59000000 1937894 IT Brunei 434000 12128 BN
- nsmallest(n, columns, keep='first')#
Return the first n rows ordered by columns in ascending order.
Return the first n rows with the smallest values in columns, in ascending order. The columns that are not specified are returned as well, but not used for ordering.
Parameters#
- nint
Number of items to retrieve.
- columnslist or str
Column name or names to order by.
- keep{‘first’, ‘last’}, default ‘first’
Where there are duplicate values:
first
: take the first occurrence.last
: take the last occurrence.
Returns#
DataFrame
Notes#
- Difference from pandas:
Only a single column is supported in columns
Examples#
>>> import cudf >>> df = cudf.DataFrame({'population': [59000000, 65000000, 434000, ... 434000, 434000, 337000, 337000, ... 11300, 11300], ... 'GDP': [1937894, 2583560 , 12011, 4520, 12128, ... 17036, 182, 38, 311], ... 'alpha-2': ["IT", "FR", "MT", "MV", "BN", ... "IS", "NR", "TV", "AI"]}, ... index=["Italy", "France", "Malta", ... "Maldives", "Brunei", "Iceland", ... "Nauru", "Tuvalu", "Anguilla"]) >>> df population GDP alpha-2 Italy 59000000 1937894 IT France 65000000 2583560 FR Malta 434000 12011 MT Maldives 434000 4520 MV Brunei 434000 12128 BN Iceland 337000 17036 IS Nauru 337000 182 NR Tuvalu 11300 38 TV Anguilla 11300 311 AI
In the following example, we will use
nsmallest
to select the three rows having the smallest values in column “population”.>>> df.nsmallest(3, 'population') population GDP alpha-2 Tuvalu 11300 38 TV Anguilla 11300 311 AI Iceland 337000 17036 IS
When using
keep='last'
, ties are resolved in reverse order:>>> df.nsmallest(3, 'population', keep='last') population GDP alpha-2 Anguilla 11300 311 AI Tuvalu 11300 38 TV Nauru 337000 182 NR
- swaplevel(i=-2, j=-1, axis=0)#
Swap level i with level j. Calling this method does not change the ordering of the values.
Parameters#
- iint or str, default -2
First level of index to be swapped.
- jint or str, default -1
Second level of index to be swapped.
- axisThe axis to swap levels on.
0 or ‘index’ for row-wise, 1 or ‘columns’ for column-wise.
Examples#
>>> import cudf >>> midx = cudf.MultiIndex(levels=[['llama', 'cow', 'falcon'], ... ['speed', 'weight', 'length'],['first','second']], ... codes=[[0, 0, 0, 1, 1, 1, 2, 2, 2], [0, 1, 2, 0, 1, 2, 0, 1, 2], ... [0, 0, 0, 0, 0, 0, 1, 1, 1]]) >>> cdf = cudf.DataFrame(index=midx, columns=['big', 'small'], ... data=[[45, 30], [200, 100], [1.5, 1], [30, 20], ... [250, 150], [1.5, 0.8], [320, 250], [1, 0.8], [0.3, 0.2]])
>>> cdf big small llama speed first 45.0 30.0 weight first 200.0 100.0 length first 1.5 1.0 cow speed first 30.0 20.0 weight first 250.0 150.0 length first 1.5 0.8 falcon speed second 320.0 250.0 weight second 1.0 0.8 length second 0.3 0.2
>>> cdf.swaplevel() big small llama first speed 45.0 30.0 weight 200.0 100.0 length 1.5 1.0 cow first speed 30.0 20.0 weight 250.0 150.0 length 1.5 0.8 falcon second speed 320.0 250.0 weight 1.0 0.8 length 0.3 0.2
- transpose()#
Transpose index and columns.
Returns#
a new (ncol x nrow) dataframe. self is (nrow x ncol)
Notes#
Difference from pandas: Not supporting copy because default and only behavior is copy=True
- property T#
Transpose index and columns.
Returns#
a new (ncol x nrow) dataframe. self is (nrow x ncol)
Notes#
Difference from pandas: Not supporting copy because default and only behavior is copy=True
- melt(**kwargs)#
Unpivots a DataFrame from wide format to long format, optionally leaving identifier variables set.
Parameters#
frame : DataFrame id_vars : tuple, list, or ndarray, optional
Column(s) to use as identifier variables. default: None
- value_varstuple, list, or ndarray, optional
Column(s) to unpivot. default: all columns that are not set as id_vars.
- var_namescalar
Name to use for the variable column. default: frame.columns.name or ‘variable’
- value_namestr
Name to use for the value column. default: ‘value’
Returns#
- outDataFrame
Melted result
- merge(right, on=None, left_on=None, right_on=None, left_index=False, right_index=False, how='inner', sort=False, lsuffix=None, rsuffix=None, indicator=False, suffixes=('_x', '_y'))#
Merge GPU DataFrame objects by performing a database-style join operation by columns or indexes.
Parameters#
right : DataFrame on : label or list; defaults to None
Column or index level names to join on. These must be found in both DataFrames.
If on is None and not merging on indexes then this defaults to the intersection of the columns in both DataFrames.
- how{‘left’, ‘outer’, ‘inner’, ‘leftsemi’, ‘leftanti’}, default ‘inner’
Type of merge to be performed.
left : use only keys from left frame, similar to a SQL left outer join.
right : not supported.
outer : use union of keys from both frames, similar to a SQL full outer join.
inner : use intersection of keys from both frames, similar to a SQL inner join.
- leftsemisimilar to
inner
join, but only returns columns from the left dataframe and ignores all columns from the right dataframe.
- leftsemisimilar to
leftanti : returns only rows columns from the left dataframe for non-matched records. This is exact opposite to
leftsemi
join.
- left_onlabel or list, or array-like
Column or index level names to join on in the left DataFrame. Can also be an array or list of arrays of the length of the left DataFrame. These arrays are treated as if they are columns.
- right_onlabel or list, or array-like
Column or index level names to join on in the right DataFrame. Can also be an array or list of arrays of the length of the right DataFrame. These arrays are treated as if they are columns.
- left_indexbool, default False
Use the index from the left DataFrame as the join key(s).
- right_indexbool, default False
Use the index from the right DataFrame as the join key.
- sortbool, default False
Sort the resulting dataframe by the columns that were merged on, starting from the left.
- suffixes: Tuple[str, str], defaults to (‘_x’, ‘_y’)
Suffixes applied to overlapping column names on the left and right sides
Returns#
merged : DataFrame
Notes#
DataFrames merges in cuDF result in non-deterministic row ordering.
Examples#
>>> import cudf >>> df_a = cudf.DataFrame() >>> df_a['key'] = [0, 1, 2, 3, 4] >>> df_a['vals_a'] = [float(i + 10) for i in range(5)] >>> df_b = cudf.DataFrame() >>> df_b['key'] = [1, 2, 4] >>> df_b['vals_b'] = [float(i+10) for i in range(3)] >>> df_merged = df_a.merge(df_b, on=['key'], how='left') >>> df_merged.sort_values('key') key vals_a vals_b 3 0 10.0 0 1 11.0 10.0 1 2 12.0 11.0 4 3 13.0 2 4 14.0 12.0
Merging on categorical variables is only allowed in certain cases
Categorical variable typecasting logic depends on both how and the specifics of the categorical variables to be merged. Merging categorical variables when only one side is ordered is ambiguous and not allowed. Merging when both categoricals are ordered is allowed, but only when the categories are exactly equal and have equal ordering, and will result in the common dtype. When both sides are unordered, the result categorical depends on the kind of join: - For inner joins, the result will be the intersection of the categories - For left or right joins, the result will be the left or right dtype respectively. This extends to semi and anti joins. - For outer joins, the result will be the union of categories from both sides.
- join(other, on=None, how='left', lsuffix='', rsuffix='', sort=False)#
Join columns with other DataFrame on index or on a key column.
Parameters#
other : DataFrame how : str
Only accepts “left”, “right”, “inner”, “outer”
- lsuffix, rsuffixstr
The suffices to add to the left (lsuffix) and right (rsuffix) column names when avoiding conflicts.
- sortbool
Set to True to ensure sorted ordering.
Returns#
joined : DataFrame
Notes#
Difference from pandas:
other must be a single DataFrame for now.
on is not supported yet due to lack of multi-index support.
- groupby(by=None, axis=0, level=None, as_index=True, sort=<no_default>, group_keys=False, squeeze=False, observed=True, dropna=True)#
Group using a mapper or by a Series of columns.
A groupby operation involves some combination of splitting the object, applying a function, and combining the results. This can be used to group large amounts of data and compute operations on these groups.
Parameters#
- bymapping, function, label, or list of labels
Used to determine the groups for the groupby. If by is a function, it’s called on each value of the object’s index. If a dict or Series is passed, the Series or dict VALUES will be used to determine the groups (the Series’ values are first aligned; see .align() method). If an cupy array is passed, the values are used as-is determine the groups. A label or list of labels may be passed to group by the columns in self. Notice that a tuple is interpreted as a (single) key.
- levelint, level name, or sequence of such, default None
If the axis is a MultiIndex (hierarchical), group by a particular level or levels.
- as_indexbool, default True
For aggregated output, return object with group labels as the index. Only relevant for DataFrame input. as_index=False is effectively “SQL-style” grouped output.
- sortbool, default False
Sort result by group key. Differ from Pandas, cudf defaults to
False
for better performance. Note this does not influence the order of observations within each group. Groupby preserves the order of rows within each group.- group_keysbool, optional
When calling apply and the
by
argument produces a like-indexed result, add group keys to index to identify pieces. By default group keys are not included when the result’s index (and column) labels match the inputs, and are included otherwise. This argument has no effect if the result produced is not like-indexed with respect to the input.
Returns#
- DataFrameGroupBy
Returns a DataFrameGroupBy object that contains information about the groups.
Examples#
Series
>>> ser = cudf.Series([390., 350., 30., 20.], ... index=['Falcon', 'Falcon', 'Parrot', 'Parrot'], ... name="Max Speed") >>> ser Falcon 390.0 Falcon 350.0 Parrot 30.0 Parrot 20.0 Name: Max Speed, dtype: float64 >>> ser.groupby(level=0).mean() Falcon 370.0 Parrot 25.0 Name: Max Speed, dtype: float64 >>> ser.groupby(ser > 100).mean() Max Speed False 25.0 True 370.0 Name: Max Speed, dtype: float64
DataFrame
>>> import cudf >>> import pandas as pd >>> df = cudf.DataFrame({ ... 'Animal': ['Falcon', 'Falcon', 'Parrot', 'Parrot'], ... 'Max Speed': [380., 370., 24., 26.], ... }) >>> df Animal Max Speed 0 Falcon 380.0 1 Falcon 370.0 2 Parrot 24.0 3 Parrot 26.0 >>> df.groupby(['Animal']).mean() Max Speed Animal Falcon 375.0 Parrot 25.0
>>> arrays = [['Falcon', 'Falcon', 'Parrot', 'Parrot'], ... ['Captive', 'Wild', 'Captive', 'Wild']] >>> index = pd.MultiIndex.from_arrays(arrays, names=('Animal', 'Type')) >>> df = cudf.DataFrame({'Max Speed': [390., 350., 30., 20.]}, ... index=index) >>> df Max Speed Animal Type Falcon Captive 390.0 Wild 350.0 Parrot Captive 30.0 Wild 20.0 >>> df.groupby(level=0).mean() Max Speed Animal Falcon 370.0 Parrot 25.0 >>> df.groupby(level="Type").mean() Max Speed Type Wild 185.0 Captive 210.0
>>> df = cudf.DataFrame({'A': 'a a b'.split(), ... 'B': [1,2,3], ... 'C': [4,6,5]}) >>> g1 = df.groupby('A', group_keys=False) >>> g2 = df.groupby('A', group_keys=True)
Notice that
g1
haveg2
have two groups,a
andb
, and only differ in theirgroup_keys
argument. Calling apply in various ways, we can get different grouping results:>>> g1[['B', 'C']].apply(lambda x: x / x.sum()) B C 0 0.333333 0.4 1 0.666667 0.6 2 1.000000 1.0
In the above, the groups are not part of the index. We can have them included by using
g2
wheregroup_keys=True
:>>> g2[['B', 'C']].apply(lambda x: x / x.sum()) B C A a 0 0.333333 0.4 1 0.666667 0.6 b 2 1.000000 1.0
- query(expr, local_dict=None)#
Query with a boolean expression using Numba to compile a GPU kernel.
See pandas.DataFrame.query.
Parameters#
- exprstr
A boolean expression. Names in expression refer to columns. index can be used instead of index name, but this is not supported for MultiIndex.
Names starting with @ refer to Python variables.
An output value will be null if any of the input values are null regardless of expression.
- local_dictdict
Containing the local variable to be used in query.
Returns#
filtered : DataFrame
Examples#
>>> df = cudf.DataFrame({ ... "a": [1, 2, 2], ... "b": [3, 4, 5], ... }) >>> expr = "(a == 2 and b == 4) or (b == 3)" >>> df.query(expr) a b 0 1 3 1 2 4
DateTime conditionals:
>>> import numpy as np >>> import datetime >>> df = cudf.DataFrame() >>> data = np.array(['2018-10-07', '2018-10-08'], dtype='datetime64') >>> df['datetimes'] = data >>> search_date = datetime.datetime.strptime('2018-10-08', '%Y-%m-%d') >>> df.query('datetimes==@search_date') datetimes 1 2018-10-08
Using local_dict:
>>> import numpy as np >>> import datetime >>> df = cudf.DataFrame() >>> data = np.array(['2018-10-07', '2018-10-08'], dtype='datetime64') >>> df['datetimes'] = data >>> search_date2 = datetime.datetime.strptime('2018-10-08', '%Y-%m-%d') >>> df.query('datetimes==@search_date', ... local_dict={'search_date': search_date2}) datetimes 1 2018-10-08
- apply(func, axis=1, raw=False, result_type=None, args=(), **kwargs)#
Apply a function along an axis of the DataFrame.
apply
relies on Numba to JIT compilefunc
. Thus the allowed operations withinfunc
are limited to those supported by the CUDA Python Numba target. For more information, see the cuDF guide to user defined functions.Some string functions and methods are supported. Refer to the guide to UDFs for details.
Parameters#
- funcfunction
Function to apply to each row.
- axis{0 or ‘index’, 1 or ‘columns’}, default 0
Axis along which the function is applied. - 0 or ‘index’: apply function to each column (not yet supported). - 1 or ‘columns’: apply function to each row.
- raw: bool, default False
Not yet supported
- result_type: {‘expand’, ‘reduce’, ‘broadcast’, None}, default None
Not yet supported
- args: tuple
Positional arguments to pass to func in addition to the dataframe.
Examples#
Simple function of a single variable which could be NA:
>>> def f(row): ... if row['a'] is cudf.NA: ... return 0 ... else: ... return row['a'] + 1 ... >>> df = cudf.DataFrame({'a': [1, cudf.NA, 3]}) >>> df.apply(f, axis=1) 0 2 1 0 2 4 dtype: int64
Function of multiple variables will operate in a null aware manner:
>>> def f(row): ... return row['a'] - row['b'] ... >>> df = cudf.DataFrame({ ... 'a': [1, cudf.NA, 3, cudf.NA], ... 'b': [5, 6, cudf.NA, cudf.NA] ... }) >>> df.apply(f) 0 -4 1 <NA> 2 <NA> 3 <NA> dtype: int64
Functions may conditionally return NA as in pandas:
>>> def f(row): ... if row['a'] + row['b'] > 3: ... return cudf.NA ... else: ... return row['a'] + row['b'] ... >>> df = cudf.DataFrame({ ... 'a': [1, 2, 3], ... 'b': [2, 1, 1] ... }) >>> df.apply(f, axis=1) 0 3 1 3 2 <NA> dtype: int64
Mixed types are allowed, but will return the common type, rather than object as in pandas:
>>> def f(row): ... return row['a'] + row['b'] ... >>> df = cudf.DataFrame({ ... 'a': [1, 2, 3], ... 'b': [0.5, cudf.NA, 3.14] ... }) >>> df.apply(f, axis=1) 0 1.5 1 <NA> 2 6.14 dtype: float64
Functions may also return scalar values, however the result will be promoted to a safe type regardless of the data:
>>> def f(row): ... if row['a'] > 3: ... return row['a'] ... else: ... return 1.5 ... >>> df = cudf.DataFrame({ ... 'a': [1, 3, 5] ... }) >>> df.apply(f, axis=1) 0 1.5 1 1.5 2 5.0 dtype: float64
Ops against N columns are supported generally:
>>> def f(row): ... v, w, x, y, z = ( ... row['a'], row['b'], row['c'], row['d'], row['e'] ... ) ... return x + (y - (z / w)) % v ... >>> df = cudf.DataFrame({ ... 'a': [1, 2, 3], ... 'b': [4, 5, 6], ... 'c': [cudf.NA, 4, 4], ... 'd': [8, 7, 8], ... 'e': [7, 1, 6] ... }) >>> df.apply(f, axis=1) 0 <NA> 1 4.8 2 5.0 dtype: float64
UDFs manipulating string data are allowed, as long as they neither modify strings in place nor create new strings. For example, the following UDF is allowed:
>>> def f(row): ... st = row['str_col'] ... scale = row['scale'] ... if len(st) == 0: ... return -1 ... elif st.startswith('a'): ... return 1 - scale ... elif 'example' in st: ... return 1 + scale ... else: ... return 42 ... >>> df = cudf.DataFrame({ ... 'str_col': ['', 'abc', 'some_example'], ... 'scale': [1, 2, 3] ... }) >>> df.apply(f, axis=1) 0 -1 1 -1 2 4 dtype: int64
However, the following UDF is not allowed since it includes an operation that requires the creation of a new string: a call to the
upper
method. Methods that are not supported in this manner will raise anAttributeError
.>>> def f(row): ... st = row['str_col'].upper() ... return 'ABC' in st >>> df.apply(f, axis=1)
For a complete list of supported functions and methods that may be used to manipulate string data, see the UDF guide, <https://docs.rapids.ai/api/cudf/stable/user_guide/guide-to-udfs.html>
- applymap(func: Callable[[Any], Any], na_action: str | None = None, **kwargs) DataFrame #
Apply a function to a Dataframe elementwise.
This method applies a function that accepts and returns a scalar to every element of a DataFrame.
Parameters#
- funccallable
Python function, returns a single value from a single value.
- na_action{None, ‘ignore’}, default None
If ‘ignore’, propagate NaN values, without passing them to func.
Returns#
- DataFrame
Transformed DataFrame.
- apply_rows(func, incols, outcols, kwargs, pessimistic_nulls=True, cache_key=None)#
Apply a row-wise user defined function.
Parameters#
- dfDataFrame
The source dataframe.
- funcfunction
The transformation function that will be executed on the CUDA GPU.
- incols: list or dict
A list of names of input columns that match the function arguments. Or, a dictionary mapping input column names to their corresponding function arguments such as {‘col1’: ‘arg1’}.
- outcols: dict
A dictionary of output column names and their dtype.
- kwargs: dict
name-value of extra arguments. These values are passed directly into the function.
- pessimistic_nullsbool
Whether or not apply_rows output should be null when any corresponding input is null. If False, all outputs will be non-null, but will be the result of applying func against the underlying column data, which may be garbage.
Examples#
The user function should loop over the columns and set the output for each row. Loop execution order is arbitrary, so each iteration of the loop MUST be independent of each other.
When
func
is invoked, the array args corresponding to the input/output are strided so as to improve GPU parallelism. The loop in the function resembles serial code, but executes concurrently in multiple threads.>>> import cudf >>> import numpy as np >>> df = cudf.DataFrame() >>> nelem = 3 >>> df['in1'] = np.arange(nelem) >>> df['in2'] = np.arange(nelem) >>> df['in3'] = np.arange(nelem)
Define input columns for the kernel
>>> in1 = df['in1'] >>> in2 = df['in2'] >>> in3 = df['in3'] >>> def kernel(in1, in2, in3, out1, out2, kwarg1, kwarg2): ... for i, (x, y, z) in enumerate(zip(in1, in2, in3)): ... out1[i] = kwarg2 * x - kwarg1 * y ... out2[i] = y - kwarg1 * z
Call
.apply_rows
with the name of the input columns, the name and dtype of the output columns, and, optionally, a dict of extra arguments.>>> df.apply_rows(kernel, ... incols=['in1', 'in2', 'in3'], ... outcols=dict(out1=np.float64, out2=np.float64), ... kwargs=dict(kwarg1=3, kwarg2=4)) in1 in2 in3 out1 out2 0 0 0 0 0.0 0.0 1 1 1 1 1.0 -2.0 2 2 2 2 2.0 -4.0
- apply_chunks(func, incols, outcols, kwargs=None, pessimistic_nulls=True, chunks=None, blkct=None, tpb=None)#
Transform user-specified chunks using the user-provided function.
Parameters#
- dfDataFrame
The source dataframe.
- funcfunction
The transformation function that will be executed on the CUDA GPU.
- incols: list or dict
A list of names of input columns that match the function arguments. Or, a dictionary mapping input column names to their corresponding function arguments such as {‘col1’: ‘arg1’}.
- outcols: dict
A dictionary of output column names and their dtype.
- kwargs: dict
name-value of extra arguments. These values are passed directly into the function.
- pessimistic_nullsbool
Whether or not apply_rows output should be null when any corresponding input is null. If False, all outputs will be non-null, but will be the result of applying func against the underlying column data, which may be garbage.
- chunksint or Series-like
If it is an
int
, it is the chunksize. If it is an array, it contains integer offset for the start of each chunk. The span of a chunk for chunk i-th isdata[chunks[i] : chunks[i + 1]]
for anyi + 1 < chunks.size
; or,data[chunks[i]:]
for thei == len(chunks) - 1
.- tpbint; optional
The threads-per-block for the underlying kernel. If not specified (Default), uses Numba
.forall(...)
built-in to query the CUDA Driver API to determine optimal kernel launch configuration. Specify 1 to emulate serial execution for each chunk. It is a good starting point but inefficient. Its maximum possible value is limited by the available CUDA GPU resources.- blkctint; optional
The number of blocks for the underlying kernel. If not specified (Default) and
tpb
is not specified (Default), uses Numba.forall(...)
built-in to query the CUDA Driver API to determine optimal kernel launch configuration. If not specified (Default) andtpb
is specified, useschunks
as the number of blocks.
Examples#
For
tpb > 1
,func
is executed bytpb
number of threads concurrently. To access the thread id and count, usenumba.cuda.threadIdx.x
andnumba.cuda.blockDim.x
, respectively (See numba CUDA kernel documentation).In the example below, the kernel is invoked concurrently on each specified chunk. The kernel computes the corresponding output for the chunk.
By looping over the range
range(cuda.threadIdx.x, in1.size, cuda.blockDim.x)
, the kernel function can be used with any tpb in an efficient manner.>>> from numba import cuda >>> @cuda.jit ... def kernel(in1, in2, in3, out1): ... for i in range(cuda.threadIdx.x, in1.size, cuda.blockDim.x): ... x = in1[i] ... y = in2[i] ... z = in3[i] ... out1[i] = x * y + z
See also#
DataFrame.apply_rows
- partition_by_hash(columns, nparts, keep_index=True)#
Partition the dataframe by the hashed value of data in columns.
Parameters#
- columnssequence of str
The names of the columns to be hashed. Must have at least one name.
- npartsint
Number of output partitions
- keep_indexboolean
Whether to keep the index or drop it
Returns#
partitioned: list of DataFrame
- info(verbose=None, buf=None, max_cols=None, memory_usage=None, null_counts=None)#
Print a concise summary of a DataFrame.
This method prints information about a DataFrame including the index dtype and column dtypes, non-null values and memory usage.
Parameters#
- verbosebool, optional
Whether to print the full summary. By default, the setting in
pandas.options.display.max_info_columns
is followed.- bufwritable buffer, defaults to sys.stdout
Where to send the output. By default, the output is printed to sys.stdout. Pass a writable buffer if you need to further process the output.
- max_colsint, optional
When to switch from the verbose to the truncated output. If the DataFrame has more than max_cols columns, the truncated output is used. By default, the setting in
pandas.options.display.max_info_columns
is used.- memory_usagebool, str, optional
Specifies whether total memory usage of the DataFrame elements (including the index) should be displayed. By default, this follows the
pandas.options.display.memory_usage
setting. True always show memory usage. False never shows memory usage. A value of ‘deep’ is equivalent to “True with deep introspection”. Memory usage is shown in human-readable units (base-2 representation). Without deep introspection a memory estimation is made based in column dtype and number of rows assuming values consume the same memory amount for corresponding dtypes. With deep memory introspection, a real memory usage calculation is performed at the cost of computational resources.- null_countsbool, optional
Whether to show the non-null counts. By default, this is shown only if the frame is smaller than
pandas.options.display.max_info_rows
andpandas.options.display.max_info_columns
. A value of True always shows the counts, and False never shows the counts.
