RPPT Tensor Operations - Geometric Augmentations.

RPPT Tensor Operations - Geometric Augmentations.#

RPP: RPPT Tensor Operations - Geometric Augmentations.
RPPT Tensor Operations - Geometric Augmentations.

RPPT Tensor Operations - Geometric Augmentations. More...

Functions

RppStatus rppt_crop (RppPtr_t srcPtr, RpptDescPtr srcDescPtr, RppPtr_t dstPtr, RpptDescPtr dstDescPtr, RpptROIPtr roiTensorPtrSrc, RpptRoiType roiType, rppHandle_t rppHandle, RppBackend executionBackend)
 Crop augmentation on HIP/HOST backend for a NCHW/NHWC layout tensor. More...
 
RppStatus rppt_crop_mirror_normalize (RppPtr_t srcPtr, RpptDescPtr srcDescPtr, RppPtr_t dstPtr, RpptDescPtr dstDescPtr, Rpp32f *offsetTensor, Rpp32f *multiplierTensor, Rpp32u *mirrorTensor, RpptROIPtr roiTensorPtrSrc, RpptRoiType roiType, rppHandle_t rppHandle, RppBackend executionBackend)
 Crop mirror normalize augmentation on HIP/HOST backend for a NCHW/NHWC layout tensor. More...
 
RppStatus rppt_warp_affine (RppPtr_t srcPtr, RpptDescPtr srcDescPtr, RppPtr_t dstPtr, RpptDescPtr dstDescPtr, Rpp32f *affineTensor, RpptInterpolationType interpolationType, RpptROIPtr roiTensorPtrSrc, RpptRoiType roiType, rppHandle_t rppHandle, RppBackend executionBackend)
 Warp affine augmentation on HIP/HOST backend for a NCHW/NHWC layout tensor. More...
 
RppStatus rppt_flip (RppPtr_t srcPtr, RpptDescPtr srcDescPtr, RppPtr_t dstPtr, RpptDescPtr dstDescPtr, Rpp32u *horizontalTensor, Rpp32u *verticalTensor, RpptROIPtr roiTensorPtrSrc, RpptRoiType roiType, rppHandle_t rppHandle, RppBackend executionBackend)
 Flip augmentation on HIP/HOST backend for a NCHW/NHWC layout tensor. More...
 
RppStatus rppt_resize (RppPtr_t srcPtr, RpptDescPtr srcDescPtr, RppPtr_t dstPtr, RpptDescPtr dstDescPtr, RpptImagePatchPtr dstImgSizes, RpptInterpolationType interpolationType, RpptROIPtr roiTensorPtrSrc, RpptRoiType roiType, rppHandle_t rppHandle, RppBackend executionBackend)
 Resize augmentation on HIP/HOST backend for a NCHW/NHWC layout tensor. More...
 
RppStatus rppt_resize_mirror_normalize (RppPtr_t srcPtr, RpptDescPtr srcDescPtr, RppPtr_t dstPtr, RpptDescPtr dstDescPtr, RpptImagePatchPtr dstImgSizes, RpptInterpolationType interpolationType, Rpp32f *meanTensor, Rpp32f *stdDevTensor, Rpp32u *mirrorTensor, RpptROIPtr roiTensorPtrSrc, RpptRoiType roiType, rppHandle_t rppHandle, RppBackend executionBackend)
 Resize mirror normalize augmentation on HIP/HOST backend for a NCHW/NHWC layout tensor. More...
 
RppStatus rppt_resize_crop_mirror (RppPtr_t srcPtr, RpptDescPtr srcDescPtr, RppPtr_t dstPtr, RpptDescPtr dstDescPtr, RpptImagePatchPtr dstImgSizes, RpptInterpolationType interpolationType, Rpp32u *mirrorTensor, RpptROIPtr roiTensorPtrSrc, RpptRoiType roiType, rppHandle_t rppHandle, RppBackend executionBackend)
 Resize crop mirror augmentation on HIP/HOST backend for a NCHW/NHWC layout tensor. More...
 
RppStatus rppt_rotate (RppPtr_t srcPtr, RpptDescPtr srcDescPtr, RppPtr_t dstPtr, RpptDescPtr dstDescPtr, Rpp32f *angle, RpptInterpolationType interpolationType, RpptROIPtr roiTensorPtrSrc, RpptRoiType roiType, rppHandle_t rppHandle, RppBackend executionBackend)
 Rotate augmentation on HIP/HOST backend for a NCHW/NHWC layout tensor. More...
 
RppStatus rppt_phase (RppPtr_t srcPtr1, RppPtr_t srcPtr2, RpptDescPtr srcDescPtr, RppPtr_t dstPtr, RpptDescPtr dstDescPtr, RpptROIPtr roiTensorPtrSrc, RpptRoiType roiType, rppHandle_t rppHandle, RppBackend executionBackend)
 Phase augmentation on HIP/HOST backend for a NCHW/NHWC layout tensor. More...
 
RppStatus rppt_slice (RppPtr_t srcPtr, RpptGenericDescPtr srcGenericDescPtr, RppPtr_t dstPtr, RpptGenericDescPtr dstGenericDescPtr, Rpp32s *anchorTensor, Rpp32s *shapeTensor, RppPtr_t fillValue, bool enablePadding, Rpp32u *roiTensor, rppHandle_t rppHandle, RppBackend executionBackend)
 Slice augmentation on HIP/HOST backend. More...
 
RppStatus rppt_crop_and_patch (RppPtr_t srcPtr1, RppPtr_t srcPtr2, RpptDescPtr srcDescPtr, RppPtr_t dstPtr, RpptDescPtr dstDescPtr, RpptROIPtr roiTensorPtrDst, RpptROIPtr cropRoiTensor, RpptROIPtr patchRoiTensor, RpptRoiType roiType, rppHandle_t rppHandle, RppBackend executionBackend)
 Crop and Patch augmentation on HIP/HOST backend for a NCHW/NHWC layout tensor. More...
 
RppStatus rppt_flip_voxel (RppPtr_t srcPtr, RpptGenericDescPtr srcGenericDescPtr, RppPtr_t dstPtr, RpptGenericDescPtr dstGenericDescPtr, Rpp32u *horizontalTensor, Rpp32u *verticalTensor, Rpp32u *depthTensor, RpptROI3DPtr roiGenericPtrSrc, RpptRoi3DType roiType, rppHandle_t rppHandle, RppBackend executionBackend)
 Flip voxel augmentation on HIP/HOST backend. More...
 
RppStatus rppt_remap (RppPtr_t srcPtr, RpptDescPtr srcDescPtr, RppPtr_t dstPtr, RpptDescPtr dstDescPtr, Rpp32f *rowRemapTable, Rpp32f *colRemapTable, RpptDescPtr tableDescPtr, RpptInterpolationType interpolationType, RpptROIPtr roiTensorPtrSrc, RpptRoiType roiType, rppHandle_t rppHandle, RppBackend executionBackend)
 Remap augmentation on HIP/HOST backend for a NCHW/NHWC layout tensor. More...
 
RppStatus rppt_lens_correction (RppPtr_t srcPtr, RpptDescPtr srcDescPtr, RppPtr_t dstPtr, RpptDescPtr dstDescPtr, Rpp32f *rowRemapTable, Rpp32f *colRemapTable, RpptDescPtr tableDescPtr, Rpp32f *cameraMatrixTensor, Rpp32f *distortionCoeffsTensor, RpptROIPtr roiTensorPtrSrc, RpptRoiType roiType, rppHandle_t rppHandle, RppBackend executionBackend)
 Lens correction transformation on HIP/HOST backend for a NCHW/NHWC layout tensor. More...
 
RppStatus rppt_transpose (RppPtr_t srcPtr, RpptGenericDescPtr srcGenericDescPtr, RppPtr_t dstPtr, RpptGenericDescPtr dstGenericDescPtr, Rpp32u *permTensor, Rpp32u *roiTensor, rppHandle_t rppHandle, RppBackend executionBackend)
 Transpose Generic augmentation on HIP/HOST backend. More...
 