Returns#
- None
This method prints a summary of a DataFrame and returns None.
See Also#
- DataFrame.describe: Generate descriptive statistics of DataFrame
columns.
DataFrame.memory_usage: Memory usage of DataFrame columns.
Examples#
>>> import cudf >>> int_values = [1, 2, 3, 4, 5] >>> text_values = ['alpha', 'beta', 'gamma', 'delta', 'epsilon'] >>> float_values = [0.0, 0.25, 0.5, 0.75, 1.0] >>> df = cudf.DataFrame({"int_col": int_values, ... "text_col": text_values, ... "float_col": float_values}) >>> df int_col text_col float_col 0 1 alpha 0.00 1 2 beta 0.25 2 3 gamma 0.50 3 4 delta 0.75 4 5 epsilon 1.00
Prints information of all columns:
>>> df.info(verbose=True) <class 'cudf.core.dataframe.DataFrame'> RangeIndex: 5 entries, 0 to 4 Data columns (total 3 columns): # Column Non-Null Count Dtype --- ------ -------------- ----- 0 int_col 5 non-null int64 1 text_col 5 non-null object 2 float_col 5 non-null float64 dtypes: float64(1), int64(1), object(1) memory usage: 130.0+ bytes
Prints a summary of columns count and its dtypes but not per column information:
>>> df.info(verbose=False) <class 'cudf.core.dataframe.DataFrame'> RangeIndex: 5 entries, 0 to 4 Columns: 3 entries, int_col to float_col dtypes: float64(1), int64(1), object(1) memory usage: 130.0+ bytes
Pipe output of DataFrame.info to a buffer instead of sys.stdout and print buffer contents:
>>> import io >>> buffer = io.StringIO() >>> df.info(buf=buffer) >>> print(buffer.getvalue()) <class 'cudf.core.dataframe.DataFrame'> RangeIndex: 5 entries, 0 to 4 Data columns (total 3 columns): # Column Non-Null Count Dtype --- ------ -------------- ----- 0 int_col 5 non-null int64 1 text_col 5 non-null object 2 float_col 5 non-null float64 dtypes: float64(1), int64(1), object(1) memory usage: 130.0+ bytes
The memory_usage parameter allows deep introspection mode, specially useful for big DataFrames and fine-tune memory optimization:
>>> import numpy as np >>> random_strings_array = np.random.choice(['a', 'b', 'c'], 10 ** 6) >>> df = cudf.DataFrame({ ... 'column_1': np.random.choice(['a', 'b', 'c'], 10 ** 6), ... 'column_2': np.random.choice(['a', 'b', 'c'], 10 ** 6), ... 'column_3': np.random.choice(['a', 'b', 'c'], 10 ** 6) ... }) >>> df.info(memory_usage='deep') <class 'cudf.core.dataframe.DataFrame'> RangeIndex: 1000000 entries, 0 to 999999 Data columns (total 3 columns): # Column Non-Null Count Dtype --- ------ -------------- ----- 0 column_1 1000000 non-null object 1 column_2 1000000 non-null object 2 column_3 1000000 non-null object dtypes: object(3) memory usage: 14.3 MB
- describe(percentiles=None, include=None, exclude=None, datetime_is_numeric=False)#
Generate descriptive statistics.
Descriptive statistics include those that summarize the central tendency, dispersion and shape of a dataset’s distribution, excluding
NaN
values.Analyzes both numeric and object series, as well as
DataFrame
column sets of mixed data types. The output will vary depending on what is provided. Refer to the notes below for more detail.Parameters#
- percentileslist-like of numbers, optional
The percentiles to include in the output. All should fall between 0 and 1. The default is
[.25, .5, .75]
, which returns the 25th, 50th, and 75th percentiles.- include‘all’, list-like of dtypes or None(default), optional
A list of data types to include in the result. Ignored for
Series
. Here are the options:‘all’ : All columns of the input will be included in the output.
A list-like of dtypes : Limits the results to the provided data types. To limit the result to numeric types submit
numpy.number
. To limit it instead to object columns submit thenumpy.object
data type. Strings can also be used in the style ofselect_dtypes
(e.g.df.describe(include=['O'])
). To select pandas categorical columns, use'category'
None (default) : The result will include all numeric columns.
- excludelist-like of dtypes or None (default), optional,
A list of data types to omit from the result. Ignored for
Series
. Here are the options:A list-like of dtypes : Excludes the provided data types from the result. To exclude numeric types submit
numpy.number
. To exclude object columns submit the data typenumpy.object
. Strings can also be used in the style ofselect_dtypes
(e.g.df.describe(include=['O'])
). To exclude pandas categorical columns, use'category'
None (default) : The result will exclude nothing.
- datetime_is_numericbool, default False
For DataFrame input, this also controls whether datetime columns are included by default.
Deprecated since version 23.04: datetime_is_numeric is deprecated and will be removed in a future version of cudf.
Returns#
- output_frameSeries or DataFrame
Summary statistics of the Series or Dataframe provided.
Notes#
For numeric data, the result’s index will include
count
,mean
,std
,min
,max
as well as lower,50
and upper percentiles. By default the lower percentile is25
and the upper percentile is75
. The50
percentile is the same as the median.For strings dtype or datetime dtype, the result’s index will include
count
,unique
,top
, andfreq
. Thetop
is the most common value. Thefreq
is the most common value’s frequency. Timestamps also include thefirst
andlast
items.If multiple object values have the highest count, then the
count
andtop
results will be arbitrarily chosen from among those with the highest count.For mixed data types provided via a
DataFrame
, the default is to return only an analysis of numeric columns. If the dataframe consists only of object and categorical data without any numeric columns, the default is to return an analysis of both the object and categorical columns. Ifinclude='all'
is provided as an option, the result will include a union of attributes of each type.The
include
andexclude
parameters can be used to limit which columns in aDataFrame
are analyzed for the output. The parameters are ignored when analyzing aSeries
.Examples#
Describing a
Series
containing numeric values.>>> import cudf >>> s = cudf.Series([1, 2, 3, 4, 5, 6, 7, 8, 9, 10]) >>> s 0 1 1 2 2 3 3 4 4 5 5 6 6 7 7 8 8 9 9 10 dtype: int64 >>> s.describe() count 10.00000 mean 5.50000 std 3.02765 min 1.00000 25% 3.25000 50% 5.50000 75% 7.75000 max 10.00000 dtype: float64
Describing a categorical
Series
.>>> s = cudf.Series(['a', 'b', 'a', 'b', 'c', 'a'], dtype='category') >>> s 0 a 1 b 2 a 3 b 4 c 5 a dtype: category Categories (3, object): ['a', 'b', 'c'] >>> s.describe() count 6 unique 3 top a freq 3 dtype: object
Describing a timestamp
Series
.>>> import numpy as np >>> s = cudf.Series([ ... np.datetime64("2000-01-01"), ... np.datetime64("2010-01-01"), ... np.datetime64("2010-01-01") ... ]) >>> s 0 2000-01-01 1 2010-01-01 2 2010-01-01 dtype: datetime64[s] >>> s.describe() count 3 mean 2006-09-01 08:00:00 min 2000-01-01 00:00:00 25% 2004-12-31 12:00:00 50% 2010-01-01 00:00:00 75% 2010-01-01 00:00:00 max 2010-01-01 00:00:00 dtype: object
Describing a
DataFrame
. By default only numeric fields are returned.>>> df = cudf.DataFrame({"categorical": cudf.Series(['d', 'e', 'f'], ... dtype='category'), ... "numeric": [1, 2, 3], ... "object": ['a', 'b', 'c'] ... }) >>> df categorical numeric object 0 d 1 a 1 e 2 b 2 f 3 c >>> df.describe() numeric count 3.0 mean 2.0 std 1.0 min 1.0 25% 1.5 50% 2.0 75% 2.5 max 3.0
Describing all columns of a
DataFrame
regardless of data type.>>> df.describe(include='all') categorical numeric object count 3 3.0 3 unique 3 <NA> 3 top d <NA> a freq 1 <NA> 1 mean <NA> 2.0 <NA> std <NA> 1.0 <NA> min <NA> 1.0 <NA> 25% <NA> 1.5 <NA> 50% <NA> 2.0 <NA> 75% <NA> 2.5 <NA> max <NA> 3.0 <NA>
Describing a column from a
DataFrame
by accessing it as an attribute.>>> df.numeric.describe() count 3.0 mean 2.0 std 1.0 min 1.0 25% 1.5 50% 2.0 75% 2.5 max 3.0 Name: numeric, dtype: float64
Including only numeric columns in a
DataFrame
description.>>> df.describe(include=[np.number]) numeric count 3.0 mean 2.0 std 1.0 min 1.0 25% 1.5 50% 2.0 75% 2.5 max 3.0
Including only string columns in a
DataFrame
description.>>> df.describe(include=[object]) object count 3 unique 3 top a freq 1
Including only categorical columns from a
DataFrame
description.>>> df.describe(include=['category']) categorical count 3 unique 3 top d freq 1
Excluding numeric columns from a
DataFrame
description.>>> df.describe(exclude=[np.number]) categorical object count 3 3 unique 3 3 top d a freq 1 1
Excluding object columns from a
DataFrame
description.>>> df.describe(exclude=[object]) categorical numeric count 3 3.0 unique 3 <NA> top d <NA> freq 1 <NA> mean <NA> 2.0 std <NA> 1.0 min <NA> 1.0 25% <NA> 1.5 50% <NA> 2.0 75% <NA> 2.5 max <NA> 3.0
- to_pandas(nullable=False, **kwargs)#
Convert to a Pandas DataFrame.
Parameters#
- nullableBoolean, Default False
If
nullable
isTrue
, the resulting columns in the dataframe will be having a corresponding nullable Pandas dtype. If there is no corresponding nullable Pandas dtype present, the resulting dtype will be a regular pandas dtype. Ifnullable
isFalse
, the resulting columns will either convert null values tonp.nan
orNone
depending on the dtype.
Returns#
out : Pandas DataFrame
Examples#
>>> import cudf >>> df = cudf.DataFrame({'a': [0, 1, 2], 'b': [-3, 2, 0]}) >>> pdf = df.to_pandas() >>> pdf a b 0 0 -3 1 1 2 2 2 0 >>> type(pdf) <class 'pandas.core.frame.DataFrame'>
nullable
parameter can be used to control whether dtype can be Pandas Nullable or not:>>> df = cudf.DataFrame({'a': [0, None, 2], 'b': [True, False, None]}) >>> df a b 0 0 True 1 <NA> False 2 2 <NA> >>> pdf = df.to_pandas(nullable=True) >>> pdf a b 0 0 True 1 <NA> False 2 2 <NA> >>> pdf.dtypes a Int64 b boolean dtype: object >>> pdf = df.to_pandas(nullable=False) >>> pdf a b 0 0.0 True 1 NaN False 2 2.0 None >>> pdf.dtypes a float64 b object dtype: object
- classmethod from_pandas(dataframe, nan_as_null=<no_default>)#
Convert from a Pandas DataFrame.
Parameters#
- dataframePandas DataFrame object
A Pandas DataFrame object which has to be converted to cuDF DataFrame.
- nan_as_nullbool, Default True
If
True
, convertsnp.nan
values tonull
values. IfFalse
, leavesnp.nan
values as is.
Raises#
TypeError for invalid input type.
Examples#
>>> import cudf >>> import pandas as pd >>> data = [[0,1], [1,2], [3,4]] >>> pdf = pd.DataFrame(data, columns=['a', 'b'], dtype=int) >>> cudf.from_pandas(pdf) a b 0 0 1 1 1 2 2 3 4
- classmethod from_arrow(table)#
Convert from PyArrow Table to DataFrame.
Parameters#
- tablePyArrow Table Object
PyArrow Table Object which has to be converted to cudf DataFrame.
Raises#
TypeError for invalid input type.
Returns#
cudf DataFrame
Notes#
Does not support automatically setting index column(s) similar to how
to_pandas
works for PyArrow Tables.
Examples#
>>> import cudf >>> import pyarrow as pa >>> data = pa.table({"a":[1, 2, 3], "b":[4, 5, 6]}) >>> cudf.DataFrame.from_arrow(data) a b 0 1 4 1 2 5 2 3 6
- to_arrow(preserve_index=True)#
Convert to a PyArrow Table.
Parameters#
- preserve_indexbool, default True
whether index column and its meta data needs to be saved or not
Returns#
PyArrow Table
Examples#
>>> import cudf >>> df = cudf.DataFrame( ... {"a":[1, 2, 3], "b":[4, 5, 6]}, index=[1, 2, 3]) >>> df.to_arrow() pyarrow.Table a: int64 b: int64 index: int64 ---- a: [[1,2,3]] b: [[4,5,6]] index: [[1,2,3]] >>> df.to_arrow(preserve_index=False) pyarrow.Table a: int64 b: int64 ---- a: [[1,2,3]] b: [[4,5,6]]
- to_records(index=True)#
Convert to a numpy recarray
Parameters#
- indexbool
Whether to include the index in the output.
Returns#
numpy recarray
- classmethod from_records(data, index=None, columns=None, nan_as_null=False)#
Convert structured or record ndarray to DataFrame.
Parameters#
data : numpy structured dtype or recarray of ndim=2 index : str, array-like
The name of the index column in data. If None, the default index is used.
- columnslist of str
List of column names to include.
Returns#
DataFrame
- interpolate(method='linear', axis=0, limit=None, inplace=False, limit_direction=None, limit_area=None, downcast=None, **kwargs)#
Interpolate data values between some points.
Parameters#
- methodstr, default ‘linear’
Interpolation technique to use. Currently, only ‘linear` is supported. * ‘linear’: Ignore the index and treat the values as equally spaced. This is the only method supported on MultiIndexes. * ‘index’, ‘values’: linearly interpolate using the index as an x-axis. Unsorted indices can lead to erroneous results.
- axisint, default 0
Axis to interpolate along. Currently, only ‘axis=0’ is supported.
- inplacebool, default False
Update the data in place if possible.
Returns#
- Series or DataFrame
Returns the same object type as the caller, interpolated at some or all
NaN
values
- quantile(q=0.5, axis=0, numeric_only=True, interpolation=None, columns=None, exact=True, method='single')#
Return values at the given quantile.
Parameters#
- qfloat or array-like
0 <= q <= 1, the quantile(s) to compute
- axisint
axis is a NON-FUNCTIONAL parameter
- numeric_onlybool, default True
If False, the quantile of datetime and timedelta data will be computed as well.
- interpolation{‘linear’, ‘lower’, ‘higher’, ‘midpoint’, ‘nearest’}
This parameter specifies the interpolation method to use, when the desired quantile lies between two data points i and j. Default is
'linear'
formethod="single"
, and'nearest'
formethod="table"
.linear: i + (j - i) * fraction, where fraction is the fractional part of the index surrounded by i and j.
lower: i.
higher: j.
nearest: i or j whichever is nearest.
midpoint: (i + j) / 2.
- columnslist of str
List of column names to include.
- exactboolean
Whether to use approximate or exact quantile algorithm.
- method{‘single’, ‘table’}, default ‘single’
Whether to compute quantiles per-column (‘single’) or over all columns (‘table’). When ‘table’, the only allowed interpolation methods are ‘nearest’, ‘lower’, and ‘higher’.
Returns#
- Series or DataFrame
If q is an array or numeric_only is set to False, a DataFrame will be returned where index is q, the columns are the columns of self, and the values are the quantile.
If q is a float, a Series will be returned where the index is the columns of self and the values are the quantiles.
Examples#
>>> import cupy as cp >>> import cudf >>> df = cudf.DataFrame(cp.array([[1, 1], [2, 10], [3, 100], [4, 100]]), ... columns=['a', 'b']) >>> df a b 0 1 1 1 2 10 2 3 100 3 4 100 >>> df.quantile(0.1) a 1.3 b 3.7 Name: 0.1, dtype: float64 >>> df.quantile([.1, .5]) a b 0.1 1.3 3.7 0.5 2.5 55.0
- isin(values)#
Whether each element in the DataFrame is contained in values.
Parameters#
- valuesiterable, Series, DataFrame or dict
The result will only be true at a location if all the labels match. If values is a Series, that’s the index. If values is a dict, the keys must be the column names, which must match. If values is a DataFrame, then both the index and column labels must match.
Returns#
- DataFrame:
DataFrame of booleans showing whether each element in the DataFrame is contained in values.
Examples#
>>> import cudf >>> df = cudf.DataFrame({'num_legs': [2, 4], 'num_wings': [2, 0]}, ... index=['falcon', 'dog']) >>> df num_legs num_wings falcon 2 2 dog 4 0
When
values
is a list check whether every value in the DataFrame is present in the list (which animals have 0 or 2 legs or wings)>>> df.isin([0, 2]) num_legs num_wings falcon True True dog False True
When
values
is a dict, we can pass values to check for each column separately:>>> df.isin({'num_wings': [0, 3]}) num_legs num_wings falcon False False dog False True
When
values
is a Series or DataFrame the index and column must match. Note that ‘falcon’ does not match based on the number of legs in other.>>> other = cudf.DataFrame({'num_legs': [8, 2], 'num_wings': [0, 2]}, ... index=['spider', 'falcon']) >>> df.isin(other) num_legs num_wings falcon True True dog False False
- count(axis=0, level=None, numeric_only=False, **kwargs)#
Count
non-NA
cells for each column or row.The values
None
,NaN
,NaT
are consideredNA
.Returns#
- Series
For each column/row the number of non-NA/null entries.
Notes#
Parameters currently not supported are axis, level, numeric_only.
Examples#
>>> import cudf >>> import numpy as np >>> df = cudf.DataFrame({"Person": ... ["John", "Myla", "Lewis", "John", "Myla"], ... "Age": [24., np.nan, 21., 33, 26], ... "Single": [False, True, True, True, False]}) >>> df.count() Person 5 Age 4 Single 5 dtype: int64
- mode(axis=0, numeric_only=False, dropna=True)#
Get the mode(s) of each element along the selected axis.
The mode of a set of values is the value that appears most often. It can be multiple values.
Parameters#
- axis{0 or ‘index’, 1 or ‘columns’}, default 0
The axis to iterate over while searching for the mode:
0 or ‘index’ : get mode of each column
1 or ‘columns’ : get mode of each row.
- numeric_onlybool, default False
If True, only apply to numeric columns.
- dropnabool, default True
Don’t consider counts of NA/NaN/NaT.
Returns#
- DataFrame
The modes of each column or row.
See Also#
- cudf.Series.modeReturn the highest frequency value
in a Series.
- cudf.Series.value_countsReturn the counts of values
in a Series.
Notes#
axis
parameter is currently not supported.Examples#
>>> import cudf >>> df = cudf.DataFrame({ ... "species": ["bird", "mammal", "arthropod", "bird"], ... "legs": [2, 4, 8, 2], ... "wings": [2.0, None, 0.0, None] ... }) >>> df species legs wings 0 bird 2 2.0 1 mammal 4 <NA> 2 arthropod 8 0.0 3 bird 2 <NA>
By default, missing values are not considered, and the mode of wings are both 0 and 2. The second row of species and legs contains
NA
, because they have only one mode, but the DataFrame has two rows.>>> df.mode() species legs wings 0 bird 2 0.0 1 <NA> <NA> 2.0
Setting
dropna=False
,NA
values are considered and they can be the mode (like for wings).>>> df.mode(dropna=False) species legs wings 0 bird 2 <NA>
Setting
numeric_only=True
, only the mode of numeric columns is computed, and columns of other types are ignored.>>> df.mode(numeric_only=True) legs wings 0 2 0.0 1 <NA> 2.0
- all(axis=0, bool_only=None, skipna=True, level=None, **kwargs)#
Return whether all elements are True in DataFrame.
Parameters#
- axis{0 or ‘index’, 1 or ‘columns’, None}, default 0
Indicate which axis or axes should be reduced. For Series this parameter is unused and defaults to 0.
- 0 or ‘index’reduce the index, return a Series
whose index is the original column labels.
- 1 or ‘columns’reduce the columns, return a Series
whose index is the original index.
None : reduce all axes, return a scalar.
- skipna: bool, default True
Exclude NA/null values. If the entire row/column is NA and skipna is True, then the result will be True, as for an empty row/column. If skipna is False, then NA are treated as True, because these are not equal to zero.
Returns#
Series
Notes#
Parameters currently not supported are bool_only, level.
Examples#
>>> import cudf >>> df = cudf.DataFrame({'a': [3, 2, 3, 4], 'b': [7, 0, 10, 10]}) >>> df.all() a True b False dtype: bool
- any(axis=0, bool_only=None, skipna=True, level=None, **kwargs)#
Return whether any elements is True in DataFrame.
Parameters#
- axis{0 or ‘index’, 1 or ‘columns’, None}, default 0
Indicate which axis or axes should be reduced. For Series this parameter is unused and defaults to 0.
- 0 or ‘index’reduce the index, return a Series
whose index is the original column labels.
- 1 or ‘columns’reduce the columns, return a Series
whose index is the original index.
None : reduce all axes, return a scalar.
- skipna: bool, default True
Exclude NA/null values. If the entire row/column is NA and skipna is True, then the result will be False, as for an empty row/column. If skipna is False, then NA are treated as True, because these are not equal to zero.
Returns#
Series
Notes#
Parameters currently not supported are bool_only, level.
Examples#
>>> import cudf >>> df = cudf.DataFrame({'a': [3, 2, 3, 4], 'b': [7, 0, 10, 10]}) >>> df.any() a True b True dtype: bool
- select_dtypes(include=None, exclude=None)#
Return a subset of the DataFrame’s columns based on the column dtypes.
Parameters#
- includestr or list
which columns to include based on dtypes
- excludestr or list
which columns to exclude based on dtypes
Returns#
- DataFrame
The subset of the frame including the dtypes in
include
and excluding the dtypes inexclude
.
Raises#
- ValueError
If both of
include
andexclude
are emptyIf
include
andexclude
have overlapping elements
Examples#
>>> import cudf >>> df = cudf.DataFrame({'a': [1, 2] * 3, ... 'b': [True, False] * 3, ... 'c': [1.0, 2.0] * 3}) >>> df a b c 0 1 True 1.0 1 2 False 2.0 2 1 True 1.0 3 2 False 2.0 4 1 True 1.0 5 2 False 2.0 >>> df.select_dtypes(include='bool') b 0 True 1 False 2 True 3 False 4 True 5 False >>> df.select_dtypes(include=['float64']) c 0 1.0 1 2.0 2 1.0 3 2.0 4 1.0 5 2.0 >>> df.select_dtypes(exclude=['int']) b c 0 True 1.0 1 False 2.0 2 True 1.0 3 False 2.0 4 True 1.0 5 False 2.0
- to_parquet(path, engine='cudf', compression='snappy', index=None, partition_cols=None, partition_file_name=None, partition_offsets=None, statistics='ROWGROUP', metadata_file_path=None, int96_timestamps=False, row_group_size_bytes=134217728, row_group_size_rows=None, max_page_size_bytes=None, max_page_size_rows=None, storage_options=None, return_metadata=False, *args, **kwargs)#
Write a DataFrame to the parquet format.
Parameters#
- pathstr or list of str
File path or Root Directory path. Will be used as Root Directory path while writing a partitioned dataset. Use list of str with partition_offsets to write parts of the dataframe to different files.
- compression{‘snappy’, ‘ZSTD’, None}, default ‘snappy’
Name of the compression to use. Use
None
for no compression.- indexbool, default None
If
True
, include the dataframe’s index(es) in the file output. IfFalse
, they will not be written to the file. IfNone
, similar toTrue
the dataframe’s index(es) will be saved, however, instead of being saved as values anyRangeIndex
will be stored as a range in the metadata so it doesn’t require much space and is faster. Other indexes will be included as columns in the file output.- partition_colslist, optional, default None
Column names by which to partition the dataset Columns are partitioned in the order they are given
- partition_file_namestr, optional, default None
File name to use for partitioned datasets. Different partitions will be written to different directories, but all files will have this name. If nothing is specified, a random uuid4 hex string will be used for each file.