RppStatus rppt_warp_perspective (RppPtr_t srcPtr, RpptDescPtr srcDescPtr, RppPtr_t dstPtr, RpptDescPtr dstDescPtr, Rpp32f *perspectiveTensor, RpptInterpolationType interpolationType, RpptROIPtr roiTensorPtrSrc, RpptRoiType roiType, rppHandle_t rppHandle, RppBackend executionBackend)
 Warp perspective augmentation on HIP/HOST backend for a NCHW/NHWC layout tensor. More...
 
RppStatus rppt_concat (RppPtr_t srcPtr1, RppPtr_t srcPtr2, RpptGenericDescPtr srcPtr1GenericDescPtr, RpptGenericDescPtr srcPtr2GenericDescPtr, RppPtr_t dstPtr, RpptGenericDescPtr dstGenericDescPtr, Rpp32u axisMask, Rpp32u *srcPtr1roiTensor, Rpp32u *srcPtr2roiTensor, rppHandle_t rppHandle, RppBackend executionBackend)
 Concat Generic augmentation on HIP/HOST backend. More...
 
RppStatus rppt_jpeg_compression_distortion (RppPtr_t srcPtr, RpptDescPtr srcDescPtr, RppPtr_t dstPtr, RpptDescPtr dstDescPtr, Rpp32s *qualityTensor, RpptROIPtr roiTensorPtrSrc, RpptRoiType roiType, rppHandle_t rppHandle, RppBackend executionBackend)
 JPEG Compression Distortion on HIP/HOST backend. More...
 
RppStatus rppt_fisheye (RppPtr_t srcPtr, RpptDescPtr srcDescPtr, RppPtr_t dstPtr, RpptDescPtr dstDescPtr, RpptROIPtr roiTensorPtrSrc, RpptRoiType roiType, rppHandle_t rppHandle, RppBackend executionBackend)
 Fisheye augmentation on HIP/HOST backend for a NCHW/NHWC layout tensor. More...
 

Detailed Description

RPPT Tensor Operations - Geometric Augmentations.

Function Documentation

◆ rppt_concat()

RppStatus rppt_concat ( RppPtr_t  srcPtr1,
RppPtr_t  srcPtr2,
RpptGenericDescPtr  srcPtr1GenericDescPtr,
RpptGenericDescPtr  srcPtr2GenericDescPtr,
RppPtr_t  dstPtr,
RpptGenericDescPtr  dstGenericDescPtr,
Rpp32u  axisMask,
Rpp32u srcPtr1roiTensor,
Rpp32u srcPtr2roiTensor,
rppHandle_t  rppHandle,
RppBackend  executionBackend 
)

Concat Generic augmentation on HIP/HOST backend.

Concatenates two 2D, 3D or ND tensors in HIP/HOST memory along a specified axis. It is optimized for 2D and 3D tensors, ensuring that all dimensions except the concatenation axis must match.

Parameters
[in]srcPtr1source tensor in HIP memory (for HIP backend) or HOST memory (for HOST backend)
[in]srcPtr2source tensor in HIP memory (for HIP backend) or HOST memory (for HOST backend)
[in]srcPtr1GenericDescPtrsource tensor descriptor for the input tensor srcPtr1
[in]srcPtr2GenericDescPtrsource tensor descriptor for the input tensor srcPtr2
[out]dstPtrdestination tensor in HIP memory (for HIP backend) or HOST memory (for HOST backend)
[in]dstGenericDescPtrdestination tensor descriptor
[in]axisMaskaxis along which concat needs to be done
[in]srcPtr1roiTensorvalues to represent dimensions of input tensor srcPtr1 in pinned / HIP memory (for HIP backend) or HOST memory (for HOST backend)
[in]srcPtr2roiTensorvalues to represent dimensions of input tensor srcPtr2 in pinned / HIP memory (for HIP backend) or HOST memory (for HOST backend)
[in]rppHandleRPP HIP/HOST handle created with rppCreateWithBatchSize()
[in]executionBackendbackend for execution (RppBackend::RPP_HOST_BACKEND or RppBackend::RPP_HIP_BACKEND)
Returns
A RppStatus enumeration.
Return values
RPP_SUCCESSSuccessful completion.
RPP_ERROR*Unsuccessful completion.

◆ rppt_crop()

RppStatus rppt_crop ( RppPtr_t  srcPtr,
RpptDescPtr  srcDescPtr,
RppPtr_t  dstPtr,
RpptDescPtr  dstDescPtr,
RpptROIPtr  roiTensorPtrSrc,
RpptRoiType  roiType,
rppHandle_t  rppHandle,
RppBackend  executionBackend 
)

Crop augmentation on HIP/HOST backend for a NCHW/NHWC layout tensor.

The crop augmentation crops each image to a given ROI, for a batch of RGB(3 channel) / greyscale(1 channel) images with an NHWC/NCHW tensor layout.

  • srcPtr depth ranges - Rpp8u (0 to 255), Rpp16f (0 to 1), Rpp32f (0 to 1), Rpp8s (-128 to 127).
  • dstPtr depth ranges - Will be same depth as srcPtr.
    Sample Input
    Sample Output
    Parameters
    [in]srcPtrsource tensor in HIP memory (for HIP backend) or HOST memory (for HOST backend)
    [in]srcDescPtrsource tensor descriptor (Restrictions - numDims = 4, offsetInBytes >= 0, dataType = U8/F16/F32/I8, layout = NCHW/NHWC, c = 1/3)
    [out]dstPtrdestination tensor in HIP memory (for HIP backend) or HOST memory (for HOST backend)
    [in]dstDescPtrdestination tensor descriptor (Restrictions - numDims = 4, offsetInBytes >= 0, dataType = U8/F16/F32/I8, layout = NCHW/NHWC, c = same as that of srcDescPtr)
    [in]roiTensorPtrSrcROI data in HIP memory (for HIP backend) or HOST memory (for HOST backend), for each image in source tensor (2D tensor of size batchSize * 4, in either format - XYWH(xy.x, xy.y, roiWidth, roiHeight) or LTRB(lt.x, lt.y, rb.x, rb.y))
    [in]roiTypeROI type used (RpptRoiType::XYWH or RpptRoiType::LTRB)
    [in]rppHandleRPP HIP/HOST handle created with rppCreate()
    [in]executionBackendbackend for execution (RppBackend::RPP_HOST_BACKEND or RppBackend::RPP_HIP_BACKEND)
    Returns
    A RppStatus enumeration.
    Return values
    RPP_SUCCESSSuccessful completion.
    RPP_ERROR*Unsuccessful completion.

◆ rppt_crop_and_patch()

RppStatus rppt_crop_and_patch ( RppPtr_t  srcPtr1,
RppPtr_t  srcPtr2,
RpptDescPtr  srcDescPtr,
RppPtr_t  dstPtr,
RpptDescPtr  dstDescPtr,
RpptROIPtr  roiTensorPtrDst,
RpptROIPtr  cropRoiTensor,
RpptROIPtr  patchRoiTensor,
RpptRoiType  roiType,
rppHandle_t  rppHandle,
RppBackend  executionBackend 
)

Crop and Patch augmentation on HIP/HOST backend for a NCHW/NHWC layout tensor.

The crop and patch augmentation crops a ROI from 1st image and patches the cropped region in 2nd image as per the patch co-ordinates for a batch of RGB(3 channel) / greyscale(1 channel) images with an NHWC/NCHW tensor layout.