- partition_offsetslist, optional, default None
Offsets to partition the dataframe by. Should be used when path is list of str. Should be a list of integers of size
len(path) + 1
- statistics{‘ROWGROUP’, ‘PAGE’, ‘COLUMN’, ‘NONE’}, default ‘ROWGROUP’
Level at which column statistics should be included in file.
- metadata_file_pathstr, optional, default None
If specified, this function will return a binary blob containing the footer metadata of the written parquet file. The returned blob will have the
chunk.file_path
field set to themetadata_file_path
for each chunk. When using withpartition_offsets
, should be same size aslen(path)
- int96_timestampsbool, default False
If
True
, write timestamps in int96 format. This will convert timestamps from timestamp[ns], timestamp[ms], timestamp[s], and timestamp[us] to the int96 format, which is the number of Julian days and the number of nanoseconds since midnight of 1970-01-01. IfFalse
, timestamps will not be altered.- row_group_size_bytes: integer, default 134217728
Maximum size of each stripe of the output. If None, 134217728 (128.0 MB) will be used.
- row_group_size_rows: integer or None, default None
Maximum number of rows of each stripe of the output. If None, 1000000 will be used.
- max_page_size_bytes: integer or None, default None
Maximum uncompressed size of each page of the output. If None, 524288 (512KB) will be used.
- max_page_size_rows: integer or None, default None
Maximum number of rows of each page of the output. If None, 20000 will be used.
- storage_optionsdict, optional, default None
Extra options that make sense for a particular storage connection, e.g. host, port, username, password, etc. For HTTP(S) URLs the key-value pairs are forwarded to
urllib.request.Request
as header options. For other URLs (e.g. starting with “s3://”, and “gcs://”) the key-value pairs are forwarded tofsspec.open
. Please seefsspec
andurllib
for more details.- return_metadatabool, default False
Return parquet metadata for written data. Returned metadata will include the file path metadata (relative to root_path). To request metadata binary blob when using with
partition_cols
, Passreturn_metadata=True
instead of specifyingmetadata_file_path
- force_nullable_schemabool, default False.
If True, writes all columns as null in schema. If False, columns are written as null if they contain null values, otherwise as not null.
- **kwargs
Additional parameters will be passed to execution engines other than
cudf
.
See Also#
cudf.read_parquet
- to_feather(path, *args, **kwargs)#
Write a DataFrame to the feather format.
Parameters#
- pathstr
File path
See Also#
cudf.read_feather
- to_csv(path_or_buf=None, sep=',', na_rep='', columns=None, header=True, index=True, encoding=None, compression=None, lineterminator=None, chunksize=None, storage_options=None)#
Write a dataframe to csv file format.
Parameters#
- path_or_bufstr or file handle, default None
File path or object, if None is provided the result is returned as a string.
- sepchar, default ‘,’
Delimiter to be used.
- na_repstr, default ‘’
String to use for null entries
- columnslist of str, optional
Columns to write
- headerbool, default True
Write out the column names
- indexbool, default True
Write out the index as a column
- encodingstr, default ‘utf-8’
A string representing the encoding to use in the output file Only ‘utf-8’ is currently supported
- compressionstr, None
A string representing the compression scheme to use in the output file Compression while writing csv is not supported currently
- lineterminatorstr, optional
The newline character or character sequence to use in the output file. Defaults to
os.linesep
.- chunksizeint or None, default None
Rows to write at a time
- storage_optionsdict, optional, default None
Extra options that make sense for a particular storage connection, e.g. host, port, username, password, etc. For HTTP(S) URLs the key-value pairs are forwarded to
urllib.request.Request
as header options. For other URLs (e.g. starting with “s3://”, and “gcs://”) the key-value pairs are forwarded tofsspec.open
. Please seefsspec
andurllib
for more details.
Returns#
- None or str
If path_or_buf is None, returns the resulting csv format as a string. Otherwise returns None.
Notes#
Follows the standard of Pandas csv.QUOTE_NONNUMERIC for all output.
The default behaviour is to write all rows of the dataframe at once. This can lead to memory or overflow errors for large tables. If this happens, consider setting the
chunksize
argument to some reasonable fraction of the total rows in the dataframe.
Examples#
Write a dataframe to csv.
>>> import cudf >>> filename = 'foo.csv' >>> df = cudf.DataFrame({'x': [0, 1, 2, 3], ... 'y': [1.0, 3.3, 2.2, 4.4], ... 'z': ['a', 'b', 'c', 'd']}) >>> df = df.set_index(cudf.Series([3, 2, 1, 0])) >>> df.to_csv(filename)
See Also#
cudf.read_csv
- to_orc(fname, compression='snappy', statistics='ROWGROUP', stripe_size_bytes=None, stripe_size_rows=None, row_index_stride=None, cols_as_map_type=None, storage_options=None, index=None)#
Write a DataFrame to the ORC format.
Parameters#
- fnamestr
File path or object where the ORC dataset will be stored.
- compression{{ ‘snappy’, ‘ZSTD’, None }}, default ‘snappy’
Name of the compression to use. Use None for no compression.
- statistics: str {{ “ROWGROUP”, “STRIPE”, None }}, default “ROWGROUP”
The granularity with which column statistics must be written to the file.
- stripe_size_bytes: integer or None, default None
Maximum size of each stripe of the output. If None, 67108864 (64MB) will be used.
- stripe_size_rows: integer or None, default None
Maximum number of rows of each stripe of the output. If None, 1000000 will be used.
- row_index_stride: integer or None, default None
Row index stride (maximum number of rows in each row group). If None, 10000 will be used.
- cols_as_map_typelist of column names or None, default None
A list of column names which should be written as map type in the ORC file. Note that this option only affects columns of ListDtype. Names of other column types will be ignored.
- storage_optionsdict, optional, default None
Extra options that make sense for a particular storage connection, e.g. host, port, username, password, etc. For HTTP(S) URLs the key-value pairs are forwarded to
urllib.request.Request
as header options. For other URLs (e.g. starting with “s3://”, and “gcs://”) the key-value pairs are forwarded tofsspec.open
. Please seefsspec
andurllib
for more details.- indexbool, default None
If
True
, include the dataframe’s index(es) in the file output. IfFalse
, they will not be written to the file. IfNone
, similar toTrue
the dataframe’s index(es) will be saved, however, instead of being saved as values anyRangeIndex
will be stored as a range in the metadata so it doesn’t require much space and is faster. Other indexes will be included as columns in the file output.
See Also#
cudf.read_orc
- stack(level=-1, dropna=True)#
Stack the prescribed level(s) from columns to index
Return a reshaped DataFrame or Series having a multi-level index with one or more new inner-most levels compared to the current DataFrame. The new inner-most levels are created by pivoting the columns of the current dataframe:
if the columns have a single level, the output is a Series;
if the columns have multiple levels, the new index level(s) is (are) taken from the prescribed level(s) and the output is a DataFrame.
Parameters#
- levelint, str, list default -1
Level(s) to stack from the column axis onto the index axis, defined as one index or label, or a list of indices or labels.
- dropnabool, default True
Whether to drop rows in the resulting Frame/Series with missing values. When multiple levels are specified, dropna==False is unsupported.
Returns#
- DataFrame or Series
Stacked dataframe or series.
See Also#
- DataFrame.unstackUnstack prescribed level(s) from index axis
onto column axis.
- DataFrame.pivotReshape dataframe from long format to wide
format.
- DataFrame.pivot_tableCreate a spreadsheet-style pivot table
as a DataFrame.
Notes#
The function is named by analogy with a collection of books being reorganized from being side by side on a horizontal position (the columns of the dataframe) to being stacked vertically on top of each other (in the index of the dataframe).
Examples#
Single level columns
>>> df_single_level_cols = cudf.DataFrame([[0, 1], [2, 3]], ... index=['cat', 'dog'], ... columns=['weight', 'height'])
Stacking a dataframe with a single level column axis returns a Series:
>>> df_single_level_cols weight height cat 0 1 dog 2 3 >>> df_single_level_cols.stack() cat height 1 weight 0 dog height 3 weight 2 dtype: int64
Multi level columns: simple case
>>> import pandas as pd >>> multicol1 = pd.MultiIndex.from_tuples([('weight', 'kg'), ... ('weight', 'pounds')]) >>> df_multi_level_cols1 = cudf.DataFrame([[1, 2], [2, 4]], ... index=['cat', 'dog'], ... columns=multicol1)
Stacking a dataframe with a multi-level column axis:
>>> df_multi_level_cols1 weight kg pounds cat 1 2 dog 2 4 >>> df_multi_level_cols1.stack() weight cat kg 1 pounds 2 dog kg 2 pounds 4
Missing values
>>> multicol2 = pd.MultiIndex.from_tuples([('weight', 'kg'), ... ('height', 'm')]) >>> df_multi_level_cols2 = cudf.DataFrame([[1.0, 2.0], [3.0, 4.0]], ... index=['cat', 'dog'], ... columns=multicol2)
It is common to have missing values when stacking a dataframe with multi-level columns, as the stacked dataframe typically has more values than the original dataframe. Missing values are filled with NULLs:
>>> df_multi_level_cols2 weight height kg m cat 1.0 2.0 dog 3.0 4.0 >>> df_multi_level_cols2.stack() height weight cat kg <NA> 1.0 m 2.0 <NA> dog kg <NA> 3.0 m 4.0 <NA>
Prescribing the level(s) to be stacked
The first parameter controls which level or levels are stacked:
>>> df_multi_level_cols2.stack(0) kg m cat height <NA> 2.0 weight 1.0 <NA> dog height <NA> 4.0 weight 3.0 <NA>
>>> df_multi_level_cols2.stack([0, 1]) cat height m 2.0 weight kg 1.0 dog height m 4.0 weight kg 3.0 dtype: float64
- cov(**kwargs)#
Compute the covariance matrix of a DataFrame.
Parameters#
- **kwargs
Keyword arguments to be passed to cupy.cov
Returns#
cov : DataFrame
- corr(method='pearson', min_periods=None)#
Compute the correlation matrix of a DataFrame.
Parameters#
- method{‘pearson’, ‘spearman’}, default ‘pearson’
Method used to compute correlation:
pearson : Standard correlation coefficient
spearman : Spearman rank correlation
- min_periodsint, optional
Minimum number of observations required per pair of columns to have a valid result.
Returns#
- DataFrame
The requested correlation matrix.
- to_struct(name=None)#
Return a struct Series composed of the columns of the DataFrame.
Parameters#
- name: optional
Name of the resulting Series
Notes#
Note that a copy of the columns is made.
- keys()#
Get the columns. This is index for Series, columns for DataFrame.
Returns#
- Index
Columns of DataFrame.
Examples#
>>> import cudf >>> df = cudf.DataFrame({'one' : [1, 2, 3], 'five' : ['a', 'b', 'c']}) >>> df one five 0 1 a 1 2 b 2 3 c >>> df.keys() Index(['one', 'five'], dtype='object') >>> df = cudf.DataFrame(columns=[0, 1, 2, 3]) >>> df Empty DataFrame Columns: [0, 1, 2, 3] Index: [] >>> df.keys() Int64Index([0, 1, 2, 3], dtype='int64')
- itertuples(index=True, name='Pandas')#
Iteration is unsupported.
See iteration for more information.
- iterrows()#
Iteration is unsupported.
See iteration for more information.
- append(other, ignore_index=False, verify_integrity=False, sort=False)#
Append rows of other to the end of caller, returning a new object. Columns in other that are not in the caller are added as new columns.
Parameters#
- otherDataFrame or Series/dict-like object, or list of these
The data to append.
- ignore_indexbool, default False
If True, do not use the index labels.
- sortbool, default False
Sort columns ordering if the columns of self and other are not aligned.
- verify_integritybool, default False
This Parameter is currently not supported.
Returns#
DataFrame
See Also#
- cudf.concatGeneral function to concatenate DataFrame or
objects.
Notes#
If a list of dict/series is passed and the keys are all contained in the DataFrame’s index, the order of the columns in the resulting DataFrame will be unchanged. Iteratively appending rows to a cudf DataFrame can be more computationally intensive than a single concatenate. A better solution is to append those rows to a list and then concatenate the list with the original DataFrame all at once. verify_integrity parameter is not supported yet.
Examples#
>>> import cudf >>> df = cudf.DataFrame([[1, 2], [3, 4]], columns=list('AB')) >>> df A B 0 1 2 1 3 4 >>> df2 = cudf.DataFrame([[5, 6], [7, 8]], columns=list('AB')) >>> df2 A B 0 5 6 1 7 8 >>> df.append(df2) A B 0 1 2 1 3 4 0 5 6 1 7 8
With ignore_index set to True:
>>> df.append(df2, ignore_index=True) A B 0 1 2 1 3 4 2 5 6 3 7 8
The following, while not recommended methods for generating DataFrames, show two ways to generate a DataFrame from multiple data sources. Less efficient:
>>> df = cudf.DataFrame(columns=['A']) >>> for i in range(5): ... df = df.append({'A': i}, ignore_index=True) >>> df A 0 0 1 1 2 2 3 3 4 4
More efficient than above:
>>> cudf.concat([cudf.DataFrame([i], columns=['A']) for i in range(5)], ... ignore_index=True) A 0 0 1 1 2 2 3 3 4 4
- pivot(index, columns, values=None)#
Return reshaped DataFrame organized by the given index and column values.
Reshape data (produce a “pivot” table) based on column values. Uses unique values from specified index / columns to form axes of the resulting DataFrame.
Parameters#
- indexcolumn name, optional
Column used to construct the index of the result.
- columnscolumn name, optional
Column used to construct the columns of the result.
- valuescolumn name or list of column names, optional
Column(s) whose values are rearranged to produce the result. If not specified, all remaining columns of the DataFrame are used.
Returns#
DataFrame
Examples#
>>> a = cudf.DataFrame() >>> a['a'] = [1, 1, 2, 2] >>> a['b'] = ['a', 'b', 'a', 'b'] >>> a['c'] = [1, 2, 3, 4] >>> a.pivot(index='a', columns='b') c b a b a 1 1 2 2 3 4
Pivot with missing values in result:
>>> a = cudf.DataFrame() >>> a['a'] = [1, 1, 2] >>> a['b'] = [1, 2, 3] >>> a['c'] = ['one', 'two', 'three'] >>> a.pivot(index='a', columns='b') c b 1 2 3 a 1 one two <NA> 2 <NA> <NA> three
- pivot_table(values=None, index=None, columns=None, aggfunc='mean', fill_value=None, margins=False, dropna=None, margins_name='All', observed=False, sort=True)#
Create a spreadsheet-style pivot table as a DataFrame.
Parameters#
data : DataFrame values : column name or list of column names to aggregate, optional index : list of column names
Values to group by in the rows.
- columnslist of column names
Values to group by in the columns.
- aggfuncstr or dict, default “mean”
If dict is passed, the key is column to aggregate and value is function name.
- fill_valuescalar, default None
Value to replace missing values with (in the resulting pivot table, after aggregation).
margins : Not supported dropna : Not supported margins_name : Not supported observed : Not supported sort : Not supported
Returns#
- DataFrame
An Excel style pivot table.
- unstack(level=-1, fill_value=None)#
Pivot one or more levels of the (necessarily hierarchical) index labels.
Pivots the specified levels of the index labels of df to the innermost levels of the columns labels of the result.
If the index of
df
has multiple levels, returns aDataframe
with specified level of the index pivoted to the column levels.If the index of
df
has single level, returns aSeries
with all column levels pivoted to the index levels.
Parameters#
df : DataFrame level : level name or index, list-like
Integer, name or list of such, specifying one or more levels of the index to pivot
- fill_value
Non-functional argument provided for compatibility with Pandas.
Returns#
Series or DataFrame
Examples#
>>> df = cudf.DataFrame() >>> df['a'] = [1, 1, 1, 2, 2] >>> df['b'] = [1, 2, 3, 1, 2] >>> df['c'] = [5, 6, 7, 8, 9] >>> df['d'] = ['a', 'b', 'a', 'd', 'e'] >>> df = df.set_index(['a', 'b', 'd']) >>> df c a b d 1 1 a 5 2 b 6 3 a 7 2 1 d 8 2 e 9
Unstacking level ‘a’:
>>> df.unstack('a') c a 1 2 b d 1 a 5 <NA> d <NA> 8 2 b 6 <NA> e <NA> 9 3 a 7 <NA>
Unstacking level ‘d’ :
>>> df.unstack('d') c d a b d e a b 1 1 5 <NA> <NA> <NA> 2 <NA> 6 <NA> <NA> 3 7 <NA> <NA> <NA> 2 1 <NA> <NA> 8 <NA> 2 <NA> <NA> <NA> 9
Unstacking multiple levels:
>>> df.unstack(['b', 'd']) c b 1 2 3 d a d b e a a 1 5 <NA> 6 <NA> 7 2 <NA> 8 <NA> 9 <NA>
Unstacking single level index dataframe:
>>> df = cudf.DataFrame({('c', 1): [1, 2, 3], ('c', 2):[9, 8, 7]}) >>> df.unstack() c 1 0 1 1 2 2 3 2 0 9 1 8 2 7 dtype: int64
- explode(column, ignore_index=False)#
Transform each element of a list-like to a row, replicating index values.
Parameters#
- columnstr
Column to explode.
- ignore_indexbool, default False
If True, the resulting index will be labeled 0, 1, …, n - 1.
Returns#
DataFrame
Examples#
>>> import cudf >>> df = cudf.DataFrame({ ... "a": [[1, 2, 3], [], None, [4, 5]], ... "b": [11, 22, 33, 44], ... }) >>> df a b 0 [1, 2, 3] 11 1 [] 22 2 None 33 3 [4, 5] 44 >>> df.explode('a') a b 0 1 11 0 2 11 0 3 11 1 <NA> 22 2 <NA> 33 3 4 44 3 5 44
- pct_change(periods=1, fill_method='ffill', limit=None, freq=None)#
Calculates the percent change between sequential elements in the DataFrame.
Parameters#
- periodsint, default 1
Periods to shift for forming percent change.
- fill_methodstr, default ‘ffill’
How to handle NAs before computing percent changes.
- limitint, optional
The number of consecutive NAs to fill before stopping. Not yet implemented.
- freqstr, optional
Increment to use from time series API. Not yet implemented.
Returns#
DataFrame
- nunique(axis=0, dropna=True)#
Count number of distinct elements in specified axis. Return Series with number of distinct elements. Can ignore NaN values.
Parameters#
- axis{0 or ‘index’, 1 or ‘columns’}, default 0
The axis to use. 0 or ‘index’ for row-wise, 1 or ‘columns’ for column-wise.
- dropnabool, default True
Don’t include NaN in the counts.
Returns#
Series
Examples#
>>> import cudf >>> df = cudf.DataFrame({'A': [4, 5, 6], 'B': [4, 1, 1]}) >>> df.nunique() A 3 B 2 dtype: int64
- interleave_columns()#
Interleave Series columns of a table into a single column.
Converts the column major table cols into a row major column.
Parameters#
cols : input Table containing columns to interleave.
Examples#
>>> import cudf >>> df = cudf.DataFrame({0: ['A1', 'A2', 'A3'], 1: ['B1', 'B2', 'B3']}) >>> df 0 1 0 A1 B1 1 A2 B2 2 A3 B3 >>> df.interleave_columns() 0 A1 1 B1 2 A2 3 B2 4 A3 5 B3 dtype: object
Returns#
The interleaved columns as a single column
- eval(expr: str, inplace: bool = False, **kwargs)#
Evaluate a string describing operations on DataFrame columns.
Operates on columns only, not specific rows or elements.
Parameters#
- exprstr
The expression string to evaluate.
- inplacebool, default False
If the expression contains an assignment, whether to perform the operation inplace and mutate the existing DataFrame. Otherwise, a new DataFrame is returned.
- **kwargs
Not supported.
Returns#
- DataFrame, Series, or None
Series if a single column is returned (the typical use case), DataFrame if any assignment statements are included in
expr
, or None ifinplace=True
.
Notes#
- Difference from pandas:
Additional kwargs are not supported.
Bitwise and logical operators are not dtype-dependent. Specifically, & must be used for bitwise operators on integers, not and, which is specifically for the logical and between booleans.
Only numerical types currently support all operators.
String types currently support comparison operators.
Operators generally will not cast automatically. Users are responsible for casting columns to suitable types before evaluating a function.
Multiple assignments to the same name (i.e. a sequence of assignment statements where later statements are conditioned upon the output of earlier statements) is not supported.
Examples#
>>> df = cudf.DataFrame({'A': range(1, 6), 'B': range(10, 0, -2)}) >>> df A B 0 1 10 1 2 8 2 3 6 3 4 4 4 5 2 >>> df.eval('A + B') 0 11 1 10 2 9 3 8 4 7 dtype: int64
Assignment is allowed though by default the original DataFrame is not modified.
>>> df.eval('C = A + B') A B C 0 1 10 11 1 2 8 10 2 3 6 9 3 4 4 8 4 5 2 7 >>> df A B 0 1 10 1 2 8 2 3 6 3 4 4 4 5 2
Use
inplace=True
to modify the original DataFrame.>>> df.eval('C = A + B', inplace=True) >>> df A B C 0 1 10 11 1 2 8 10 2 3 6 9 3 4 4 8 4 5 2 7
Multiple columns can be assigned to using multi-line expressions:
>>> df.eval( ... ''' ... C = A + B ... D = A - B ... ''' ... ) A B C D 0 1 10 11 -9 1 2 8 10 -6 2 3 6 9 -3 3 4 4 8 0 4 5 2 7 3
- value_counts(subset=None, normalize=False, sort=True, ascending=False, dropna=True)#
Return a Series containing counts of unique rows in the DataFrame.
Parameters#
- subset: list-like, optional
Columns to use when counting unique combinations.
- normalize: bool, default False
Return proportions rather than frequencies.
- sort: bool, default True
Sort by frequencies.
- ascending: bool, default False
Sort in ascending order.
- dropna: bool, default True
Don’t include counts of rows that contain NA values.
Returns#
Series
Notes#
The returned Series will have a MultiIndex with one level per input column. By default, rows that contain any NA values are omitted from the result. By default, the resulting Series will be in descending order so that the first element is the most frequently-occurring row.
Examples#
>>> import cudf >>> df = cudf.DataFrame({'num_legs': [2, 4, 4, 6], ... 'num_wings': [2, 0, 0, 0]}, ... index=['falcon', 'dog', 'cat', 'ant']) >>> df.value_counts() num_legs num_wings 4 0 2 2 2 1 6 0 1 dtype: int64
- abs()#
Return a Series/DataFrame with absolute numeric value of each element.
This function only applies to elements that are all numeric.
Returns#
- DataFrame/Series
Absolute value of each element.
Examples#
Absolute numeric values in a Series
>>> s = cudf.Series([-1.10, 2, -3.33, 4]) >>> s.abs() 0 1.10 1 2.00 2 3.33 3 4.00 dtype: float64
- add(other, axis='columns', level=None, fill_value=None)#
Get Addition of DataFrame or Series and other, element-wise (binary operator add).
Equivalent to
frame + other
, but with support to substitute afill_value
for missing data in one of the inputs.Parameters#
- otherscalar, sequence, Series, or DataFrame
Any single or multiple element data structure, or list-like object.
- axisint or string
Only
0
is supported for series,1
orcolumns
supported for dataframe- levelint or name
Broadcast across a level, matching Index values on the passed MultiIndex level. Not yet supported.
- fill_valuefloat or None, default None
Fill existing missing (NaN) values, and any new element needed for successful DataFrame alignment, with this value before computation. If data in both corresponding DataFrame locations is missing the result will be missing.
Returns#
- DataFrame or Series
Result of the arithmetic operation.
Examples#
DataFrame
>>> df = cudf.DataFrame( ... {'angles': [0, 3, 4], 'degrees': [360, 180, 360]}, ... index=['circle', 'triangle', 'rectangle'] ... )
>>> df.add(1) angles degrees circle 1 361 triangle 4 181 rectangle 5 361
Series
>>> a = cudf.Series([1, 1, 1, None], index=['a', 'b', 'c', 'd']) >>> b = cudf.Series([1, None, 1, None], index=['a', 'b', 'd', 'e'])
>>> a.add(b) a 2 b <NA> c <NA> d <NA> e <NA> dtype: int64 >>> a.add(b, fill_value=0) a 2 b 1 c 1 d 1 e <NA> dtype: int64
- argsort(by=None, axis=0, kind='quicksort', order=None, ascending=True, na_position='last')#
Return the integer indices that would sort the Series values.
Parameters#
- bystr or list of str, default None
Name or list of names to sort by. If None, sort by all columns.
- axis{0 or “index”}
Has no effect but is accepted for compatibility with numpy.
- kind{‘mergesort’, ‘quicksort’, ‘heapsort’, ‘stable’}, default ‘quicksort’
Choice of sorting algorithm. See
numpy.sort()
for more information. ‘mergesort’ and ‘stable’ are the only stable algorithms. Only quicksort is supported in cuDF.- orderNone
Has no effect but is accepted for compatibility with numpy.
- ascendingbool or list of bool, default True
If True, sort values in ascending order, otherwise descending.
- na_position{‘first’ or ‘last’}, default ‘last’
Argument ‘first’ puts NaNs at the beginning, ‘last’ puts NaNs at the end.
Returns#
cupy.ndarray: The indices sorted based on input.
Examples#
Series
>>> import cudf >>> s = cudf.Series([3, 1, 2]) >>> s 0 3 1 1 2 2 dtype: int64 >>> s.argsort() 0 1 1 2 2 0 dtype: int32 >>> s[s.argsort()] 1 1 2 2 0 3 dtype: int64
DataFrame >>> import cudf >>> df = cudf.DataFrame({‘foo’: [3, 1, 2]}) >>> df.argsort() array([1, 2, 0], dtype=int32)
Index >>> import cudf >>> idx = cudf.Index([3, 1, 2]) >>> idx.argsort() array([1, 2, 0], dtype=int32)
- backfill(value=None, axis=None, inplace=None, limit=None)#
Synonym for
Series.fillna()
withmethod='bfill'
.Deprecated since version 23.06: Use DataFrame.bfill/Series.bfill instead.
Returns#
Object with missing values filled or None if
inplace=True
.
- bfill(value=None, axis=None, inplace=None, limit=None)#
Synonym for
Series.fillna()
withmethod='bfill'
.Returns#
Object with missing values filled or None if
inplace=True
.
- clip(lower=None, upper=None, inplace=False, axis=1)#
Trim values at input threshold(s).
Assigns values outside boundary to boundary values. Thresholds can be singular values or array like, and in the latter case the clipping is performed element-wise in the specified axis. Currently only axis=1 is supported.
Parameters#
- lowerscalar or array_like, default None
Minimum threshold value. All values below this threshold will be set to it. If it is None, there will be no clipping based on lower. In case of Series/Index, lower is expected to be a scalar or an array of size 1.
- upperscalar or array_like, default None
Maximum threshold value. All values below this threshold will be set to it. If it is None, there will be no clipping based on upper. In case of Series, upper is expected to be a scalar or an array of size 1.
inplace : bool, default False
Returns#
Clipped DataFrame/Series/Index/MultiIndex
Examples#
>>> import cudf >>> df = cudf.DataFrame({"a":[1, 2, 3, 4], "b":['a', 'b', 'c', 'd']}) >>> df.clip(lower=[2, 'b'], upper=[3, 'c']) a b 0 2 b 1 2 b 2 3 c 3 3 c
>>> df.clip(lower=None, upper=[3, 'c']) a b 0 1 a 1 2 b 2 3 c 3 3 c
>>> df.clip(lower=[2, 'b'], upper=None) a b 0 2 b 1 2 b 2 3 c 3 4 d
>>> df.clip(lower=2, upper=3, inplace=True) >>> df a b 0 2 2 1 2 3 2 3 3 3 3 3
>>> import cudf >>> sr = cudf.Series([1, 2, 3, 4]) >>> sr.clip(lower=2, upper=3) 0 2 1 2 2 3 3 3 dtype: int64
>>> sr.clip(lower=None, upper=3) 0 1 1 2 2 3 3 3 dtype: int64
>>> sr.clip(lower=2, upper=None, inplace=True) >>> sr 0 2 1 2 2 3 3 4 dtype: int64
- convert_dtypes(infer_objects=True, convert_string=True, convert_integer=True, convert_boolean=True, convert_floating=True, dtype_backend=None)#
Convert columns to the best possible nullable dtypes.
If the dtype is numeric, and consists of all integers, convert to an appropriate integer extension type. Otherwise, convert to an appropriate floating type.
All other dtypes are always returned as-is as all dtypes in cudf are nullable.
- copy(deep: bool = True) Self #
Make a copy of this object’s indices and data.
When
deep=True
(default), a new object will be created with a copy of the calling object’s data and indices. Modifications to the data or indices of the copy will not be reflected in the original object (see notes below). Whendeep=False
, a new object will be created without copying the calling object’s data or index (only references to the data and index are copied). Any changes to the data of the original will be reflected in the shallow copy (and vice versa).Parameters#
- deepbool, default True
Make a deep copy, including a copy of the data and the indices. With
deep=False
neither the indices nor the data are copied.
Returns#
- copySeries or DataFrame
Object type matches caller.
Examples#
>>> s = cudf.Series([1, 2], index=["a", "b"]) >>> s a 1 b 2 dtype: int64 >>> s_copy = s.copy() >>> s_copy a 1 b 2 dtype: int64
Shallow copy versus default (deep) copy:
>>> s = cudf.Series([1, 2], index=["a", "b"]) >>> deep = s.copy() >>> shallow = s.copy(deep=False)
Updates to the data shared by shallow copy and original is reflected in both; deep copy remains unchanged.
>>> s['a'] = 3 >>> shallow['b'] = 4 >>> s a 3 b 4 dtype: int64 >>> shallow a 3 b 4 dtype: int64 >>> deep a 1 b 2 dtype: int64
- cummax(axis=None, *args, **kwargs)#
Return cumulative max of the IndexedFrame.
Parameters#
- axis: {index (0), columns(1)}
Axis for the function to be applied on.
- skipna: bool, default True
Exclude NA/null values. If an entire row/column is NA, the result will be NA.
Returns#
IndexedFrame
Examples#
Series
>>> import cudf >>> ser = cudf.Series([1, 5, 2, 4, 3]) >>> ser.cumsum() 0 1 1 6 2 8 3 12 4 15
DataFrame
>>> import cudf >>> df = cudf.DataFrame({'a': [1, 2, 3, 4], 'b': [7, 8, 9, 10]}) >>> s.cumsum() a b 0 1 7 1 3 15 2 6 24 3 10 34
- cummin(axis=None, *args, **kwargs)#
Return cumulative min of the IndexedFrame.
Parameters#
- axis: {index (0), columns(1)}
Axis for the function to be applied on.
- skipna: bool, default True
Exclude NA/null values. If an entire row/column is NA, the result will be NA.
Returns#
IndexedFrame
Examples#
Series
>>> import cudf >>> ser = cudf.Series([1, 5, 2, 4, 3]) >>> ser.cumsum() 0 1 1 6 2 8 3 12 4 15
DataFrame
>>> import cudf >>> df = cudf.DataFrame({'a': [1, 2, 3, 4], 'b': [7, 8, 9, 10]}) >>> s.cumsum() a b 0 1 7 1 3 15 2 6 24 3 10 34
- cumprod(axis=None, *args, **kwargs)#
Return cumulative product of the IndexedFrame.
Parameters#
- axis: {index (0), columns(1)}
Axis for the function to be applied on.
- skipna: bool, default True
Exclude NA/null values. If an entire row/column is NA, the result will be NA.
Returns#
IndexedFrame
Examples#
Series
>>> import cudf >>> ser = cudf.Series([1, 5, 2, 4, 3]) >>> ser.cumsum() 0 1 1 6 2 8 3 12 4 15
DataFrame
>>> import cudf >>> df = cudf.DataFrame({'a': [1, 2, 3, 4], 'b': [7, 8, 9, 10]}) >>> s.cumsum() a b 0 1 7 1 3 15 2 6 24 3 10 34
- cumsum(axis=None, *args, **kwargs)#
Return cumulative sum of the IndexedFrame.
Parameters#
- axis: {index (0), columns(1)}
Axis for the function to be applied on.
- skipna: bool, default True
Exclude NA/null values. If an entire row/column is NA, the result will be NA.
Returns#
IndexedFrame
Examples#
Series
>>> import cudf >>> ser = cudf.Series([1, 5, 2, 4, 3]) >>> ser.cumsum() 0 1 1 6 2 8 3 12 4 15
DataFrame
>>> import cudf >>> df = cudf.DataFrame({'a': [1, 2, 3, 4], 'b': [7, 8, 9, 10]}) >>> s.cumsum() a b 0 1 7 1 3 15 2 6 24 3 10 34
- div(other, axis='columns', level=None, fill_value=None)#
Get Floating division of DataFrame or Series and other, element-wise (binary operator truediv).
Equivalent to
frame + other
, but with support to substitute afill_value
for missing data in one of the inputs.Parameters#
- otherscalar, sequence, Series, or DataFrame
Any single or multiple element data structure, or list-like object.
- axisint or string
Only
0
is supported for series,1
orcolumns
supported for dataframe- levelint or name
Broadcast across a level, matching Index values on the passed MultiIndex level. Not yet supported.
- fill_valuefloat or None, default None
Fill existing missing (NaN) values, and any new element needed for successful DataFrame alignment, with this value before computation. If data in both corresponding DataFrame locations is missing the result will be missing.
Returns#
- DataFrame or Series
Result of the arithmetic operation.
Examples#
DataFrame
>>> df = cudf.DataFrame( ... {'angles': [0, 3, 4], 'degrees': [360, 180, 360]}, ... index=['circle', 'triangle', 'rectangle'] ... )
>>> df.truediv(1) angles degrees circle 0.0 360.0 triangle 3.0 180.0 rectangle 4.0 360.0
Series
>>> a = cudf.Series([1, 1, 1, None], index=['a', 'b', 'c', 'd']) >>> b = cudf.Series([1, None, 1, None], index=['a', 'b', 'd', 'e'])
>>> a.truediv(b) a 1.0 b <NA> c <NA> d <NA> e <NA> dtype: float64 >>> a.truediv(b, fill_value=0) a 1.0 b Inf c Inf d 0.0 e <NA> dtype: float64
- divide(other, axis='columns', level=None, fill_value=None)#
Get Floating division of DataFrame or Series and other, element-wise (binary operator truediv).
Equivalent to
frame + other
, but with support to substitute afill_value
for missing data in one of the inputs.Parameters#
- otherscalar, sequence, Series, or DataFrame
Any single or multiple element data structure, or list-like object.
- axisint or string
Only
0
is supported for series,1
orcolumns
supported for dataframe- levelint or name
Broadcast across a level, matching Index values on the passed MultiIndex level. Not yet supported.
- fill_valuefloat or None, default None
Fill existing missing (NaN) values, and any new element needed for successful DataFrame alignment, with this value before computation. If data in both corresponding DataFrame locations is missing the result will be missing.
Returns#
- DataFrame or Series
Result of the arithmetic operation.
Examples#
DataFrame
>>> df = cudf.DataFrame( ... {'angles': [0, 3, 4], 'degrees': [360, 180, 360]}, ... index=['circle', 'triangle', 'rectangle'] ... )
>>> df.truediv(1) angles degrees circle 0.0 360.0 triangle 3.0 180.0 rectangle 4.0 360.0
Series
>>> a = cudf.Series([1, 1, 1, None], index=['a', 'b', 'c', 'd']) >>> b = cudf.Series([1, None, 1, None], index=['a', 'b', 'd', 'e'])
>>> a.truediv(b) a 1.0 b <NA> c <NA> d <NA> e <NA> dtype: float64 >>> a.truediv(b, fill_value=0) a 1.0 b Inf c Inf d 0.0 e <NA> dtype: float64
- dot(other, reflect=False)#
Get dot product of frame and other, (binary operator dot).
Among flexible wrappers (add, sub, mul, div, mod, pow, dot) to arithmetic operators: +, -, *, /, //, %, **, @.
Parameters#
- otherSequence, Series, or DataFrame
Any multiple element data structure, or list-like object.
- reflectbool, default False
If
True
, swap the order of the operands. See https://docs.python.org/3/reference/datamodel.html#object.__ror__ for more information on when this is necessary.
Returns#
- scalar, Series, or DataFrame
The result of the operation.
Examples#
>>> import cudf >>> df = cudf.DataFrame([[1, 2, 3, 4], ... [5, 6, 7, 8]]) >>> df @ df.T 0 1 0 30 70 1 70 174 >>> s = cudf.Series([1, 1, 1, 1]) >>> df @ s 0 10 1 26 dtype: int64 >>> [1, 2, 3, 4] @ s 10
- drop(labels=None, axis=0, index=None, columns=None, level=None, inplace=False, errors='raise')#
Drop specified labels from rows or columns.
Remove rows or columns by specifying label names and corresponding axis, or by specifying directly index or column names. When using a multi-index, labels on different levels can be removed by specifying the level.
Parameters#
- labelssingle label or list-like
Index or column labels to drop.
- axis{0 or ‘index’, 1 or ‘columns’}, default 0
Whether to drop labels from the index (0 or ‘index’) or columns (1 or ‘columns’).
- indexsingle label or list-like
Alternative to specifying axis (
labels, axis=0
is equivalent toindex=labels
).- columnssingle label or list-like
Alternative to specifying axis (
labels, axis=1
is equivalent tocolumns=labels
).- levelint or level name, optional
For MultiIndex, level from which the labels will be removed.
- inplacebool, default False
If False, return a copy. Otherwise, do operation inplace and return None.
- errors{‘ignore’, ‘raise’}, default ‘raise’
If ‘ignore’, suppress error and only existing labels are dropped.
Returns#
- DataFrame or Series
DataFrame or Series without the removed index or column labels.
Raises#
- KeyError
If any of the labels is not found in the selected axis.
See Also#
DataFrame.loc : Label-location based indexer for selection by label. DataFrame.dropna : Return DataFrame with labels on given axis omitted
where (all or any) data are missing.
- DataFrame.drop_duplicatesReturn DataFrame with duplicate rows
removed, optionally only considering certain columns.
- Series.reindex
Return only specified index labels of Series
- Series.dropna
Return series without null values
- Series.drop_duplicates
Return series with duplicate values removed
Examples#
Series
>>> s = cudf.Series([1,2,3], index=['x', 'y', 'z']) >>> s x 1 y 2 z 3 dtype: int64
Drop labels x and z
>>> s.drop(labels=['x', 'z']) y 2 dtype: int64
Drop a label from the second level in MultiIndex Series.
>>> midx = cudf.MultiIndex.from_product([[0, 1, 2], ['x', 'y']]) >>> s = cudf.Series(range(6), index=midx) >>> s 0 x 0 y 1 1 x 2 y 3 2 x 4 y 5 dtype: int64 >>> s.drop(labels='y', level=1) 0 x 0 1 x 2 2 x 4 Name: 2, dtype: int64
DataFrame
>>> import cudf >>> df = cudf.DataFrame({"A": [1, 2, 3, 4], ... "B": [5, 6, 7, 8], ... "C": [10, 11, 12, 13], ... "D": [20, 30, 40, 50]}) >>> df A B C D 0 1 5 10 20 1 2 6 11 30 2 3 7 12 40 3 4 8 13 50
Drop columns
>>> df.drop(['B', 'C'], axis=1) A D 0 1 20 1 2 30 2 3 40 3 4 50 >>> df.drop(columns=['B', 'C']) A D 0 1 20 1 2 30 2 3 40 3 4 50
Drop a row by index
>>> df.drop([0, 1]) A B C D 2 3 7 12 40 3 4 8 13 50
Drop columns and/or rows of MultiIndex DataFrame
>>> midx = cudf.MultiIndex(levels=[['lama', 'cow', 'falcon'], ... ['speed', 'weight', 'length']], ... codes=[[0, 0, 0, 1, 1, 1, 2, 2, 2], ... [0, 1, 2, 0, 1, 2, 0, 1, 2]]) >>> df = cudf.DataFrame(index=midx, columns=['big', 'small'], ... data=[[45, 30], [200, 100], [1.5, 1], [30, 20], ... [250, 150], [1.5, 0.8], [320, 250], ... [1, 0.8], [0.3, 0.2]]) >>> df big small lama speed 45.0 30.0 weight 200.0 100.0 length 1.5 1.0 cow speed 30.0 20.0 weight 250.0 150.0 length 1.5 0.8 falcon speed 320.0 250.0 weight 1.0 0.8 length 0.3 0.2 >>> df.drop(index='cow', columns='small') big lama speed 45.0 weight 200.0 length 1.5 falcon speed 320.0 weight 1.0 length 0.3 >>> df.drop(index='length', level=1) big small lama speed 45.0 30.0 weight 200.0 100.0 cow speed 30.0 20.0 weight 250.0 150.0 falcon speed 320.0 250.0 weight 1.0 0.8
- dropna(axis=0, how='any', thresh=None, subset=None, inplace=False)#
Drop rows (or columns) containing nulls from a Column.
Parameters#
- axis{0, 1}, optional
Whether to drop rows (axis=0, default) or columns (axis=1) containing nulls.
- how{“any”, “all”}, optional
Specifies how to decide whether to drop a row (or column). any (default) drops rows (or columns) containing at least one null value. all drops only rows (or columns) containing all null values.
- thresh: int, optional
If specified, then drops every row (or column) containing less than thresh non-null values
- subsetlist, optional
List of columns to consider when dropping rows (all columns are considered by default). Alternatively, when dropping columns, subset is a list of rows to consider.
- inplacebool, default False
If True, do operation inplace and return None.
Returns#
Copy of the DataFrame with rows/columns containing nulls dropped.
See Also#
- cudf.DataFrame.isna
Indicate null values.
- cudf.DataFrame.notna
Indicate non-null values.
- cudf.DataFrame.fillna
Replace null values.
- cudf.Series.dropna
Drop null values.
- cudf.Index.dropna
Drop null indices.
Examples#
>>> import cudf >>> df = cudf.DataFrame({"name": ['Alfred', 'Batman', 'Catwoman'], ... "toy": ['Batmobile', None, 'Bullwhip'], ... "born": [np.datetime64("1940-04-25"), ... np.datetime64("NaT"), ... np.datetime64("NaT")]}) >>> df name toy born 0 Alfred Batmobile 1940-04-25 00:00:00 1 Batman <NA> <NA> 2 Catwoman Bullwhip <NA>
Drop the rows where at least one element is null.
>>> df.dropna() name toy born 0 Alfred Batmobile 1940-04-25
Drop the columns where at least one element is null.
>>> df.dropna(axis='columns') name 0 Alfred 1 Batman 2 Catwoman
Drop the rows where all elements are null.
>>> df.dropna(how='all') name toy born 0 Alfred Batmobile 1940-04-25 00:00:00 1 Batman <NA> <NA> 2 Catwoman Bullwhip <NA>
Keep only the rows with at least 2 non-null values.
>>> df.dropna(thresh=2) name toy born 0 Alfred Batmobile 1940-04-25 00:00:00 2 Catwoman Bullwhip <NA>
Define in which columns to look for null values.
>>> df.dropna(subset=['name', 'born']) name toy born 0 Alfred Batmobile 1940-04-25
Keep the DataFrame with valid entries in the same variable.
>>> df.dropna(inplace=True) >>> df name toy born 0 Alfred Batmobile 1940-04-25
- duplicated(subset=None, keep='first')#
Return boolean Series denoting duplicate rows.
Considering certain columns is optional.
Parameters#
- subsetcolumn label or sequence of labels, optional
Only consider certain columns for identifying duplicates, by default use all of the columns.
- keep{‘first’, ‘last’, False}, default ‘first’
Determines which duplicates (if any) to mark.
'first'
Mark duplicates asTrue
except for the firstoccurrence.
'last'
Mark duplicates asTrue
except for the lastoccurrence.
False
: Mark all duplicates asTrue
.
Returns#
- Series
Boolean series indicating duplicated rows.
See Also#
Index.duplicated : Equivalent method on index. Series.duplicated : Equivalent method on Series. Series.drop_duplicates : Remove duplicate values from Series. DataFrame.drop_duplicates : Remove duplicate values from DataFrame.
Examples#
Consider a dataset containing ramen product ratings.
>>> import cudf >>> df = cudf.DataFrame({ ... 'brand': ['Yum Yum', 'Yum Yum', 'Maggie', 'Maggie', 'Maggie'], ... 'style': ['cup', 'cup', 'cup', 'pack', 'pack'], ... 'rating': [4, 4, 3.5, 15, 5] ... }) >>> df brand style rating 0 Yum Yum cup 4.0 1 Yum Yum cup 4.0 2 Maggie cup 3.5 3 Maggie pack 15.0 4 Maggie pack 5.0
By default, for each set of duplicated values, the first occurrence is set to False and all others to True.
>>> df.duplicated() 0 False 1 True 2 False 3 False 4 False dtype: bool
By using ‘last’, the last occurrence of each set of duplicated values is set to False and all others to True.
>>> df.duplicated(keep='last') 0 True 1 False 2 False 3 False 4 False dtype: bool
By setting
keep
to False, all duplicates are True.>>> df.duplicated(keep=False) 0 True 1 True 2 False 3 False 4 False dtype: bool
To find duplicates on specific column(s), use
subset
.>>> df.duplicated(subset=['brand']) 0 False 1 True 2 False 3 True 4 True dtype: bool
- property empty#
Indicator whether DataFrame or Series is empty.
True if DataFrame/Series is entirely empty (no items), meaning any of the axes are of length 0.
Returns#
- outbool
If DataFrame/Series is empty, return True, if not return False.
Notes#
If DataFrame/Series contains only null values, it is still not considered empty. See the example below.
Examples#
>>> import cudf >>> df = cudf.DataFrame({'A' : []}) >>> df Empty DataFrame Columns: [A] Index: [] >>> df.empty True
If we only have null values in our DataFrame, it is not considered empty! We will need to drop the null’s to make the DataFrame empty:
>>> df = cudf.DataFrame({'A' : [None, None]}) >>> df A 0 <NA> 1 <NA> >>> df.empty False >>> df.dropna().empty True
Non-empty and empty Series example:
>>> s = cudf.Series([1, 2, None]) >>> s 0 1 1 2 2 <NA> dtype: int64 >>> s.empty False >>> s = cudf.Series([]) >>> s Series([], dtype: float64) >>> s.empty True
- eq(other, axis='columns', level=None, fill_value=None)#
Get Equal to of DataFrame or Series and other, element-wise (binary operator eq).
Equivalent to
frame + other
, but with support to substitute afill_value
for missing data in one of the inputs.Parameters#
- otherscalar, sequence, Series, or DataFrame
Any single or multiple element data structure, or list-like object.
- axisint or string
Only
0
is supported for series,1
orcolumns
supported for dataframe- levelint or name
Broadcast across a level, matching Index values on the passed MultiIndex level. Not yet supported.
- fill_valuefloat or None, default None
Fill existing missing (NaN) values, and any new element needed for successful DataFrame alignment, with this value before computation. If data in both corresponding DataFrame locations is missing the result will be missing.
Returns#
- DataFrame or Series
Result of the arithmetic operation.
Examples#
DataFrame
>>> df = cudf.DataFrame( ... {'angles': [0, 3, 4], 'degrees': [360, 180, 360]}, ... index=['circle', 'triangle', 'rectangle'] ... )
>>> df.eq(1) angles degrees circle False False triangle False False rectangle False False
Series
>>> a = cudf.Series([1, 1, 1, None], index=['a', 'b', 'c', 'd']) >>> b = cudf.Series([1, None, 1, None], index=['a', 'b', 'd', 'e'])
>>> a.eq(b) a True b <NA> c <NA> d <NA> e <NA> dtype: bool >>> a.eq(b, fill_value=0) a True b False c False d False e <NA> dtype: bool
- ffill(value=None, axis=None, inplace=None, limit=None)#
Synonym for
Series.fillna()
withmethod='ffill'
.Returns#
Object with missing values filled or None if
inplace=True
.
- fillna(value=None, method=None, axis=None, inplace=False, limit=None)#
Fill null values with
value
or specifiedmethod
.Parameters#
- valuescalar, Series-like or dict
Value to use to fill nulls. If Series-like, null values are filled with values in corresponding indices. A dict can be used to provide different values to fill nulls in different columns. Cannot be used with
method
.- method{‘ffill’, ‘bfill’}, default None
Method to use for filling null values in the dataframe or series. ffill propagates the last non-null values forward to the next non-null value. bfill propagates backward with the next non-null value. Cannot be used with
value
.
Returns#
- resultDataFrame, Series, or Index
Copy with nulls filled.