  • srcPtr1 depth ranges - Rpp8u (0 to 255), Rpp16f (0 to 1), Rpp32f (0 to 1), Rpp8s (-128 to 127).
  • srcPtr2 depth ranges - Rpp8u (0 to 255), Rpp16f (0 to 1), Rpp32f (0 to 1), Rpp8s (-128 to 127).
  • dstPtr depth ranges - Will be same depth as srcPtr.
    Sample Input1
    Sample Input2
    Sample Output
    Parameters
    [in]srcPtr1source tensor1 in HIP memory (for HIP backend) or HOST memory (for HOST backend)
    [in]srcPtr2source tensor2 in HIP memory (for HIP backend) or HOST memory (for HOST backend)
    [in]srcDescPtrsource tensor descriptor (Restrictions - numDims = 4, offsetInBytes >= 0, dataType = U8/F16/F32/I8, layout = NCHW/NHWC, c = 1/3)
    [out]dstPtrdestination tensor in HIP memory (for HIP backend) or HOST memory (for HOST backend)
    [in]dstDescPtrdestination tensor descriptor (Restrictions - numDims = 4, offsetInBytes >= 0, dataType = U8/F16/F32/I8, layout = NCHW/NHWC, c = same as that of srcDescPtr)
    [in]roiTensorPtrDstROI data in HIP memory (for HIP backend) or HOST memory (for HOST backend), for each image in destination tensor (2D tensor of size batchSize * 4, in either format - XYWH(xy.x, xy.y, roiWidth, roiHeight) or LTRB(lt.x, lt.y, rb.x, rb.y))
    [in]cropRoiTensorcrop co-ordinates in HIP memory (for HIP backend) or HOST memory (for HOST backend), for each image in source tensor (2D tensor of size batchSize * 4, in either format - XYWH(xy.x, xy.y, roiWidth, roiHeight) or LTRB(lt.x, lt.y, rb.x, rb.y))
    [in]patchRoiTensorpatch co-ordinates in HIP memory (for HIP backend) or HOST memory (for HOST backend), for each image in source tensor (2D tensor of size batchSize * 4, in either format - XYWH(xy.x, xy.y, roiWidth, roiHeight) or LTRB(lt.x, lt.y, rb.x, rb.y))
    [in]roiTypeROI type used (RpptRoiType::XYWH or RpptRoiType::LTRB)
    [in]rppHandleRPP HIP/HOST handle created with rppCreate()
    [in]executionBackendexecution backend to run the augmentation on (RppBackend::RPP_HOST_BACKEND or RppBackend::RPP_HIP_BACKEND)
    Returns
    A RppStatus enumeration.
    Return values
    RPP_SUCCESSSuccessful completion.
    RPP_ERROR*Unsuccessful completion.

◆ rppt_crop_mirror_normalize()

RppStatus rppt_crop_mirror_normalize ( RppPtr_t  srcPtr,
RpptDescPtr  srcDescPtr,
RppPtr_t  dstPtr,
RpptDescPtr  dstDescPtr,
Rpp32f offsetTensor,
Rpp32f multiplierTensor,
Rpp32u mirrorTensor,
RpptROIPtr  roiTensorPtrSrc,
RpptRoiType  roiType,
rppHandle_t  rppHandle,
RppBackend  executionBackend 
)

Crop mirror normalize augmentation on HIP/HOST backend for a NCHW/NHWC layout tensor.

The crop mirror normalize augmentation crops each image to a given ROI, does an optional mirror and/or normalize for a batch of RGB(3 channel) / greyscale(1 channel) images with an NHWC/NCHW tensor layout.