Examples#
>>> import cudf >>> df = cudf.DataFrame({'a': [1, 2, None], 'b': [3, None, 5]}) >>> df a b 0 1 3 1 2 <NA> 2 <NA> 5 >>> df.fillna(4) a b 0 1 3 1 2 4 2 4 5 >>> df.fillna({'a': 3, 'b': 4}) a b 0 1 3 1 2 4 2 3 5
fillna
on a Series object:>>> ser = cudf.Series(['a', 'b', None, 'c']) >>> ser 0 a 1 b 2 <NA> 3 c dtype: object >>> ser.fillna('z') 0 a 1 b 2 z 3 c dtype: object
fillna
can also supports inplace operation:>>> ser.fillna('z', inplace=True) >>> ser 0 a 1 b 2 z 3 c dtype: object >>> df.fillna({'a': 3, 'b': 4}, inplace=True) >>> df a b 0 1 3 1 2 4 2 3 5
fillna
specified with fillmethod
>>> ser = cudf.Series([1, None, None, 2, 3, None, None]) >>> ser.fillna(method='ffill') 0 1 1 1 2 1 3 2 4 3 5 3 6 3 dtype: int64 >>> ser.fillna(method='bfill') 0 1 1 2 2 2 3 2 4 3 5 <NA> 6 <NA> dtype: int64
- first(offset)#
Select initial periods of time series data based on a date offset.
When having a DataFrame with sorted dates as index, this function can select the first few rows based on a date offset.
Parameters#
- offset: str
The offset length of the data that will be selected. For instance, ‘1M’ will display all rows having their index within the first month.
Returns#
- Series or DataFrame
A subset of the caller.
Raises#
- TypeError
If the index is not a
DatetimeIndex
Examples#
>>> i = cudf.date_range('2018-04-09', periods=4, freq='2D') >>> ts = cudf.DataFrame({'A': [1, 2, 3, 4]}, index=i) >>> ts A 2018-04-09 1 2018-04-11 2 2018-04-13 3 2018-04-15 4 >>> ts.first('3D') A 2018-04-09 1 2018-04-11 2
- floordiv(other, axis='columns', level=None, fill_value=None)#
Get Integer division of DataFrame or Series and other, element-wise (binary operator floordiv).
Equivalent to
frame + other
, but with support to substitute afill_value
for missing data in one of the inputs.Parameters#
- otherscalar, sequence, Series, or DataFrame
Any single or multiple element data structure, or list-like object.
- axisint or string
Only
0
is supported for series,1
orcolumns
supported for dataframe- levelint or name
Broadcast across a level, matching Index values on the passed MultiIndex level. Not yet supported.
- fill_valuefloat or None, default None
Fill existing missing (NaN) values, and any new element needed for successful DataFrame alignment, with this value before computation. If data in both corresponding DataFrame locations is missing the result will be missing.
Returns#
- DataFrame or Series
Result of the arithmetic operation.
Examples#
DataFrame
>>> df = cudf.DataFrame( ... {'angles': [0, 3, 4], 'degrees': [360, 180, 360]}, ... index=['circle', 'triangle', 'rectangle'] ... )
>>> df.floordiv(1) angles degrees circle 0 360 triangle 3 180 rectangle 4 360
Series
>>> a = cudf.Series([1, 1, 1, None], index=['a', 'b', 'c', 'd']) >>> b = cudf.Series([1, None, 1, None], index=['a', 'b', 'd', 'e'])
>>> a.floordiv(b) a 1 b <NA> c <NA> d <NA> e <NA> dtype: int64 >>> a.floordiv(b, fill_value=0) a 1 b 9223372036854775807 c 9223372036854775807 d 0 e <NA> dtype: int64
- ge(other, axis='columns', level=None, fill_value=None)#
Get Greater than or equal to of DataFrame or Series and other, element-wise (binary operator ge).
Equivalent to
frame + other
, but with support to substitute afill_value
for missing data in one of the inputs.Parameters#
- otherscalar, sequence, Series, or DataFrame
Any single or multiple element data structure, or list-like object.
- axisint or string
Only
0
is supported for series,1
orcolumns
supported for dataframe- levelint or name
Broadcast across a level, matching Index values on the passed MultiIndex level. Not yet supported.
- fill_valuefloat or None, default None
Fill existing missing (NaN) values, and any new element needed for successful DataFrame alignment, with this value before computation. If data in both corresponding DataFrame locations is missing the result will be missing.
Returns#
- DataFrame or Series
Result of the arithmetic operation.
Examples#
DataFrame
>>> df = cudf.DataFrame( ... {'angles': [0, 3, 4], 'degrees': [360, 180, 360]}, ... index=['circle', 'triangle', 'rectangle'] ... )
>>> df.ge(1) angles degrees circle False True triangle True True rectangle True True
Series
>>> a = cudf.Series([1, 1, 1, None], index=['a', 'b', 'c', 'd']) >>> b = cudf.Series([1, None, 1, None], index=['a', 'b', 'd', 'e'])
>>> a.ge(b) a True b <NA> c <NA> d <NA> e <NA> dtype: bool >>> a.ge(b, fill_value=0) a True b True c True d False e <NA> dtype: bool
- gt(other, axis='columns', level=None, fill_value=None)#
Get Greater than of DataFrame or Series and other, element-wise (binary operator gt).
Equivalent to
frame + other
, but with support to substitute afill_value
for missing data in one of the inputs.Parameters#
- otherscalar, sequence, Series, or DataFrame
Any single or multiple element data structure, or list-like object.
- axisint or string
Only
0
is supported for series,1
orcolumns
supported for dataframe- levelint or name
Broadcast across a level, matching Index values on the passed MultiIndex level. Not yet supported.
- fill_valuefloat or None, default None
Fill existing missing (NaN) values, and any new element needed for successful DataFrame alignment, with this value before computation. If data in both corresponding DataFrame locations is missing the result will be missing.
Returns#
- DataFrame or Series
Result of the arithmetic operation.
Examples#
DataFrame
>>> df = cudf.DataFrame( ... {'angles': [0, 3, 4], 'degrees': [360, 180, 360]}, ... index=['circle', 'triangle', 'rectangle'] ... )
>>> df.gt(1) angles degrees circle False True triangle True True rectangle True True
Series
>>> a = cudf.Series([1, 1, 1, None], index=['a', 'b', 'c', 'd']) >>> b = cudf.Series([1, None, 1, None], index=['a', 'b', 'd', 'e'])
>>> a.gt(b) a False b <NA> c <NA> d <NA> e <NA> dtype: bool >>> a.gt(b, fill_value=0) a False b True c True d False e <NA> dtype: bool
- hash_values(method='murmur3', seed=None)#
Compute the hash of values in this column.
Parameters#
- method{‘murmur3’, ‘md5’}, default ‘murmur3’
Hash function to use: * murmur3: MurmurHash3 hash function. * md5: MD5 hash function.
- seedint, optional
Seed value to use for the hash function. Note - This only has effect for the following supported hash functions: * murmur3: MurmurHash3 hash function.
Returns#
- Series
A Series with hash values.
Examples#
Series
>>> import cudf >>> series = cudf.Series([10, 120, 30]) >>> series 0 10 1 120 2 30 dtype: int64 >>> series.hash_values(method="murmur3") 0 -1930516747 1 422619251 2 -941520876 dtype: int32 >>> series.hash_values(method="md5") 0 7be4bbacbfdb05fb3044e36c22b41e8b 1 947ca8d2c5f0f27437f156cfbfab0969 2 d0580ef52d27c043c8e341fd5039b166 dtype: object >>> series.hash_values(method="murmur3", seed=42) 0 2364453205 1 422621911 2 3353449140 dtype: uint32
DataFrame
>>> import cudf >>> df = cudf.DataFrame({"a": [10, 120, 30], "b": [0.0, 0.25, 0.50]}) >>> df a b 0 10 0.00 1 120 0.25 2 30 0.50 >>> df.hash_values(method="murmur3") 0 -330519225 1 -397962448 2 -1345834934 dtype: int32 >>> df.hash_values(method="md5") 0 57ce879751b5169c525907d5c563fae1 1 948d6221a7c4963d4be411bcead7e32b 2 fe061786ea286a515b772d91b0dfcd70 dtype: object
- head(n=5)#
Return the first n rows. This function returns the first n rows for the object based on position. It is useful for quickly testing if your object has the right type of data in it. For negative values of n, this function returns all rows except the last n rows, equivalent to
df[:-n]
.Parameters#
- nint, default 5
Number of rows to select.
Returns#
- DataFrame or Series
The first n rows of the caller object.
Examples#
Series
>>> ser = cudf.Series(['alligator', 'bee', 'falcon', ... 'lion', 'monkey', 'parrot', 'shark', 'whale', 'zebra']) >>> ser 0 alligator 1 bee 2 falcon 3 lion 4 monkey 5 parrot 6 shark 7 whale 8 zebra dtype: object
Viewing the first 5 lines
>>> ser.head() 0 alligator 1 bee 2 falcon 3 lion 4 monkey dtype: object
Viewing the first n lines (three in this case)
>>> ser.head(3) 0 alligator 1 bee 2 falcon dtype: object
For negative values of n
>>> ser.head(-3) 0 alligator 1 bee 2 falcon 3 lion 4 monkey 5 parrot dtype: object
DataFrame
>>> df = cudf.DataFrame() >>> df['key'] = [0, 1, 2, 3, 4] >>> df['val'] = [float(i + 10) for i in range(5)] # insert column >>> df.head(2) key val 0 0 10.0 1 1 11.0
- property iloc#
Select values by position.
Examples#
Series
>>> import cudf >>> s = cudf.Series([10, 20, 30]) >>> s 0 10 1 20 2 30 dtype: int64 >>> s.iloc[2] 30
DataFrame
Selecting rows and column by position.
>>> df = cudf.DataFrame({'a': range(20), ... 'b': range(20), ... 'c': range(20)})
Select a single row using an integer index.
>>> df.iloc[1] a 1 b 1 c 1 Name: 1, dtype: int64
Select multiple rows using a list of integers.
>>> df.iloc[[0, 2, 9, 18]] a b c 0 0 0 0 2 2 2 2 9 9 9 9 18 18 18 18
Select rows using a slice.
>>> df.iloc[3:10:2] a b c 3 3 3 3 5 5 5 5 7 7 7 7 9 9 9 9
Select both rows and columns.
>>> df.iloc[[1, 3, 5, 7], 2] 1 1 3 3 5 5 7 7 Name: c, dtype: int64
Setting values in a column using iloc.
>>> df.iloc[:4] = 0 >>> df a b c 0 0 0 0 1 0 0 0 2 0 0 0 3 0 0 0 4 4 4 4 5 5 5 5 6 6 6 6 7 7 7 7 8 8 8 8 9 9 9 9 [10 more rows]
- property index#
Get the labels for the rows.
- isna()#
Identify missing values.
Return a boolean same-sized object indicating if the values are
<NA>
.<NA>
values gets mapped toTrue
values. Everything else gets mapped toFalse
values.<NA>
values include:Values where null mask is set.
NaN
in float dtype.NaT
in datetime64 and timedelta64 types.
Characters such as empty strings
''
orinf
in case of float are not considered<NA>
values.Returns#
- DataFrame/Series/Index
Mask of bool values for each element in the object that indicates whether an element is an NA value.
Examples#
Show which entries in a DataFrame are NA.
>>> import cudf >>> import numpy as np >>> import pandas as pd >>> df = cudf.DataFrame({'age': [5, 6, np.NaN], ... 'born': [pd.NaT, pd.Timestamp('1939-05-27'), ... pd.Timestamp('1940-04-25')], ... 'name': ['Alfred', 'Batman', ''], ... 'toy': [None, 'Batmobile', 'Joker']}) >>> df age born name toy 0 5 <NA> Alfred <NA> 1 6 1939-05-27 00:00:00.000000 Batman Batmobile 2 <NA> 1940-04-25 00:00:00.000000 Joker >>> df.isna() age born name toy 0 False True False True 1 False False False False 2 True False False False
Show which entries in a Series are NA.
>>> ser = cudf.Series([5, 6, np.NaN, np.inf, -np.inf]) >>> ser 0 5.0 1 6.0 2 <NA> 3 Inf 4 -Inf dtype: float64 >>> ser.isna() 0 False 1 False 2 True 3 False 4 False dtype: bool
Show which entries in an Index are NA.
>>> idx = cudf.Index([1, 2, None, np.NaN, 0.32, np.inf]) >>> idx Float64Index([1.0, 2.0, <NA>, <NA>, 0.32, Inf], dtype='float64') >>> idx.isna() array([False, False, True, True, False, False])
- isnull()#
Identify missing values.
Return a boolean same-sized object indicating if the values are
<NA>
.<NA>
values gets mapped toTrue
values. Everything else gets mapped toFalse
values.<NA>
values include:Values where null mask is set.
NaN
in float dtype.NaT
in datetime64 and timedelta64 types.
Characters such as empty strings
''
orinf
in case of float are not considered<NA>
values.Returns#
- DataFrame/Series/Index
Mask of bool values for each element in the object that indicates whether an element is an NA value.
Examples#
Show which entries in a DataFrame are NA.
>>> import cudf >>> import numpy as np >>> import pandas as pd >>> df = cudf.DataFrame({'age': [5, 6, np.NaN], ... 'born': [pd.NaT, pd.Timestamp('1939-05-27'), ... pd.Timestamp('1940-04-25')], ... 'name': ['Alfred', 'Batman', ''], ... 'toy': [None, 'Batmobile', 'Joker']}) >>> df age born name toy 0 5 <NA> Alfred <NA> 1 6 1939-05-27 00:00:00.000000 Batman Batmobile 2 <NA> 1940-04-25 00:00:00.000000 Joker >>> df.isna() age born name toy 0 False True False True 1 False False False False 2 True False False False
Show which entries in a Series are NA.
>>> ser = cudf.Series([5, 6, np.NaN, np.inf, -np.inf]) >>> ser 0 5.0 1 6.0 2 <NA> 3 Inf 4 -Inf dtype: float64 >>> ser.isna() 0 False 1 False 2 True 3 False 4 False dtype: bool
Show which entries in an Index are NA.
>>> idx = cudf.Index([1, 2, None, np.NaN, 0.32, np.inf]) >>> idx Float64Index([1.0, 2.0, <NA>, <NA>, 0.32, Inf], dtype='float64') >>> idx.isna() array([False, False, True, True, False, False])
- kurt(axis=<no_default>, skipna=True, level=None, numeric_only=None, **kwargs)#
Return Fisher’s unbiased kurtosis of a sample.
Kurtosis obtained using Fisher’s definition of kurtosis (kurtosis of normal == 0.0). Normalized by N-1.
Parameters#
- axis: {index (0), columns(1)}
Axis for the function to be applied on.
- skipna: bool, default True
Exclude NA/null values when computing the result.
Returns#
Series or scalar
Notes#
Parameters currently not supported are level and numeric_only
Examples#
Series
>>> import cudf >>> series = cudf.Series([1, 2, 3, 4]) >>> series.kurtosis() -1.1999999999999904
DataFrame
>>> import cudf >>> df = cudf.DataFrame({'a': [1, 2, 3, 4], 'b': [7, 8, 9, 10]}) >>> df.kurt() a -1.2 b -1.2 dtype: float64
- kurtosis(axis=<no_default>, skipna=True, level=None, numeric_only=None, **kwargs)#
Return Fisher’s unbiased kurtosis of a sample.
Kurtosis obtained using Fisher’s definition of kurtosis (kurtosis of normal == 0.0). Normalized by N-1.
Parameters#
- axis: {index (0), columns(1)}
Axis for the function to be applied on.
- skipna: bool, default True
Exclude NA/null values when computing the result.
Returns#
Series or scalar
Notes#
Parameters currently not supported are level and numeric_only
Examples#
Series
>>> import cudf >>> series = cudf.Series([1, 2, 3, 4]) >>> series.kurtosis() -1.1999999999999904
DataFrame
>>> import cudf >>> df = cudf.DataFrame({'a': [1, 2, 3, 4], 'b': [7, 8, 9, 10]}) >>> df.kurt() a -1.2 b -1.2 dtype: float64
- last(offset)#
Select final periods of time series data based on a date offset.
When having a DataFrame with sorted dates as index, this function can select the last few rows based on a date offset.
Parameters#
- offset: str
The offset length of the data that will be selected. For instance, ‘3D’ will display all rows having their index within the last 3 days.
Returns#
- Series or DataFrame
A subset of the caller.
Raises#
- TypeError
If the index is not a
DatetimeIndex
Examples#
>>> i = cudf.date_range('2018-04-09', periods=4, freq='2D') >>> ts = cudf.DataFrame({'A': [1, 2, 3, 4]}, index=i) >>> ts A 2018-04-09 1 2018-04-11 2 2018-04-13 3 2018-04-15 4 >>> ts.last('3D') A 2018-04-13 3 2018-04-15 4
- le(other, axis='columns', level=None, fill_value=None)#
Get Less than or equal to of DataFrame or Series and other, element-wise (binary operator le).
Equivalent to
frame + other
, but with support to substitute afill_value
for missing data in one of the inputs.Parameters#
- otherscalar, sequence, Series, or DataFrame
Any single or multiple element data structure, or list-like object.
- axisint or string
Only
0
is supported for series,1
orcolumns
supported for dataframe- levelint or name
Broadcast across a level, matching Index values on the passed MultiIndex level. Not yet supported.
- fill_valuefloat or None, default None
Fill existing missing (NaN) values, and any new element needed for successful DataFrame alignment, with this value before computation. If data in both corresponding DataFrame locations is missing the result will be missing.
Returns#
- DataFrame or Series
Result of the arithmetic operation.
Examples#
DataFrame
>>> df = cudf.DataFrame( ... {'angles': [0, 3, 4], 'degrees': [360, 180, 360]}, ... index=['circle', 'triangle', 'rectangle'] ... )
>>> df.le(1) angles degrees circle True False triangle False False rectangle False False
Series
>>> a = cudf.Series([1, 1, 1, None], index=['a', 'b', 'c', 'd']) >>> b = cudf.Series([1, None, 1, None], index=['a', 'b', 'd', 'e'])
>>> a.le(b) a True b <NA> c <NA> d <NA> e <NA> dtype: bool >>> a.le(b, fill_value=0) a True b False c False d True e <NA> dtype: bool
- property loc#
Select rows and columns by label or boolean mask.
Examples#
Series
>>> import cudf >>> series = cudf.Series([10, 11, 12], index=['a', 'b', 'c']) >>> series a 10 b 11 c 12 dtype: int64 >>> series.loc['b'] 11
DataFrame
DataFrame with string index.
>>> df a b a 0 5 b 1 6 c 2 7 d 3 8 e 4 9
Select a single row by label.
>>> df.loc['a'] a 0 b 5 Name: a, dtype: int64
Select multiple rows and a single column.
>>> df.loc[['a', 'c', 'e'], 'b'] a 5 c 7 e 9 Name: b, dtype: int64
Selection by boolean mask.
>>> df.loc[df.a > 2] a b d 3 8 e 4 9
Setting values using loc.
>>> df.loc[['a', 'c', 'e'], 'a'] = 0 >>> df a b a 0 5 b 1 6 c 0 7 d 3 8 e 0 9
- lt(other, axis='columns', level=None, fill_value=None)#
Get Less than of DataFrame or Series and other, element-wise (binary operator lt).
Equivalent to
frame + other
, but with support to substitute afill_value
for missing data in one of the inputs.Parameters#
- otherscalar, sequence, Series, or DataFrame
Any single or multiple element data structure, or list-like object.
- axisint or string
Only
0
is supported for series,1
orcolumns
supported for dataframe- levelint or name
Broadcast across a level, matching Index values on the passed MultiIndex level. Not yet supported.
- fill_valuefloat or None, default None
Fill existing missing (NaN) values, and any new element needed for successful DataFrame alignment, with this value before computation. If data in both corresponding DataFrame locations is missing the result will be missing.
Returns#
- DataFrame or Series
Result of the arithmetic operation.
Examples#
DataFrame
>>> df = cudf.DataFrame( ... {'angles': [0, 3, 4], 'degrees': [360, 180, 360]}, ... index=['circle', 'triangle', 'rectangle'] ... )
>>> df.lt(1) angles degrees circle True False triangle False False rectangle False False
Series
>>> a = cudf.Series([1, 1, 1, None], index=['a', 'b', 'c', 'd']) >>> b = cudf.Series([1, None, 1, None], index=['a', 'b', 'd', 'e'])
>>> a.lt(b) a False b <NA> c <NA> d <NA> e <NA> dtype: bool >>> a.lt(b, fill_value=0) a False b False c False d True e <NA> dtype: bool
- mask(cond, other=None, inplace=False)#
Replace values where the condition is True.
Parameters#
- condbool Series/DataFrame, array-like
Where cond is False, keep the original value. Where True, replace with corresponding value from other. Callables are not supported.
- other: scalar, list of scalars, Series/DataFrame
Entries where cond is True are replaced with corresponding value from other. Callables are not supported. Default is None.
DataFrame expects only Scalar or array like with scalars or dataframe with same dimension as self.
Series expects only scalar or series like with same length
- inplacebool, default False
Whether to perform the operation in place on the data.
Returns#
Same type as caller
Examples#
>>> import cudf >>> df = cudf.DataFrame({"A":[1, 4, 5], "B":[3, 5, 8]}) >>> df.mask(df % 2 == 0, [-1, -1]) A B 0 1 3 1 -1 5 2 5 -1
>>> ser = cudf.Series([4, 3, 2, 1, 0]) >>> ser.mask(ser > 2, 10) 0 10 1 10 2 2 3 1 4 0 dtype: int64 >>> ser.mask(ser > 2) 0 <NA> 1 <NA> 2 2 3 1 4 0 dtype: int64
- max(axis=<no_default>, skipna=True, level=None, numeric_only=None, **kwargs)#
Return the maximum of the values in the DataFrame.
Parameters#
- axis: {index (0), columns(1)}
Axis for the function to be applied on.
- skipna: bool, default True
Exclude NA/null values when computing the result.
- level: int or level name, default None
If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing into a Series.
- numeric_only: bool, default None
Include only float, int, boolean columns. If None, will attempt to use everything, then use only numeric data.
Returns#
Series
Notes#
Parameters currently not supported are level, numeric_only.
Examples#
>>> import cudf >>> df = cudf.DataFrame({'a': [1, 2, 3, 4], 'b': [7, 8, 9, 10]}) >>> df.max() a 4 b 10 dtype: int64
- mean(axis=<no_default>, skipna=True, level=None, numeric_only=None, **kwargs)#
Return the mean of the values for the requested axis.
Parameters#
- axis{0 or ‘index’, 1 or ‘columns’}
Axis for the function to be applied on.
- skipnabool, default True
Exclude NA/null values when computing the result.
- levelint or level name, default None
If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing into a Series.
- numeric_onlybool, default None
Include only float, int, boolean columns. If None, will attempt to use everything, then use only numeric data. Not implemented for Series.
- **kwargs
Additional keyword arguments to be passed to the function.
Returns#
mean : Series or DataFrame (if level specified)
Examples#
>>> import cudf >>> df = cudf.DataFrame({'a': [1, 2, 3, 4], 'b': [7, 8, 9, 10]}) >>> df.mean() a 2.5 b 8.5 dtype: float64
- median(axis=None, skipna=True, level=None, numeric_only=None, **kwargs)#
Return the median of the values for the requested axis.
Parameters#
- skipnabool, default True
Exclude NA/null values when computing the result.
Returns#
scalar
Notes#
Parameters currently not supported are level and numeric_only.
Examples#
>>> import cudf >>> ser = cudf.Series([10, 25, 3, 25, 24, 6]) >>> ser 0 10 1 25 2 3 3 25 4 24 5 6 dtype: int64 >>> ser.median() 17.0
- min(axis=<no_default>, skipna=True, level=None, numeric_only=None, **kwargs)#
Return the minimum of the values in the DataFrame.
Parameters#
- axis: {index (0), columns(1)}
Axis for the function to be applied on.
- skipna: bool, default True
Exclude NA/null values when computing the result.
- level: int or level name, default None
If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing into a Series.
- numeric_only: bool, default None
Include only float, int, boolean columns. If None, will attempt to use everything, then use only numeric data.
Returns#
Series
Notes#
Parameters currently not supported are level, numeric_only.
Examples#
>>> import cudf >>> df = cudf.DataFrame({'a': [1, 2, 3, 4], 'b': [7, 8, 9, 10]}) >>> df.min() a 1 b 7 dtype: int64
- mod(other, axis='columns', level=None, fill_value=None)#
Get Modulo of DataFrame or Series and other, element-wise (binary operator mod).
Equivalent to
frame + other
, but with support to substitute afill_value
for missing data in one of the inputs.Parameters#
- otherscalar, sequence, Series, or DataFrame
Any single or multiple element data structure, or list-like object.
- axisint or string
Only
0
is supported for series,1
orcolumns
supported for dataframe- levelint or name
Broadcast across a level, matching Index values on the passed MultiIndex level. Not yet supported.
- fill_valuefloat or None, default None
Fill existing missing (NaN) values, and any new element needed for successful DataFrame alignment, with this value before computation. If data in both corresponding DataFrame locations is missing the result will be missing.
Returns#
- DataFrame or Series
Result of the arithmetic operation.
Examples#
DataFrame
>>> df = cudf.DataFrame( ... {'angles': [0, 3, 4], 'degrees': [360, 180, 360]}, ... index=['circle', 'triangle', 'rectangle'] ... )
>>> df.mod(1) angles degrees circle 0 0 triangle 0 0 rectangle 0 0
Series
>>> a = cudf.Series([1, 1, 1, None], index=['a', 'b', 'c', 'd']) >>> b = cudf.Series([1, None, 1, None], index=['a', 'b', 'd', 'e'])
>>> a.mod(b) a 0 b <NA> c <NA> d <NA> e <NA> dtype: int64 >>> a.mod(b, fill_value=0) a 0 b 4294967295 c 4294967295 d 0 e <NA> dtype: int64
- mul(other, axis='columns', level=None, fill_value=None)#
Get Multiplication of DataFrame or Series and other, element-wise (binary operator mul).
Equivalent to
frame + other
, but with support to substitute afill_value
for missing data in one of the inputs.Parameters#
- otherscalar, sequence, Series, or DataFrame
Any single or multiple element data structure, or list-like object.
- axisint or string
Only
0
is supported for series,1
orcolumns
supported for dataframe- levelint or name
Broadcast across a level, matching Index values on the passed MultiIndex level. Not yet supported.
- fill_valuefloat or None, default None
Fill existing missing (NaN) values, and any new element needed for successful DataFrame alignment, with this value before computation. If data in both corresponding DataFrame locations is missing the result will be missing.
Returns#
- DataFrame or Series
Result of the arithmetic operation.
Examples#
DataFrame
>>> df = cudf.DataFrame( ... {'angles': [0, 3, 4], 'degrees': [360, 180, 360]}, ... index=['circle', 'triangle', 'rectangle'] ... )
>>> df.multiply(1) angles degrees circle 0 360 triangle 3 180 rectangle 4 360
Series
>>> a = cudf.Series([1, 1, 1, None], index=['a', 'b', 'c', 'd']) >>> b = cudf.Series([1, None, 1, None], index=['a', 'b', 'd', 'e'])
>>> a.multiply(b) a 1 b <NA> c <NA> d <NA> e <NA> dtype: int64 >>> a.multiply(b, fill_value=0) a 1 b 0 c 0 d 0 e <NA> dtype: int64
- multiply(other, axis='columns', level=None, fill_value=None)#
Get Multiplication of DataFrame or Series and other, element-wise (binary operator mul).
Equivalent to
frame + other
, but with support to substitute afill_value
for missing data in one of the inputs.Parameters#
- otherscalar, sequence, Series, or DataFrame
Any single or multiple element data structure, or list-like object.
- axisint or string
Only
0
is supported for series,1
orcolumns
supported for dataframe- levelint or name
Broadcast across a level, matching Index values on the passed MultiIndex level. Not yet supported.
- fill_valuefloat or None, default None
Fill existing missing (NaN) values, and any new element needed for successful DataFrame alignment, with this value before computation. If data in both corresponding DataFrame locations is missing the result will be missing.
Returns#
- DataFrame or Series
Result of the arithmetic operation.
Examples#
DataFrame
>>> df = cudf.DataFrame( ... {'angles': [0, 3, 4], 'degrees': [360, 180, 360]}, ... index=['circle', 'triangle', 'rectangle'] ... )
>>> df.multiply(1) angles degrees circle 0 360 triangle 3 180 rectangle 4 360
Series
>>> a = cudf.Series([1, 1, 1, None], index=['a', 'b', 'c', 'd']) >>> b = cudf.Series([1, None, 1, None], index=['a', 'b', 'd', 'e'])
>>> a.multiply(b) a 1 b <NA> c <NA> d <NA> e <NA> dtype: int64 >>> a.multiply(b, fill_value=0) a 1 b 0 c 0 d 0 e <NA> dtype: int64
- nans_to_nulls()#
Convert nans (if any) to nulls
Returns#
DataFrame or Series
Examples#
Series
>>> import cudf, numpy as np >>> series = cudf.Series([1, 2, np.nan, None, 10], nan_as_null=False) >>> series 0 1.0 1 2.0 2 NaN 3 <NA> 4 10.0 dtype: float64 >>> series.nans_to_nulls() 0 1.0 1 2.0 2 <NA> 3 <NA> 4 10.0 dtype: float64
DataFrame
>>> df = cudf.DataFrame() >>> df['a'] = cudf.Series([1, None, np.nan], nan_as_null=False) >>> df['b'] = cudf.Series([None, 3.14, np.nan], nan_as_null=False) >>> df a b 0 1.0 <NA> 1 <NA> 3.14 2 NaN NaN >>> df.nans_to_nulls() a b 0 1.0 <NA> 1 <NA> 3.14 2 <NA> <NA>
- ne(other, axis='columns', level=None, fill_value=None)#
Get Not equal to of DataFrame or Series and other, element-wise (binary operator ne).
Equivalent to
frame + other
, but with support to substitute afill_value
for missing data in one of the inputs.Parameters#
- otherscalar, sequence, Series, or DataFrame
Any single or multiple element data structure, or list-like object.
- axisint or string
Only
0
is supported for series,1
orcolumns
supported for dataframe- levelint or name
Broadcast across a level, matching Index values on the passed MultiIndex level. Not yet supported.
- fill_valuefloat or None, default None
Fill existing missing (NaN) values, and any new element needed for successful DataFrame alignment, with this value before computation. If data in both corresponding DataFrame locations is missing the result will be missing.
Returns#
- DataFrame or Series
Result of the arithmetic operation.
Examples#
DataFrame
>>> df = cudf.DataFrame( ... {'angles': [0, 3, 4], 'degrees': [360, 180, 360]}, ... index=['circle', 'triangle', 'rectangle'] ... )
>>> df.ne(1) angles degrees circle True True triangle True True rectangle True True
Series
>>> a = cudf.Series([1, 1, 1, None], index=['a', 'b', 'c', 'd']) >>> b = cudf.Series([1, None, 1, None], index=['a', 'b', 'd', 'e'])
>>> a.ne(b) a False b <NA> c <NA> d <NA> e <NA> dtype: bool >>> a.ne(b, fill_value=0) a False b True c True d True e <NA> dtype: bool
- notna()#
Identify non-missing values.
Return a boolean same-sized object indicating if the values are not
<NA>
. Non-missing values get mapped toTrue
.<NA>
values get mapped toFalse
values.<NA>
values include:Values where null mask is set.
NaN
in float dtype.NaT
in datetime64 and timedelta64 types.
Characters such as empty strings
''
orinf
in case of float are not considered<NA>
values.Returns#
- DataFrame/Series/Index
Mask of bool values for each element in the object that indicates whether an element is not an NA value.
Examples#
Show which entries in a DataFrame are NA.
>>> import cudf >>> import numpy as np >>> import pandas as pd >>> df = cudf.DataFrame({'age': [5, 6, np.NaN], ... 'born': [pd.NaT, pd.Timestamp('1939-05-27'), ... pd.Timestamp('1940-04-25')], ... 'name': ['Alfred', 'Batman', ''], ... 'toy': [None, 'Batmobile', 'Joker']}) >>> df age born name toy 0 5 <NA> Alfred <NA> 1 6 1939-05-27 00:00:00.000000 Batman Batmobile 2 <NA> 1940-04-25 00:00:00.000000 Joker >>> df.notna() age born name toy 0 True False True False 1 True True True True 2 False True True True
Show which entries in a Series are NA.
>>> ser = cudf.Series([5, 6, np.NaN, np.inf, -np.inf]) >>> ser 0 5.0 1 6.0 2 <NA> 3 Inf 4 -Inf dtype: float64 >>> ser.notna() 0 True 1 True 2 False 3 True 4 True dtype: bool
Show which entries in an Index are NA.
>>> idx = cudf.Index([1, 2, None, np.NaN, 0.32, np.inf]) >>> idx Float64Index([1.0, 2.0, <NA>, <NA>, 0.32, Inf], dtype='float64') >>> idx.notna() array([ True, True, False, False, True, True])
- notnull()#
Identify non-missing values.
Return a boolean same-sized object indicating if the values are not
<NA>
. Non-missing values get mapped toTrue
.<NA>
values get mapped toFalse
values.<NA>
values include:Values where null mask is set.
NaN
in float dtype.NaT
in datetime64 and timedelta64 types.
Characters such as empty strings
''
orinf
in case of float are not considered<NA>
values.Returns#
- DataFrame/Series/Index
Mask of bool values for each element in the object that indicates whether an element is not an NA value.
Examples#
Show which entries in a DataFrame are NA.
>>> import cudf >>> import numpy as np >>> import pandas as pd >>> df = cudf.DataFrame({'age': [5, 6, np.NaN], ... 'born': [pd.NaT, pd.Timestamp('1939-05-27'), ... pd.Timestamp('1940-04-25')], ... 'name': ['Alfred', 'Batman', ''], ... 'toy': [None, 'Batmobile', 'Joker']}) >>> df age born name toy 0 5 <NA> Alfred <NA> 1 6 1939-05-27 00:00:00.000000 Batman Batmobile 2 <NA> 1940-04-25 00:00:00.000000 Joker >>> df.notna() age born name toy 0 True False True False 1 True True True True 2 False True True True
Show which entries in a Series are NA.
>>> ser = cudf.Series([5, 6, np.NaN, np.inf, -np.inf]) >>> ser 0 5.0 1 6.0 2 <NA> 3 Inf 4 -Inf dtype: float64 >>> ser.notna() 0 True 1 True 2 False 3 True 4 True dtype: bool
Show which entries in an Index are NA.
>>> idx = cudf.Index([1, 2, None, np.NaN, 0.32, np.inf]) >>> idx Float64Index([1.0, 2.0, <NA>, <NA>, 0.32, Inf], dtype='float64') >>> idx.notna() array([ True, True, False, False, True, True])
- pad(value=None, axis=None, inplace=None, limit=None)#
Synonym for
Series.fillna()
withmethod='ffill'
.Deprecated since version 23.06: Use DataFrame.ffill/Series.ffill instead.
Returns#
Object with missing values filled or None if
inplace=True
.
- pipe(func, *args, **kwargs)#
Apply
func(self, *args, **kwargs)
.Parameters#
- funcfunction
Function to apply to the Series/DataFrame/Index.
args
, andkwargs
are passed intofunc
. Alternatively a(callable, data_keyword)
tuple wheredata_keyword
is a string indicating the keyword ofcallable
that expects the Series/DataFrame/Index.- argsiterable, optional
Positional arguments passed into
func
.- kwargsmapping, optional
A dictionary of keyword arguments passed into
func
.
Returns#
object : the return type of
func
.Examples#
Use
.pipe
when chaining together functions that expect Series, DataFrames or GroupBy objects. Instead of writing>>> func(g(h(df), arg1=a), arg2=b, arg3=c)
You can write
>>> (df.pipe(h) ... .pipe(g, arg1=a) ... .pipe(func, arg2=b, arg3=c) ... )
If you have a function that takes the data as (say) the second argument, pass a tuple indicating which keyword expects the data. For example, suppose
f
takes its data asarg2
:>>> (df.pipe(h) ... .pipe(g, arg1=a) ... .pipe((func, 'arg2'), arg1=a, arg3=c) ... )
- pow(other, axis='columns', level=None, fill_value=None)#
Get Exponential of DataFrame or Series and other, element-wise (binary operator pow).
Equivalent to
frame + other
, but with support to substitute afill_value
for missing data in one of the inputs.Parameters#
- otherscalar, sequence, Series, or DataFrame
Any single or multiple element data structure, or list-like object.
- axisint or string
Only
0
is supported for series,1
orcolumns
supported for dataframe- levelint or name
Broadcast across a level, matching Index values on the passed MultiIndex level. Not yet supported.
- fill_valuefloat or None, default None
Fill existing missing (NaN) values, and any new element needed for successful DataFrame alignment, with this value before computation. If data in both corresponding DataFrame locations is missing the result will be missing.
Returns#
- DataFrame or Series
Result of the arithmetic operation.
Examples#
DataFrame
>>> df = cudf.DataFrame( ... {'angles': [0, 3, 4], 'degrees': [360, 180, 360]}, ... index=['circle', 'triangle', 'rectangle'] ... )
>>> df.pow(1) angles degrees circle 0 360 triangle 2 180 rectangle 4 360
Series
>>> a = cudf.Series([1, 1, 1, None], index=['a', 'b', 'c', 'd']) >>> b = cudf.Series([1, None, 1, None], index=['a', 'b', 'd', 'e'])
>>> a.pow(b) a 1 b <NA> c <NA> d <NA> e <NA> dtype: int64 >>> a.pow(b, fill_value=0) a 1 b 1 c 1 d 0 e <NA> dtype: int64
- prod(axis=<no_default>, skipna=True, dtype=None, level=None, numeric_only=None, min_count=0, **kwargs)#
Return product of the values in the DataFrame.
Parameters#
- axis: {index (0), columns(1)}
Axis for the function to be applied on.
- skipna: bool, default True
Exclude NA/null values when computing the result.
- dtype: data type
Data type to cast the result to.
- min_count: int, default 0
The required number of valid values to perform the operation. If fewer than min_count non-NA values are present the result will be NA.
The default being 0. This means the sum of an all-NA or empty Series is 0, and the product of an all-NA or empty Series is 1.
Returns#
Series
Notes#
Parameters currently not supported are level`, numeric_only.
Examples#
>>> import cudf >>> df = cudf.DataFrame({'a': [1, 2, 3, 4], 'b': [7, 8, 9, 10]}) >>> df.product() a 24 b 5040 dtype: int64
- product(axis=<no_default>, skipna=True, dtype=None, level=None, numeric_only=None, min_count=0, **kwargs)#
Return product of the values in the DataFrame.
Parameters#
- axis: {index (0), columns(1)}
Axis for the function to be applied on.
- skipna: bool, default True
Exclude NA/null values when computing the result.
- dtype: data type
Data type to cast the result to.
- min_count: int, default 0
The required number of valid values to perform the operation. If fewer than min_count non-NA values are present the result will be NA.
The default being 0. This means the sum of an all-NA or empty Series is 0, and the product of an all-NA or empty Series is 1.
Returns#
Series
Notes#
Parameters currently not supported are level`, numeric_only.
Examples#
>>> import cudf >>> df = cudf.DataFrame({'a': [1, 2, 3, 4], 'b': [7, 8, 9, 10]}) >>> df.product() a 24 b 5040 dtype: int64
- radd(other, axis='columns', level=None, fill_value=None)#
Get Addition of DataFrame or Series and other, element-wise (binary operator radd).
Equivalent to
frame + other
, but with support to substitute afill_value
for missing data in one of the inputs.Parameters#
- otherscalar, sequence, Series, or DataFrame
Any single or multiple element data structure, or list-like object.
- axisint or string
Only
0
is supported for series,1
orcolumns
supported for dataframe- levelint or name
Broadcast across a level, matching Index values on the passed MultiIndex level. Not yet supported.
- fill_valuefloat or None, default None
Fill existing missing (NaN) values, and any new element needed for successful DataFrame alignment, with this value before computation. If data in both corresponding DataFrame locations is missing the result will be missing.
Returns#
- DataFrame or Series
Result of the arithmetic operation.
Examples#
DataFrame
>>> df = cudf.DataFrame( ... {'angles': [0, 3, 4], 'degrees': [360, 180, 360]}, ... index=['circle', 'triangle', 'rectangle'] ... )
>>> df.radd(1) angles degrees circle 1 361 triangle 4 181 rectangle 5 361
Series
>>> a = cudf.Series([1, 1, 1, None], index=['a', 'b', 'c', 'd']) >>> b = cudf.Series([1, None, 1, None], index=['a', 'b', 'd', 'e'])
>>> a.radd(b) a 2 b <NA> c <NA> d <NA> e <NA> dtype: int64 >>> a.radd(b, fill_value=0) a 2 b 1 c 1 d 1 e <NA> dtype: int64
- rank(axis=0, method='average', numeric_only=None, na_option='keep', ascending=True, pct=False)#
Compute numerical data ranks (1 through n) along axis.
By default, equal values are assigned a rank that is the average of the ranks of those values.
Parameters#
- axis{0 or ‘index’}, default 0
Index to direct ranking.
- method{‘average’, ‘min’, ‘max’, ‘first’, ‘dense’}, default ‘average’
How to rank the group of records that have the same value (i.e. ties): * average: average rank of the group * min: lowest rank in the group * max: highest rank in the group * first: ranks assigned in order they appear in the array * dense: like ‘min’, but rank always increases by 1 between groups.
- numeric_onlybool, optional
For DataFrame objects, rank only numeric columns if set to True.
- na_option{‘keep’, ‘top’, ‘bottom’}, default ‘keep’
How to rank NaN values: * keep: assign NaN rank to NaN values * top: assign smallest rank to NaN values if ascending * bottom: assign highest rank to NaN values if ascending.
- ascendingbool, default True
Whether or not the elements should be ranked in ascending order.
- pctbool, default False
Whether or not to display the returned rankings in percentile form.
Returns#
- same type as caller
Return a Series or DataFrame with data ranks as values.
- rdiv(other, axis='columns', level=None, fill_value=None)#
Get Floating division of DataFrame or Series and other, element-wise (binary operator rtruediv).
Equivalent to
frame + other
, but with support to substitute afill_value
for missing data in one of the inputs.Parameters#
- otherscalar, sequence, Series, or DataFrame
Any single or multiple element data structure, or list-like object.
- axisint or string
Only
0
is supported for series,1
orcolumns
supported for dataframe- levelint or name
Broadcast across a level, matching Index values on the passed MultiIndex level. Not yet supported.
- fill_valuefloat or None, default None
Fill existing missing (NaN) values, and any new element needed for successful DataFrame alignment, with this value before computation. If data in both corresponding DataFrame locations is missing the result will be missing.
Returns#
- DataFrame or Series
Result of the arithmetic operation.
Examples#
DataFrame
>>> df = cudf.DataFrame( ... {'angles': [0, 3, 4], 'degrees': [360, 180, 360]}, ... index=['circle', 'triangle', 'rectangle'] ... )
>>> df.rtruediv(1) angles degrees circle inf 0.002778 triangle 0.333333 0.005556 rectangle 0.250000 0.002778
Series
>>> a = cudf.Series([1, 1, 1, None], index=['a', 'b', 'c', 'd']) >>> b = cudf.Series([1, None, 1, None], index=['a', 'b', 'd', 'e'])
>>> a.rtruediv(b) a 1.0 b <NA> c <NA> d <NA> e <NA> dtype: float64 >>> a.rtruediv(b, fill_value=0) a 1.0 b 0.0 c 0.0 d Inf e <NA> dtype: float64
- repeat(repeats, axis=None)#
Repeats elements consecutively.
Returns a new object of caller type(DataFrame/Series) where each element of the current object is repeated consecutively a given number of times.
Parameters#
- repeatsint, or array of ints
The number of repetitions for each element. This should be a non-negative integer. Repeating 0 times will return an empty object.
Returns#
- Series/DataFrame
A newly created object of same type as caller with repeated elements.
Examples#
>>> import cudf >>> df = cudf.DataFrame({'a': [1, 2, 3], 'b': [10, 20, 30]}) >>> df a b 0 1 10 1 2 20 2 3 30 >>> df.repeat(3) a b 0 1 10 0 1 10 0 1 10 1 2 20 1 2 20 1 2 20 2 3 30 2 3 30 2 3 30
Repeat on Series
>>> s = cudf.Series([0, 2]) >>> s 0 0 1 2 dtype: int64 >>> s.repeat([3, 4]) 0 0 0 0 0 0 1 2 1 2 1 2 1 2 dtype: int64 >>> s.repeat(2) 0 0 0 0 1 2 1 2 dtype: int64
- replace(to_replace=None, value=None, inplace=False, limit=None, regex=False, method=None)#
Replace values given in
to_replace
withvalue
.Parameters#
- to_replacenumeric, str or list-like
Value(s) to replace.
- numeric or str:
values equal to
to_replace
will be replaced withvalue
- list of numeric or str:
If
value
is also list-like,to_replace
andvalue
must be of same length.
- dict:
Dicts can be used to specify different replacement values for different existing values. For example, {‘a’: ‘b’, ‘y’: ‘z’} replaces the value ‘a’ with ‘b’ and ‘y’ with ‘z’. To use a dict in this way the
value
parameter should beNone
.
- valuescalar, dict, list-like, str, default None
Value to replace any values matching
to_replace
with.- inplacebool, default False
If True, in place.
See Also#
Series.fillna
Raises#
- TypeError
If
to_replace
is not a scalar, array-like, dict, or NoneIf
to_replace
is a dict and value is not a list, dict, or Series
- ValueError
If a list is passed to
to_replace
andvalue
but they are not the same length.
Returns#
- resultSeries
Series after replacement. The mask and index are preserved.
Notes#
Parameters that are currently not supported are: limit, regex, method
Examples#
Series
Scalar
to_replace
andvalue
>>> import cudf >>> s = cudf.Series([0, 1, 2, 3, 4]) >>> s 0 0 1 1 2 2 3 3 4 4 dtype: int64 >>> s.replace(0, 5) 0 5 1 1 2 2 3 3 4 4 dtype: int64
List-like
to_replace
>>> s.replace([1, 2], 10) 0 0 1 10 2 10 3 3 4 4 dtype: int64
dict-like
to_replace
>>> s.replace({1:5, 3:50}) 0 0 1 5 2 2 3 50 4 4 dtype: int64 >>> s = cudf.Series(['b', 'a', 'a', 'b', 'a']) >>> s 0 b 1 a 2 a 3 b 4 a dtype: object >>> s.replace({'a': None}) 0 b 1 <NA> 2 <NA> 3 b 4 <NA> dtype: object
If there is a mismatch in types of the values in
to_replace
&value
with the actual series, then cudf exhibits different behavior with respect to pandas and the pairs are ignored silently:>>> s = cudf.Series(['b', 'a', 'a', 'b', 'a']) >>> s 0 b 1 a 2 a 3 b 4 a dtype: object >>> s.replace('a', 1) 0 b 1 a 2 a 3 b 4 a dtype: object >>> s.replace(['a', 'c'], [1, 2]) 0 b 1 a 2 a 3 b 4 a dtype: object
DataFrame
Scalar
to_replace
andvalue
>>> import cudf >>> df = cudf.DataFrame({'A': [0, 1, 2, 3, 4], ... 'B': [5, 6, 7, 8, 9], ... 'C': ['a', 'b', 'c', 'd', 'e']}) >>> df A B C 0 0 5 a 1 1 6 b 2 2 7 c 3 3 8 d 4 4 9 e >>> df.replace(0, 5) A B C 0 5 5 a 1 1 6 b 2 2 7 c 3 3 8 d 4 4 9 e
List-like
to_replace
>>> df.replace([0, 1, 2, 3], 4) A B C 0 4 5 a 1 4 6 b 2 4 7 c 3 4 8 d 4 4 9 e >>> df.replace([0, 1, 2, 3], [4, 3, 2, 1]) A B C 0 4 5 a 1 3 6 b 2 2 7 c 3 1 8 d 4 4 9 e
dict-like
to_replace
>>> df.replace({0: 10, 1: 100}) A B C 0 10 5 a 1 100 6 b 2 2 7 c 3 3 8 d 4 4 9 e >>> df.replace({'A': 0, 'B': 5}, 100) A B C 0 100 100 a 1 1 6 b 2 2 7 c 3 3 8 d 4 4 9 e
- resample(rule, axis=0, closed=None, label=None, convention='start', kind=None, loffset=None, base=None, on=None, level=None, origin='start_day', offset=None)#
Convert the frequency of (“resample”) the given time series data.
Parameters#
- rule: str
The offset string representing the frequency to use. Note that DateOffset objects are not yet supported.
- closed: {“right”, “left”}, default None
Which side of bin interval is closed. The default is “left” for all frequency offsets except for “M” and “W”, which have a default of “right”.