  • srcPtr depth ranges - Rpp8u (0 to 255), Rpp16f (0 to 1), Rpp32f (0 to 1), Rpp8s (-128 to 127).
  • dstPtr depth ranges - Will be same depth as srcPtr.
    Sample Input
    Sample Output
    Parameters
    [in]srcPtrsource tensor in HIP memory (for HIP backend) or HOST memory (for HOST backend)
    [in]srcDescPtrsource tensor descriptor (Restrictions - numDims = 4, offsetInBytes >= 0, dataType = U8/F16/F32/I8, layout = NCHW/NHWC, c = 1/3)
    [out]dstPtrdestination tensor in HIP memory (for HIP backend) or HOST memory (for HOST backend)
    [in]dstDescPtrdestination tensor descriptor (Restrictions - numDims = 4, offsetInBytes >= 0, dataType = U8/F16/F32/I8, layout = NCHW/NHWC, c = same as that of srcDescPtr)
    [in]offsetTensoroffset values for normalization (1D tensor in pinned / HIP memory (for HIP backend) or HOST memory (for HOST backend), of size batchSize, with offsetTensor[n] <= 0)
    [in]multiplierTensormultiplier values for normalization (1D tensor in pinned / HIP memory (for HIP backend) or HOST memory (for HOST backend), of size batchSize, with multiplierTensor[n] > 0)
    [in]mirrorTensormirror flag values to set mirroring on/off (1D tensor in pinned / HIP memory (for HIP backend) or HOST memory (for HOST backend), of size batchSize, with mirrorTensor[n] = 0/1)
    [in]roiTensorPtrSrcROI data in HIP memory (for HIP backend) or HOST memory (for HOST backend), for each image in source tensor (2D tensor of size batchSize * 4, in either format - XYWH(xy.x, xy.y, roiWidth, roiHeight) or LTRB(lt.x, lt.y, rb.x, rb.y))
    [in]roiTypeROI type used (RpptRoiType::XYWH or RpptRoiType::LTRB)
    [in]rppHandleRPP HIP/HOST handle created with rppCreate()
    [in]executionBackendbackend for execution (RppBackend::RPP_HOST_BACKEND or RppBackend::RPP_HIP_BACKEND)
    Returns
    A RppStatus enumeration.
    Return values
    RPP_SUCCESSSuccessful completion.
    RPP_ERROR*Unsuccessful completion.

◆ rppt_fisheye()

RppStatus rppt_fisheye ( RppPtr_t  srcPtr,
RpptDescPtr  srcDescPtr,
RppPtr_t  dstPtr,
RpptDescPtr  dstDescPtr,
RpptROIPtr  roiTensorPtrSrc,
RpptRoiType  roiType,
rppHandle_t  rppHandle,
RppBackend  executionBackend 
)

Fisheye augmentation on HIP/HOST backend for a NCHW/NHWC layout tensor.

The Fisheye augmentation applies fisheye effect for a batch of RGB(3 channel) / greyscale(1 channel) images with an NHWC/NCHW tensor layout.

  • srcPtr depth ranges - Rpp8u (0 to 255), Rpp16f (0 to 1), Rpp32f (0 to 1), Rpp8s (-128 to 127).
  • dstPtr depth ranges - Will be same depth as srcPtr.
    Sample Input
    Sample Output
    Parameters
    [in]srcPtrsource tensor in HIP memory (for HIP backend) or HOST memory (for HOST backend)
    [in]srcDescPtrsource tensor descriptor (Restrictions - numDims = 4, offsetInBytes >= 0, dataType = U8/F16/F32/I8, layout = NCHW/NHWC, c = 1/3)
    [out]dstPtrdestination tensor in HIP memory (for HIP backend) or HOST memory (for HOST backend)
    [in]dstDescPtrdestination tensor descriptor (Restrictions - numDims = 4, offsetInBytes >= 0, dataType = U8/F16/F32/I8, layout = NCHW/NHWC, c = same as that of srcDescPtr)
    [in]roiTensorPtrSrcROI data in HIP memory (for HIP backend) or HOST memory (for HOST backend), for each image in source tensor (2D tensor of size batchSize * 4, in either format - XYWH(xy.x, xy.y, roiWidth, roiHeight) or LTRB(lt.x, lt.y, rb.x, rb.y))
    [in]roiTypeROI type used (RpptRoiType::XYWH or RpptRoiType::LTRB)
    [in]rppHandleRPP HIP/HOST handle created with rppCreate()
    [in]executionBackendbackend for execution (RppBackend::RPP_HOST_BACKEND or RppBackend::RPP_HIP_BACKEND)
    Returns
    A RppStatus enumeration.
    Return values
    RPP_SUCCESSSuccessful completion.
    RPP_ERROR*Unsuccessful completion.

◆ rppt_flip()

RppStatus rppt_flip ( RppPtr_t  srcPtr,
RpptDescPtr  srcDescPtr,
RppPtr_t  dstPtr,
RpptDescPtr  dstDescPtr,
Rpp32u horizontalTensor,
Rpp32u verticalTensor,
RpptROIPtr  roiTensorPtrSrc,
RpptRoiType  roiType,
rppHandle_t  rppHandle,
RppBackend  executionBackend 
)

Flip augmentation on HIP/HOST backend for a NCHW/NHWC layout tensor.