- label: {“right”, “left”}, default None
Which bin edge label to label bucket with. The default is “left” for all frequency offsets except for “M” and “W”, which have a default of “right”.
- on: str, optional
For a DataFrame, column to use instead of the index for resampling. Column must be a datetime-like.
- level: str or int, optional
For a MultiIndex, level to use instead of the index for resampling. The level must be a datetime-like.
Returns#
A Resampler object
Examples#
First, we create a time series with 1 minute intervals:
>>> index = cudf.date_range(start="2001-01-01", periods=10, freq="1T") >>> sr = cudf.Series(range(10), index=index) >>> sr 2001-01-01 00:00:00 0 2001-01-01 00:01:00 1 2001-01-01 00:02:00 2 2001-01-01 00:03:00 3 2001-01-01 00:04:00 4 2001-01-01 00:05:00 5 2001-01-01 00:06:00 6 2001-01-01 00:07:00 7 2001-01-01 00:08:00 8 2001-01-01 00:09:00 9 dtype: int64
Downsampling to 3 minute intervals, followed by a “sum” aggregation:
>>> sr.resample("3T").sum() 2001-01-01 00:00:00 3 2001-01-01 00:03:00 12 2001-01-01 00:06:00 21 2001-01-01 00:09:00 9 dtype: int64
Use the right side of each interval to label the bins:
>>> sr.resample("3T", label="right").sum() 2001-01-01 00:03:00 3 2001-01-01 00:06:00 12 2001-01-01 00:09:00 21 2001-01-01 00:12:00 9 dtype: int64
Close the right side of the interval instead of the left:
>>> sr.resample("3T", closed="right").sum() 2000-12-31 23:57:00 0 2001-01-01 00:00:00 6 2001-01-01 00:03:00 15 2001-01-01 00:06:00 24 dtype: int64
Upsampling to 30 second intervals:
>>> sr.resample("30s").asfreq()[:5] # show the first 5 rows 2001-01-01 00:00:00 0 2001-01-01 00:00:30 <NA> 2001-01-01 00:01:00 1 2001-01-01 00:01:30 <NA> 2001-01-01 00:02:00 2 dtype: int64
Upsample and fill nulls using the “bfill” method:
>>> sr.resample("30s").bfill()[:5] 2001-01-01 00:00:00 0 2001-01-01 00:00:30 1 2001-01-01 00:01:00 1 2001-01-01 00:01:30 2 2001-01-01 00:02:00 2 dtype: int64
Resampling by a specified column of a Dataframe:
>>> df = cudf.DataFrame({ ... "price": [10, 11, 9, 13, 14, 18, 17, 19], ... "volume": [50, 60, 40, 100, 50, 100, 40, 50], ... "week_starting": cudf.date_range( ... "2018-01-01", periods=8, freq="7D" ... ) ... }) >>> df price volume week_starting 0 10 50 2018-01-01 1 11 60 2018-01-08 2 9 40 2018-01-15 3 13 100 2018-01-22 4 14 50 2018-01-29 5 18 100 2018-02-05 6 17 40 2018-02-12 7 19 50 2018-02-19 >>> df.resample("M", on="week_starting").mean() price volume week_starting 2018-01-31 11.4 60.000000 2018-02-28 18.0 63.333333
Notes#
Note that the dtype of the index (or the ‘on’ column if using ‘on=’) in the result will be of a frequency closest to the resampled frequency. For example, if resampling from nanoseconds to milliseconds, the index will be of dtype ‘datetime64[ms]’.
- rfloordiv(other, axis='columns', level=None, fill_value=None)#
Get Integer division of DataFrame or Series and other, element-wise (binary operator rfloordiv).
Equivalent to
frame + other
, but with support to substitute afill_value
for missing data in one of the inputs.Parameters#
- otherscalar, sequence, Series, or DataFrame
Any single or multiple element data structure, or list-like object.
- axisint or string
Only
0
is supported for series,1
orcolumns
supported for dataframe- levelint or name
Broadcast across a level, matching Index values on the passed MultiIndex level. Not yet supported.
- fill_valuefloat or None, default None
Fill existing missing (NaN) values, and any new element needed for successful DataFrame alignment, with this value before computation. If data in both corresponding DataFrame locations is missing the result will be missing.
Returns#
- DataFrame or Series
Result of the arithmetic operation.
Examples#
DataFrame
>>> df = cudf.DataFrame( ... {'angles': [0, 3, 4], 'degrees': [360, 180, 360]}, ... index=['circle', 'triangle', 'rectangle'] ... )
>>> df.rfloordiv(1) angles degrees circle 9223372036854775807 0 triangle 0 0 rectangle 0 0
Series
>>> a = cudf.Series([1, 1, 1, None], index=['a', 'b', 'c', 'd']) >>> b = cudf.Series([1, None, 1, None], index=['a', 'b', 'd', 'e'])
>>> a.rfloordiv(b) a 1 b <NA> c <NA> d <NA> e <NA> dtype: int64 >>> a.rfloordiv(b, fill_value=0) a 1 b 0 c 0 d 9223372036854775807 e <NA> dtype: int64
- rmod(other, axis='columns', level=None, fill_value=None)#
Get Modulo of DataFrame or Series and other, element-wise (binary operator rmod).
Equivalent to
frame + other
, but with support to substitute afill_value
for missing data in one of the inputs.Parameters#
- otherscalar, sequence, Series, or DataFrame
Any single or multiple element data structure, or list-like object.
- axisint or string
Only
0
is supported for series,1
orcolumns
supported for dataframe- levelint or name
Broadcast across a level, matching Index values on the passed MultiIndex level. Not yet supported.
- fill_valuefloat or None, default None
Fill existing missing (NaN) values, and any new element needed for successful DataFrame alignment, with this value before computation. If data in both corresponding DataFrame locations is missing the result will be missing.
Returns#
- DataFrame or Series
Result of the arithmetic operation.
Examples#
DataFrame
>>> df = cudf.DataFrame( ... {'angles': [0, 3, 4], 'degrees': [360, 180, 360]}, ... index=['circle', 'triangle', 'rectangle'] ... )
>>> df.rmod(1) angles degrees circle 4294967295 1 triangle 1 1 rectangle 1 1
Series
>>> a = cudf.Series([1, 1, 1, None], index=['a', 'b', 'c', 'd']) >>> b = cudf.Series([1, None, 1, None], index=['a', 'b', 'd', 'e'])
>>> a.rmod(b) a 0 b <NA> c <NA> d <NA> e <NA> dtype: int64 >>> a.rmod(b, fill_value=0) a 0 b 0 c 0 d 4294967295 e <NA> dtype: int64
- rmul(other, axis='columns', level=None, fill_value=None)#
Get Multiplication of DataFrame or Series and other, element-wise (binary operator rmul).
Equivalent to
frame + other
, but with support to substitute afill_value
for missing data in one of the inputs.Parameters#
- otherscalar, sequence, Series, or DataFrame
Any single or multiple element data structure, or list-like object.
- axisint or string
Only
0
is supported for series,1
orcolumns
supported for dataframe- levelint or name
Broadcast across a level, matching Index values on the passed MultiIndex level. Not yet supported.
- fill_valuefloat or None, default None
Fill existing missing (NaN) values, and any new element needed for successful DataFrame alignment, with this value before computation. If data in both corresponding DataFrame locations is missing the result will be missing.
Returns#
- DataFrame or Series
Result of the arithmetic operation.
Examples#
DataFrame
>>> df = cudf.DataFrame( ... {'angles': [0, 3, 4], 'degrees': [360, 180, 360]}, ... index=['circle', 'triangle', 'rectangle'] ... )
>>> df.rmul(1) angles degrees circle 0 360 triangle 3 180 rectangle 4 360
Series
>>> a = cudf.Series([1, 1, 1, None], index=['a', 'b', 'c', 'd']) >>> b = cudf.Series([1, None, 1, None], index=['a', 'b', 'd', 'e'])
>>> a.rmul(b) a 1 b <NA> c <NA> d <NA> e <NA> dtype: int64 >>> a.rmul(b, fill_value=0) a 1 b 0 c 0 d 0 e <NA> dtype: int64
- rolling(window, min_periods=None, center=False, axis=0, win_type=None)#
Rolling window calculations.
Parameters#
- windowint, offset or a BaseIndexer subclass
Size of the window, i.e., the number of observations used to calculate the statistic. For datetime indexes, an offset can be provided instead of an int. The offset must be convertible to a timedelta. As opposed to a fixed window size, each window will be sized to accommodate observations within the time period specified by the offset. If a BaseIndexer subclass is passed, calculates the window boundaries based on the defined
get_window_bounds
method.- min_periodsint, optional
The minimum number of observations in the window that are required to be non-null, so that the result is non-null. If not provided or
None
,min_periods
is equal to the window size.- centerbool, optional
If
True
, the result is set at the center of the window. IfFalse
(default), the result is set at the right edge of the window.
Returns#
Rolling
object.Examples#
>>> import cudf >>> a = cudf.Series([1, 2, 3, None, 4])
Rolling sum with window size 2.
>>> print(a.rolling(2).sum()) 0 1 3 2 5 3 4 dtype: int64
Rolling sum with window size 2 and min_periods 1.
>>> print(a.rolling(2, min_periods=1).sum()) 0 1 1 3 2 5 3 3 4 4 dtype: int64
Rolling count with window size 3.
>>> print(a.rolling(3).count()) 0 1 1 2 2 3 3 2 4 2 dtype: int64
Rolling count with window size 3, but with the result set at the center of the window.
>>> print(a.rolling(3, center=True).count()) 0 2 1 3 2 2 3 2 4 1 dtype: int64
Rolling max with variable window size specified by an offset; only valid for datetime index.
>>> a = cudf.Series( ... [1, 9, 5, 4, np.nan, 1], ... index=[ ... pd.Timestamp('20190101 09:00:00'), ... pd.Timestamp('20190101 09:00:01'), ... pd.Timestamp('20190101 09:00:02'), ... pd.Timestamp('20190101 09:00:04'), ... pd.Timestamp('20190101 09:00:07'), ... pd.Timestamp('20190101 09:00:08') ... ] ... )
>>> print(a.rolling('2s').max()) 2019-01-01T09:00:00.000 1 2019-01-01T09:00:01.000 9 2019-01-01T09:00:02.000 9 2019-01-01T09:00:04.000 4 2019-01-01T09:00:07.000 2019-01-01T09:00:08.000 1 dtype: int64
Apply custom function on the window with the apply method
>>> import numpy as np >>> import math >>> b = cudf.Series([16, 25, 36, 49, 64, 81], dtype=np.float64) >>> def some_func(A): ... b = 0 ... for a in A: ... b = b + math.sqrt(a) ... return b ... >>> print(b.rolling(3, min_periods=1).apply(some_func)) 0 4.0 1 9.0 2 15.0 3 18.0 4 21.0 5 24.0 dtype: float64
And this also works for window rolling set by an offset
>>> import pandas as pd >>> c = cudf.Series( ... [16, 25, 36, 49, 64, 81], ... index=[ ... pd.Timestamp('20190101 09:00:00'), ... pd.Timestamp('20190101 09:00:01'), ... pd.Timestamp('20190101 09:00:02'), ... pd.Timestamp('20190101 09:00:04'), ... pd.Timestamp('20190101 09:00:07'), ... pd.Timestamp('20190101 09:00:08') ... ], ... dtype=np.float64 ... ) >>> print(c.rolling('2s').apply(some_func)) 2019-01-01T09:00:00.000 4.0 2019-01-01T09:00:01.000 9.0 2019-01-01T09:00:02.000 11.0 2019-01-01T09:00:04.000 7.0 2019-01-01T09:00:07.000 8.0 2019-01-01T09:00:08.000 17.0 dtype: float64
- round(decimals=0, how='half_even')#
Round to a variable number of decimal places.
Parameters#
- decimalsint, dict, Series
Number of decimal places to round each column to. This parameter must be an int for a Series. For a DataFrame, a dict or a Series are also valid inputs. If an int is given, round each column to the same number of places. Otherwise dict and Series round to variable numbers of places. Column names should be in the keys if decimals is a dict-like, or in the index if decimals is a Series. Any columns not included in decimals will be left as is. Elements of decimals which are not columns of the input will be ignored.
- howstr, optional
Type of rounding. Can be either “half_even” (default) or “half_up” rounding.
Returns#
- Series or DataFrame
A Series or DataFrame with the affected columns rounded to the specified number of decimal places.
Examples#
Series
>>> s = cudf.Series([0.1, 1.4, 2.9]) >>> s.round() 0 0.0 1 1.0 2 3.0 dtype: float64
DataFrame
>>> df = cudf.DataFrame( ... [(.21, .32), (.01, .67), (.66, .03), (.21, .18)], ... columns=['dogs', 'cats'], ... ) >>> df dogs cats 0 0.21 0.32 1 0.01 0.67 2 0.66 0.03 3 0.21 0.18
By providing an integer each column is rounded to the same number of decimal places.
>>> df.round(1) dogs cats 0 0.2 0.3 1 0.0 0.7 2 0.7 0.0 3 0.2 0.2
With a dict, the number of places for specific columns can be specified with the column names as keys and the number of decimal places as values.
>>> df.round({'dogs': 1, 'cats': 0}) dogs cats 0 0.2 0.0 1 0.0 1.0 2 0.7 0.0 3 0.2 0.0
Using a Series, the number of places for specific columns can be specified with the column names as the index and the number of decimal places as the values.
>>> decimals = cudf.Series([0, 1], index=['cats', 'dogs']) >>> df.round(decimals) dogs cats 0 0.2 0.0 1 0.0 1.0 2 0.7 0.0 3 0.2 0.0
- rpow(other, axis='columns', level=None, fill_value=None)#
Get Exponential of DataFrame or Series and other, element-wise (binary operator rpow).
Equivalent to
frame + other
, but with support to substitute afill_value
for missing data in one of the inputs.Parameters#
- otherscalar, sequence, Series, or DataFrame
Any single or multiple element data structure, or list-like object.
- axisint or string
Only
0
is supported for series,1
orcolumns
supported for dataframe- levelint or name
Broadcast across a level, matching Index values on the passed MultiIndex level. Not yet supported.
- fill_valuefloat or None, default None
Fill existing missing (NaN) values, and any new element needed for successful DataFrame alignment, with this value before computation. If data in both corresponding DataFrame locations is missing the result will be missing.
Returns#
- DataFrame or Series
Result of the arithmetic operation.
Examples#
DataFrame
>>> df = cudf.DataFrame( ... {'angles': [0, 3, 4], 'degrees': [360, 180, 360]}, ... index=['circle', 'triangle', 'rectangle'] ... )
>>> df.rpow(1) angles degrees circle 1 1 triangle 1 1 rectangle 1 1
Series
>>> a = cudf.Series([1, 1, 1, None], index=['a', 'b', 'c', 'd']) >>> b = cudf.Series([1, None, 1, None], index=['a', 'b', 'd', 'e'])
>>> a.rpow(b) a 1 b <NA> c <NA> d <NA> e <NA> dtype: int64 >>> a.rpow(b, fill_value=0) a 1 b 0 c 0 d 1 e <NA> dtype: int64
- rsub(other, axis='columns', level=None, fill_value=None)#
Get Subtraction of DataFrame or Series and other, element-wise (binary operator rsub).
Equivalent to
frame + other
, but with support to substitute afill_value
for missing data in one of the inputs.Parameters#
- otherscalar, sequence, Series, or DataFrame
Any single or multiple element data structure, or list-like object.
- axisint or string
Only
0
is supported for series,1
orcolumns
supported for dataframe- levelint or name
Broadcast across a level, matching Index values on the passed MultiIndex level. Not yet supported.
- fill_valuefloat or None, default None
Fill existing missing (NaN) values, and any new element needed for successful DataFrame alignment, with this value before computation. If data in both corresponding DataFrame locations is missing the result will be missing.
Returns#
- DataFrame or Series
Result of the arithmetic operation.
Examples#
DataFrame
>>> df = cudf.DataFrame( ... {'angles': [0, 3, 4], 'degrees': [360, 180, 360]}, ... index=['circle', 'triangle', 'rectangle'] ... )
>>> df.rsub(1) angles degrees circle 1 -359 triangle -2 -179 rectangle -3 -359
Series
>>> a = cudf.Series([1, 1, 1, None], index=['a', 'b', 'c', 'd']) >>> b = cudf.Series([1, None, 1, None], index=['a', 'b', 'd', 'e'])
>>> a.rsub(b) a 0 b <NA> c <NA> d <NA> e <NA> dtype: int64 >>> a.rsub(b, fill_value=0) a 0 b -1 c -1 d 1 e <NA> dtype: int64
- rtruediv(other, axis='columns', level=None, fill_value=None)#
Get Floating division of DataFrame or Series and other, element-wise (binary operator rtruediv).
Equivalent to
frame + other
, but with support to substitute afill_value
for missing data in one of the inputs.Parameters#
- otherscalar, sequence, Series, or DataFrame
Any single or multiple element data structure, or list-like object.
- axisint or string
Only
0
is supported for series,1
orcolumns
supported for dataframe- levelint or name
Broadcast across a level, matching Index values on the passed MultiIndex level. Not yet supported.
- fill_valuefloat or None, default None
Fill existing missing (NaN) values, and any new element needed for successful DataFrame alignment, with this value before computation. If data in both corresponding DataFrame locations is missing the result will be missing.
Returns#
- DataFrame or Series
Result of the arithmetic operation.
Examples#
DataFrame
>>> df = cudf.DataFrame( ... {'angles': [0, 3, 4], 'degrees': [360, 180, 360]}, ... index=['circle', 'triangle', 'rectangle'] ... )
>>> df.rtruediv(1) angles degrees circle inf 0.002778 triangle 0.333333 0.005556 rectangle 0.250000 0.002778
Series
>>> a = cudf.Series([1, 1, 1, None], index=['a', 'b', 'c', 'd']) >>> b = cudf.Series([1, None, 1, None], index=['a', 'b', 'd', 'e'])
>>> a.rtruediv(b) a 1.0 b <NA> c <NA> d <NA> e <NA> dtype: float64 >>> a.rtruediv(b, fill_value=0) a 1.0 b 0.0 c 0.0 d Inf e <NA> dtype: float64
- sample(n=None, frac=None, replace=False, weights=None, random_state=None, axis=None, ignore_index=False)#
Return a random sample of items from an axis of object.
If reproducible results are required, a random number generator may be provided via the random_state parameter. This function will always produce the same sample given an identical random_state.
Notes#
When sampling from
axis=0/'index'
,random_state
can be either a numpy random state (numpy.random.RandomState
) or a cupy random state (cupy.random.RandomState
). When a numpy random state is used, the output is guaranteed to match the output of the corresponding pandas method call, but generating the sample may be slow. If exact pandas equivalence is not required, using a cupy random state will achieve better performance, especially when sampling large number of items. It’s advised to use the matching ndarray type to the random state for the weights array.Parameters#
- nint, optional
Number of items from axis to return. Cannot be used with frac. Default = 1 if frac = None.
- fracfloat, optional
Fraction of axis items to return. Cannot be used with n.
- replacebool, default False
Allow or disallow sampling of the same row more than once. replace == True is not supported for axis = 1/”columns”. replace == False is not supported for axis = 0/”index” given random_state is None or a cupy random state, and weights is specified.
- weightsndarray-like, optional
Default None for uniform probability distribution over rows to sample from. If ndarray is passed, the length of weights should equal to the number of rows to sample from, and will be normalized to have a sum of 1. Unlike pandas, index alignment is not currently not performed.
- random_stateint, numpy/cupy RandomState, or None, default None
If None, default cupy random state is chosen. If int, the seed for the default cupy random state. If RandomState, rows-to-sample are generated from the RandomState.
- axis{0 or index, 1 or columns, None}, default None
Axis to sample. Accepts axis number or name. Default is stat axis for given data type (0 for Series and DataFrames). Series doesn’t support axis=1.
- ignore_indexbool, default False
If True, the resulting index will be labeled 0, 1, …, n - 1.
Returns#
- Series or DataFrame
A new object of same type as caller containing n items randomly sampled from the caller object.
Examples#
>>> import cudf as cudf >>> df = cudf.DataFrame({"a":{1, 2, 3, 4, 5}}) >>> df.sample(3) a 1 2 3 4 0 1
>>> sr = cudf.Series([1, 2, 3, 4, 5]) >>> sr.sample(10, replace=True) 1 4 3 1 2 4 0 5 0 1 4 5 4 1 0 2 0 3 3 2 dtype: int64
>>> df = cudf.DataFrame( ... {"a": [1, 2], "b": [2, 3], "c": [3, 4], "d": [4, 5]} ... ) >>> df.sample(2, axis=1) a c 0 1 3 1 2 4
- scale()#
Scale values to [0, 1] in float64
Returns#
- DataFrame or Series
Values scaled to [0, 1].
Examples#
>>> import cudf >>> series = cudf.Series([10, 11, 12, 0.5, 1]) >>> series 0 10.0 1 11.0 2 12.0 3 0.5 4 1.0 dtype: float64 >>> series.scale() 0 0.826087 1 0.913043 2 1.000000 3 0.000000 4 0.043478 dtype: float64
- searchsorted(values, side='left', ascending=True, na_position='last')#
Find indices where elements should be inserted to maintain order
Parameters#
- valueFrame (Shape must be consistent with self)
Values to be hypothetically inserted into Self
- sidestr {‘left’, ‘right’} optional, default ‘left’
If ‘left’, the index of the first suitable location found is given If ‘right’, return the last such index
- ascendingbool optional, default True
Sorted Frame is in ascending order (otherwise descending)
- na_positionstr {‘last’, ‘first’} optional, default ‘last’
Position of null values in sorted order
Returns#
1-D cupy array of insertion points
Examples#
>>> s = cudf.Series([1, 2, 3]) >>> s.searchsorted(4) 3 >>> s.searchsorted([0, 4]) array([0, 3], dtype=int32) >>> s.searchsorted([1, 3], side='left') array([0, 2], dtype=int32) >>> s.searchsorted([1, 3], side='right') array([1, 3], dtype=int32)
If the values are not monotonically sorted, wrong locations may be returned:
>>> s = cudf.Series([2, 1, 3]) >>> s.searchsorted(1) 0 # wrong result, correct would be 1
>>> df = cudf.DataFrame({'a': [1, 3, 5, 7], 'b': [10, 12, 14, 16]}) >>> df a b 0 1 10 1 3 12 2 5 14 3 7 16 >>> values_df = cudf.DataFrame({'a': [0, 2, 5, 6], ... 'b': [10, 11, 13, 15]}) >>> values_df a b 0 0 10 1 2 17 2 5 13 3 6 15 >>> df.searchsorted(values_df, ascending=False) array([4, 4, 4, 0], dtype=int32)
- shift(periods=1, freq=None, axis=0, fill_value=None)#
Shift values by periods positions.
- property size#
Return the number of elements in the underlying data.
Returns#
size : Size of the DataFrame / Index / Series / MultiIndex
Examples#
Size of an empty dataframe is 0.
>>> import cudf >>> df = cudf.DataFrame() >>> df Empty DataFrame Columns: [] Index: [] >>> df.size 0 >>> df = cudf.DataFrame(index=[1, 2, 3]) >>> df Empty DataFrame Columns: [] Index: [1, 2, 3] >>> df.size 0
DataFrame with values
>>> df = cudf.DataFrame({'a': [10, 11, 12], ... 'b': ['hello', 'rapids', 'ai']}) >>> df a b 0 10 hello 1 11 rapids 2 12 ai >>> df.size 6 >>> df.index RangeIndex(start=0, stop=3) >>> df.index.size 3
Size of an Index
>>> index = cudf.Index([]) >>> index Float64Index([], dtype='float64') >>> index.size 0 >>> index = cudf.Index([1, 2, 3, 10]) >>> index Int64Index([1, 2, 3, 10], dtype='int64') >>> index.size 4
Size of a MultiIndex
>>> midx = cudf.MultiIndex( ... levels=[["a", "b", "c", None], ["1", None, "5"]], ... codes=[[0, 0, 1, 2, 3], [0, 2, 1, 1, 0]], ... names=["x", "y"], ... ) >>> midx MultiIndex([( 'a', '1'), ( 'a', '5'), ( 'b', <NA>), ( 'c', <NA>), (<NA>, '1')], names=['x', 'y']) >>> midx.size 5
- skew(axis=<no_default>, skipna=True, level=None, numeric_only=None, **kwargs)#
Return unbiased Fisher-Pearson skew of a sample.
Parameters#
- skipna: bool, default True
Exclude NA/null values when computing the result.
Returns#
Series
Notes#
Parameters currently not supported are axis, level and numeric_only
Examples#
Series
>>> import cudf >>> series = cudf.Series([1, 2, 3, 4, 5, 6, 6]) >>> series 0 1 1 2 2 3 3 4 4 5 5 6 6 6 dtype: int64
DataFrame
>>> import cudf >>> df = cudf.DataFrame({'a': [3, 2, 3, 4], 'b': [7, 8, 10, 10]}) >>> df.skew() a 0.00000 b -0.37037 dtype: float64
- sort_index(axis=0, level=None, ascending=True, inplace=False, kind=None, na_position='last', sort_remaining=True, ignore_index=False, key=None)#
Sort object by labels (along an axis).
Parameters#
- axis{0 or ‘index’, 1 or ‘columns’}, default 0
The axis along which to sort. The value 0 identifies the rows, and 1 identifies the columns.
- levelint or level name or list of ints or list of level names
If not None, sort on values in specified index level(s). This is only useful in the case of MultiIndex.
- ascendingbool, default True
Sort ascending vs. descending.
- inplacebool, default False
If True, perform operation in-place.
- kindsorting method such as quick sort and others.
Not yet supported.
- na_position{‘first’, ‘last’}, default ‘last’
Puts NaNs at the beginning if first; last puts NaNs at the end.
- sort_remainingbool, default True
When sorting a multiindex on a subset of its levels, should entries be lexsorted by the remaining (non-specified) levels as well?
- ignore_indexbool, default False
if True, index will be replaced with RangeIndex.
- keycallable, optional
If not None, apply the key function to the index values before sorting. This is similar to the key argument in the builtin sorted() function, with the notable difference that this key function should be vectorized. It should expect an Index and return an Index of the same shape. For MultiIndex inputs, the key is applied per level.
Returns#
Frame or None
Notes#
- Difference from pandas:
Not supporting: kind, sort_remaining=False
Examples#
Series
>>> import cudf >>> series = cudf.Series(['a', 'b', 'c', 'd'], index=[3, 2, 1, 4]) >>> series 3 a 2 b 1 c 4 d dtype: object >>> series.sort_index() 1 c 2 b 3 a 4 d dtype: object
Sort Descending
>>> series.sort_index(ascending=False) 4 d 3 a 2 b 1 c dtype: object
DataFrame
>>> df = cudf.DataFrame( ... {"b":[3, 2, 1], "a":[2, 1, 3]}, index=[1, 3, 2]) >>> df.sort_index(axis=0) b a 1 3 2 2 1 3 3 2 1 >>> df.sort_index(axis=1) a b 1 2 3 3 1 2 2 3 1
- sort_values(by, axis=0, ascending=True, inplace=False, kind='quicksort', na_position='last', ignore_index=False)#
Sort by the values along either axis.
Parameters#
- bystr or list of str
Name or list of names to sort by.
- ascendingbool or list of bool, default True
Sort ascending vs. descending. Specify list for multiple sort orders. If this is a list of bools, must match the length of the by.
- na_position{‘first’, ‘last’}, default ‘last’
‘first’ puts nulls at the beginning, ‘last’ puts nulls at the end
- ignore_indexbool, default False
If True, index will not be sorted.
Returns#
Frame : Frame with sorted values.
Notes#
- Difference from pandas:
Support axis=’index’ only.
Not supporting: inplace, kind
Examples#
>>> import cudf >>> df = cudf.DataFrame() >>> df['a'] = [0, 1, 2] >>> df['b'] = [-3, 2, 0] >>> df.sort_values('b') a b 0 0 -3 2 2 0 1 1 2
- std(axis=<no_default>, skipna=True, level=None, ddof=1, numeric_only=None, **kwargs)#
Return sample standard deviation of the DataFrame.
Normalized by N-1 by default. This can be changed using the ddof argument
Parameters#
- axis: {index (0), columns(1)}
Axis for the function to be applied on.
- skipna: bool, default True
Exclude NA/null values. If an entire row/column is NA, the result will be NA.
- ddof: int, default 1
Delta Degrees of Freedom. The divisor used in calculations is N - ddof, where N represents the number of elements.
Returns#
Series
Notes#
Parameters currently not supported are level and numeric_only
Examples#
>>> import cudf >>> df = cudf.DataFrame({'a': [1, 2, 3, 4], 'b': [7, 8, 9, 10]}) >>> df.std() a 1.290994 b 1.290994 dtype: float64
- sub(other, axis='columns', level=None, fill_value=None)#
Get Subtraction of DataFrame or Series and other, element-wise (binary operator sub).
Equivalent to
frame + other
, but with support to substitute afill_value
for missing data in one of the inputs.Parameters#
- otherscalar, sequence, Series, or DataFrame
Any single or multiple element data structure, or list-like object.
- axisint or string
Only
0
is supported for series,1
orcolumns
supported for dataframe- levelint or name
Broadcast across a level, matching Index values on the passed MultiIndex level. Not yet supported.
- fill_valuefloat or None, default None
Fill existing missing (NaN) values, and any new element needed for successful DataFrame alignment, with this value before computation. If data in both corresponding DataFrame locations is missing the result will be missing.
Returns#
- DataFrame or Series
Result of the arithmetic operation.
Examples#
DataFrame
>>> df = cudf.DataFrame( ... {'angles': [0, 3, 4], 'degrees': [360, 180, 360]}, ... index=['circle', 'triangle', 'rectangle'] ... )
>>> df.sub(1) angles degrees circle -1 359 triangle 2 179 rectangle 3 359
Series
>>> a = cudf.Series([1, 1, 1, None], index=['a', 'b', 'c', 'd']) >>> b = cudf.Series([1, None, 1, None], index=['a', 'b', 'd', 'e'])
>>> a.sub(b) a 0 b <NA> c <NA> d <NA> e <NA> dtype: int64 >>> a.sub(b, fill_value=0) a 2 b 1 c 1 d -1 e <NA> dtype: int64
- subtract(other, axis='columns', level=None, fill_value=None)#
Get Subtraction of DataFrame or Series and other, element-wise (binary operator sub).
Equivalent to
frame + other
, but with support to substitute afill_value
for missing data in one of the inputs.Parameters#
- otherscalar, sequence, Series, or DataFrame
Any single or multiple element data structure, or list-like object.
- axisint or string
Only
0
is supported for series,1
orcolumns
supported for dataframe- levelint or name
Broadcast across a level, matching Index values on the passed MultiIndex level. Not yet supported.
- fill_valuefloat or None, default None
Fill existing missing (NaN) values, and any new element needed for successful DataFrame alignment, with this value before computation. If data in both corresponding DataFrame locations is missing the result will be missing.
Returns#
- DataFrame or Series
Result of the arithmetic operation.
Examples#
DataFrame
>>> df = cudf.DataFrame( ... {'angles': [0, 3, 4], 'degrees': [360, 180, 360]}, ... index=['circle', 'triangle', 'rectangle'] ... )
>>> df.sub(1) angles degrees circle -1 359 triangle 2 179 rectangle 3 359
Series
>>> a = cudf.Series([1, 1, 1, None], index=['a', 'b', 'c', 'd']) >>> b = cudf.Series([1, None, 1, None], index=['a', 'b', 'd', 'e'])
>>> a.sub(b) a 0 b <NA> c <NA> d <NA> e <NA> dtype: int64 >>> a.sub(b, fill_value=0) a 2 b 1 c 1 d -1 e <NA> dtype: int64
- sum(axis=<no_default>, skipna=True, dtype=None, level=None, numeric_only=None, min_count=0, **kwargs)#
Return sum of the values in the DataFrame.
Parameters#
- axis: {index (0), columns(1)}
Axis for the function to be applied on.
- skipna: bool, default True
Exclude NA/null values when computing the result.
- dtype: data type
Data type to cast the result to.
- min_count: int, default 0
The required number of valid values to perform the operation. If fewer than min_count non-NA values are present the result will be NA.
The default being 0. This means the sum of an all-NA or empty Series is 0, and the product of an all-NA or empty Series is 1.
Returns#
Series
Notes#
Parameters currently not supported are level, numeric_only.
Examples#
>>> import cudf >>> df = cudf.DataFrame({'a': [1, 2, 3, 4], 'b': [7, 8, 9, 10]}) >>> df.sum() a 10 b 34 dtype: int64
- tail(n=5)#
Returns the last n rows as a new DataFrame or Series
Examples#
DataFrame
>>> import cudf >>> df = cudf.DataFrame() >>> df['key'] = [0, 1, 2, 3, 4] >>> df['val'] = [float(i + 10) for i in range(5)] # insert column >>> df.tail(2) key val 3 3 13.0 4 4 14.0
Series
>>> import cudf >>> ser = cudf.Series([4, 3, 2, 1, 0]) >>> ser.tail(2) 3 1 4 0
- take(indices, axis=0)#
Return a new frame containing the rows specified by indices.
Parameters#
- indicesarray-like
Array of ints indicating which positions to take.
axis : Unsupported
Returns#
- outSeries or DataFrame
New object with desired subset of rows.
Examples#
Series >>> s = cudf.Series([‘a’, ‘b’, ‘c’, ‘d’, ‘e’]) >>> s.take([2, 0, 4, 3]) 2 c 0 a 4 e 3 d dtype: object
DataFrame
>>> a = cudf.DataFrame({'a': [1.0, 2.0, 3.0], ... 'b': cudf.Series(['a', 'b', 'c'])}) >>> a.take([0, 2, 2]) a b 0 1.0 a 2 3.0 c 2 3.0 c >>> a.take([True, False, True]) a b 0 1.0 a 2 3.0 c
- tile(count)#
Repeats the rows count times to form a new Frame.
Parameters#
self : input Table containing columns to interleave. count : Number of times to tile “rows”. Must be non-negative.
Examples#
>>> import cudf >>> df = cudf.Dataframe([[8, 4, 7], [5, 2, 3]]) >>> count = 2 >>> df.tile(df, count) 0 1 2 0 8 4 7 1 5 2 3 0 8 4 7 1 5 2 3
Returns#
The indexed frame containing the tiled “rows”.
- to_cupy(dtype: Dtype | None = None, copy: bool = False, na_value=None) cupy.ndarray #
Convert the Frame to a CuPy array.
Parameters#
- dtypestr or
numpy.dtype
, optional The dtype to pass to
numpy.asarray()
.- copybool, default False
Whether to ensure that the returned value is not a view on another array. Note that
copy=False
does not ensure thatto_cupy()
is no-copy. Rather,copy=True
ensure that a copy is made, even if not strictly necessary.- na_valueAny, default None
The value to use for missing values. The default value depends on dtype and the dtypes of the DataFrame columns.
Returns#
cupy.ndarray
- dtypestr or
- to_dlpack()#
Converts a cuDF object into a DLPack tensor.
DLPack is an open-source memory tensor structure: dmlc/dlpack.
This function takes a cuDF object and converts it to a PyCapsule object which contains a pointer to a DLPack tensor. This function deep copies the data into the DLPack tensor from the cuDF object.
Parameters#
cudf_obj : DataFrame, Series, Index, or Column
Returns#
- pycapsule_objPyCapsule
Output DLPack tensor pointer which is encapsulated in a PyCapsule object.
- to_hdf(path_or_buf, key, *args, **kwargs)#
Write the contained data to an HDF5 file using HDFStore.
Hierarchical Data Format (HDF) is self-describing, allowing an application to interpret the structure and contents of a file with no outside information. One HDF file can hold a mix of related objects which can be accessed as a group or as individual objects.
In order to add another DataFrame or Series to an existing HDF file please use append mode and a different a key.
For more information see the user guide.
Parameters#
- path_or_bufstr or pandas.HDFStore
File path or HDFStore object.
- keystr
Identifier for the group in the store.
- mode{‘a’, ‘w’, ‘r+’}, default ‘a’
Mode to open file:
‘w’: write, a new file is created (an existing file with the same name would be deleted).
‘a’: append, an existing file is opened for reading and writing, and if the file does not exist it is created.
‘r+’: similar to ‘a’, but the file must already exist.
- format{‘fixed’, ‘table’}, default ‘fixed’
Possible values:
‘fixed’: Fixed format. Fast writing/reading. Not-appendable, nor searchable.
‘table’: Table format. Write as a PyTables Table structure which may perform worse but allow more flexible operations like searching / selecting subsets of the data.
- appendbool, default False
For Table formats, append the input data to the existing.
- data_columnslist of columns or True, optional
List of columns to create as indexed data columns for on-disk queries, or True to use all columns. By default only the axes of the object are indexed. See Query via Data Columns. Applicable only to format=’table’.
- complevel{0-9}, optional
Specifies a compression level for data. A value of 0 disables compression.
- complib{‘zlib’, ‘lzo’, ‘bzip2’, ‘blosc’}, default ‘zlib’
Specifies the compression library to be used. As of v0.20.2 these additional compressors for Blosc are supported (default if no compressor specified: ‘blosc:blosclz’): {‘blosc:blosclz’, ‘blosc:lz4’, ‘blosc:lz4hc’, ‘blosc:snappy’, ‘blosc:zlib’, ‘blosc:zstd’}. Specifying a compression library which is not available issues a ValueError.
- fletcher32bool, default False
If applying compression use the fletcher32 checksum.
- dropnabool, default False
If true, ALL nan rows will not be written to store.
- errorsstr, default ‘strict’
Specifies how encoding and decoding errors are to be handled. See the errors argument for
open()
for a full list of options.
See Also#
cudf.read_hdf : Read from HDF file. cudf.DataFrame.to_parquet : Write a DataFrame to the binary parquet format. cudf.DataFrame.to_feather : Write out feather-format for DataFrames.
- to_json(path_or_buf=None, *args, **kwargs)#
Convert the cuDF object to a JSON string. Note nulls and NaNs will be converted to null and datetime objects will be converted to UNIX timestamps.
Parameters#
- path_or_bufstring or file handle, optional
File path or object. If not specified, the result is returned as a string.
- engine{{ ‘auto’, ‘cudf’, ‘pandas’ }}, default ‘auto’
Parser engine to use. If ‘auto’ is passed, the pandas engine will be selected.
- orientstring
Indication of expected JSON string format.
- Series
default is ‘index’
allowed values are: {‘split’,’records’,’index’,’table’}
- DataFrame
default is ‘columns’
allowed values are: {‘split’,’records’,’index’,’columns’,’values’,’table’}
- The format of the JSON string
‘split’ : dict like {‘index’ -> [index], ‘columns’ -> [columns], ‘data’ -> [values]}
‘records’ : list like [{column -> value}, … , {column -> value}]
‘index’ : dict like {index -> {column -> value}}
‘columns’ : dict like {column -> {index -> value}}
‘values’ : just the values array
‘table’ : dict like {‘schema’: {schema}, ‘data’: {data}} describing the data, and the data component is like
orient='records'
.
- date_format{None, ‘epoch’, ‘iso’}
Type of date conversion. ‘epoch’ = epoch milliseconds, ‘iso’ = ISO8601. The default depends on the orient. For
orient='table'
, the default is ‘iso’. For all other orients, the default is ‘epoch’.- double_precisionint, default 10
The number of decimal places to use when encoding floating point values.
- force_asciibool, default True
Force encoded string to be ASCII.
- date_unitstring, default ‘ms’ (milliseconds)
The time unit to encode to, governs timestamp and ISO8601 precision. One of ‘s’, ‘ms’, ‘us’, ‘ns’ for second, millisecond, microsecond, and nanosecond respectively.
- default_handlercallable, default None
Handler to call if object cannot otherwise be converted to a suitable format for JSON. Should receive a single argument which is the object to convert and return a serializable object.
- linesbool, default False
If ‘orient’ is ‘records’ write out line delimited json format. Will throw ValueError if incorrect ‘orient’ since others are not list like.
- compression{‘infer’, ‘gzip’, ‘bz2’, ‘zip’, ‘xz’, None}
A string representing the compression to use in the output file, only used when the first argument is a filename. By default, the compression is inferred from the filename.
- indexbool, default True
Whether to include the index values in the JSON string. Not including the index (
index=False
) is only supported when orient is ‘split’ or ‘table’.
See Also#
cudf.read_json
- to_numpy(dtype: Dtype | None = None, copy: bool = True, na_value=None) numpy.ndarray #
Convert the Frame to a NumPy array.
Parameters#
- dtypestr or
numpy.dtype
, optional The dtype to pass to
numpy.asarray()
.- copybool, default True
Whether to ensure that the returned value is not a view on another array. This parameter must be
True
since cuDF must copy device memory to host to provide a numpy array.- na_valueAny, default None
The value to use for missing values. The default value depends on dtype and the dtypes of the DataFrame columns.
Returns#
numpy.ndarray
- dtypestr or
- to_string()#
Convert to string
cuDF uses Pandas internals for efficient string formatting. Set formatting options using pandas string formatting options and cuDF objects will print identically to Pandas objects.
cuDF supports null/None as a value in any column type, which is transparently supported during this output process.
Examples#
>>> import cudf >>> df = cudf.DataFrame() >>> df['key'] = [0, 1, 2] >>> df['val'] = [float(i + 10) for i in range(3)] >>> df.to_string() ' key val\n0 0 10.0\n1 1 11.0\n2 2 12.0'
- truediv(other, axis='columns', level=None, fill_value=None)#
Get Floating division of DataFrame or Series and other, element-wise (binary operator truediv).
Equivalent to
frame + other
, but with support to substitute afill_value
for missing data in one of the inputs.Parameters#
- otherscalar, sequence, Series, or DataFrame
Any single or multiple element data structure, or list-like object.
- axisint or string
Only
0
is supported for series,1
orcolumns
supported for dataframe- levelint or name
Broadcast across a level, matching Index values on the passed MultiIndex level. Not yet supported.
- fill_valuefloat or None, default None
Fill existing missing (NaN) values, and any new element needed for successful DataFrame alignment, with this value before computation. If data in both corresponding DataFrame locations is missing the result will be missing.
Returns#
- DataFrame or Series
Result of the arithmetic operation.
Examples#
DataFrame
>>> df = cudf.DataFrame( ... {'angles': [0, 3, 4], 'degrees': [360, 180, 360]}, ... index=['circle', 'triangle', 'rectangle'] ... )
>>> df.truediv(1) angles degrees circle 0.0 360.0 triangle 3.0 180.0 rectangle 4.0 360.0
Series
>>> a = cudf.Series([1, 1, 1, None], index=['a', 'b', 'c', 'd']) >>> b = cudf.Series([1, None, 1, None], index=['a', 'b', 'd', 'e'])
>>> a.truediv(b) a 1.0 b <NA> c <NA> d <NA> e <NA> dtype: float64 >>> a.truediv(b, fill_value=0) a 1.0 b Inf c Inf d 0.0 e <NA> dtype: float64
- truncate(before=None, after=None, axis=0, copy=True)#
Truncate a Series or DataFrame before and after some index value.
This is a useful shorthand for boolean indexing based on index values above or below certain thresholds.
Parameters#
- beforedate, str, int
Truncate all rows before this index value.
- afterdate, str, int
Truncate all rows after this index value.
- axis{0 or ‘index’, 1 or ‘columns’}, optional
Axis to truncate. Truncates the index (rows) by default.
- copybool, default is True,
Return a copy of the truncated section.
Returns#
The truncated Series or DataFrame.
Notes#
If the index being truncated contains only datetime values, before and after may be specified as strings instead of Timestamps.
Examples#
Series
>>> import cudf >>> cs1 = cudf.Series([1, 2, 3, 4]) >>> cs1 0 1 1 2 2 3 3 4 dtype: int64
>>> cs1.truncate(before=1, after=2) 1 2 2 3 dtype: int64
>>> import cudf >>> dates = cudf.date_range( ... '2021-01-01 23:45:00', '2021-01-01 23:46:00', freq='s' ... ) >>> cs2 = cudf.Series(range(len(dates)), index=dates) >>> cs2 2021-01-01 23:45:00 0 2021-01-01 23:45:01 1 2021-01-01 23:45:02 2 2021-01-01 23:45:03 3 2021-01-01 23:45:04 4 2021-01-01 23:45:05 5 2021-01-01 23:45:06 6 2021-01-01 23:45:07 7 2021-01-01 23:45:08 8 2021-01-01 23:45:09 9 2021-01-01 23:45:10 10 2021-01-01 23:45:11 11 2021-01-01 23:45:12 12 2021-01-01 23:45:13 13 2021-01-01 23:45:14 14 2021-01-01 23:45:15 15 2021-01-01 23:45:16 16 2021-01-01 23:45:17 17 2021-01-01 23:45:18 18 2021-01-01 23:45:19 19 2021-01-01 23:45:20 20 2021-01-01 23:45:21 21 2021-01-01 23:45:22 22 2021-01-01 23:45:23 23 2021-01-01 23:45:24 24 ... 2021-01-01 23:45:56 56 2021-01-01 23:45:57 57 2021-01-01 23:45:58 58 2021-01-01 23:45:59 59 dtype: int64
>>> cs2.truncate( ... before="2021-01-01 23:45:18", after="2021-01-01 23:45:27" ... ) 2021-01-01 23:45:18 18 2021-01-01 23:45:19 19 2021-01-01 23:45:20 20 2021-01-01 23:45:21 21 2021-01-01 23:45:22 22 2021-01-01 23:45:23 23 2021-01-01 23:45:24 24 2021-01-01 23:45:25 25 2021-01-01 23:45:26 26 2021-01-01 23:45:27 27 dtype: int64
>>> cs3 = cudf.Series({'A': 1, 'B': 2, 'C': 3, 'D': 4}) >>> cs3 A 1 B 2 C 3 D 4 dtype: int64
>>> cs3.truncate(before='B', after='C') B 2 C 3 dtype: int64
DataFrame
>>> df = cudf.DataFrame({ ... 'A': ['a', 'b', 'c', 'd', 'e'], ... 'B': ['f', 'g', 'h', 'i', 'j'], ... 'C': ['k', 'l', 'm', 'n', 'o'] ... }, index=[1, 2, 3, 4, 5]) >>> df A B C 1 a f k 2 b g l 3 c h m 4 d i n 5 e j o
>>> df.truncate(before=2, after=4) A B C 2 b g l 3 c h m 4 d i n
>>> df.truncate(before="A", after="B", axis="columns") A B 1 a f 2 b g 3 c h 4 d i 5 e j
>>> import cudf >>> dates = cudf.date_range( ... '2021-01-01 23:45:00', '2021-01-01 23:46:00', freq='s' ... ) >>> df2 = cudf.DataFrame(data={'A': 1, 'B': 2}, index=dates) >>> df2.head() A B 2021-01-01 23:45:00 1 2 2021-01-01 23:45:01 1 2 2021-01-01 23:45:02 1 2 2021-01-01 23:45:03 1 2 2021-01-01 23:45:04 1 2
>>> df2.truncate( ... before="2021-01-01 23:45:18", after="2021-01-01 23:45:27" ... ) A B 2021-01-01 23:45:18 1 2 2021-01-01 23:45:19 1 2 2021-01-01 23:45:20 1 2 2021-01-01 23:45:21 1 2 2021-01-01 23:45:22 1 2 2021-01-01 23:45:23 1 2 2021-01-01 23:45:24 1 2 2021-01-01 23:45:25 1 2 2021-01-01 23:45:26 1 2 2021-01-01 23:45:27 1 2
- property values#
Return a CuPy representation of the DataFrame.
Only the values in the DataFrame will be returned, the axes labels will be removed.
Returns#
- cupy.ndarray
The values of the DataFrame.
- property values_host#
Return a NumPy representation of the data.
Only the values in the DataFrame will be returned, the axes labels will be removed.
Returns#
- numpy.ndarray
A host representation of the underlying data.
- var(axis=<no_default>, skipna=True, level=None, ddof=1, numeric_only=None, **kwargs)#
Return unbiased variance of the DataFrame.
Normalized by N-1 by default. This can be changed using the ddof argument.
Parameters#
- axis: {index (0), columns(1)}
Axis for the function to be applied on.
- skipna: bool, default True
Exclude NA/null values. If an entire row/column is NA, the result will be NA.
- ddof: int, default 1
Delta Degrees of Freedom. The divisor used in calculations is N - ddof, where N represents the number of elements.
Returns#
scalar
Notes#
Parameters currently not supported are level and numeric_only
Examples#
>>> import cudf >>> df = cudf.DataFrame({'a': [1, 2, 3, 4], 'b': [7, 8, 9, 10]}) >>> df.var() a 1.666667 b 1.666667 dtype: float64