The flip augmentation performs a mask-controlled horizontal/vertical flip for a batch of RGB(3 channel) / greyscale(1 channel) images with an NHWC/NCHW tensor layout.

  • srcPtr depth ranges - Rpp8u (0 to 255), Rpp16f (0 to 1), Rpp32f (0 to 1), Rpp8s (-128 to 127).
  • dstPtr depth ranges - Will be same depth as srcPtr.
    Sample Input
    Sample Output
    Parameters
    [in]srcPtrsource tensor in HIP/HOST memory
    [in]srcDescPtrsource tensor descriptor (Restrictions - numDims = 4, offsetInBytes >= 0, dataType = U8/F16/F32/I8, layout = NCHW/NHWC, c = 1/3)
    [out]dstPtrdestination tensor in HIP/HOST memory
    [in]dstDescPtrdestination tensor descriptor (Restrictions - numDims = 4, offsetInBytes >= 0, dataType = U8/F16/F32/I8, layout = NCHW/NHWC, c = same as that of srcDescPtr)
    [in]horizontalTensorhorizontal flag values to set horizontal flip on/off (1D tensor in pinned / HIP memory (for HIP backend) or HOST memory (for HOST backend), of size batchSize, with horizontalTensor[i] = 0/1)
    [in]verticalTensorvertical flag values to set vertical flip on/off (1D tensor in pinned / HIP memory (for HIP backend) or HOST memory (for HOST backend), of size batchSize, with verticalTensor[i] = 0/1)
    [in]roiTensorPtrSrcROI data in HIP memory (for HIP backend) or HOST memory (for HOST backend), for each image in source tensor (2D tensor of size batchSize * 4, in either format - XYWH(xy.x, xy.y, roiWidth, roiHeight) or LTRB(lt.x, lt.y, rb.x, rb.y))
    [in]roiTypeROI type used (RpptRoiType::XYWH or RpptRoiType::LTRB)
    [in]rppHandleRPP HIP/HOST handle created with rppCreate()
    [in]executionBackendbackend for execution (RppBackend::RPP_HOST_BACKEND or RppBackend::RPP_HIP_BACKEND)
    Returns
    A RppStatus enumeration.
    Return values
    RPP_SUCCESSSuccessful completion.
    RPP_ERROR*Unsuccessful completion.

◆ rppt_flip_voxel()

RppStatus rppt_flip_voxel ( RppPtr_t  srcPtr,
RpptGenericDescPtr  srcGenericDescPtr,
RppPtr_t  dstPtr,
RpptGenericDescPtr  dstGenericDescPtr,
Rpp32u horizontalTensor,
Rpp32u verticalTensor,
Rpp32u depthTensor,
RpptROI3DPtr  roiGenericPtrSrc,
RpptRoi3DType  roiType,
rppHandle_t  rppHandle,
RppBackend  executionBackend 
)

Flip voxel augmentation on HIP/HOST backend.

The flip voxel augmentation performs a mask-controlled horizontal/vertical/depth flip on a generic 4D tensor.
Support added for f32 -> f32 and u8 -> u8 dataypes.

Sample Input
Sample Output
Parameters
[in]srcPtrsource tensor in HIP memory (for HIP backend) or HOST memory (for HOST backend)
[in]srcGenericDescPtrsource tensor descriptor (Restrictions - numDims = 5, offsetInBytes >= 0, dataType = U8/F32, layout = NCDHW/NDHWC, c = 1/3)
[out]dstPtrdestination tensor in HIP memory (for HIP backend) or HOST memory (for HOST backend)
[in]dstGenericDescPtrdestination tensor descriptor (Restrictions - numDims = 5, offsetInBytes >= 0, dataType = U8/F32, layout = NCDHW/NDHWC, c = 1/3)
[in]horizontalTensorhorizontal flag values to set horizontal flip on/off (1D tensor in pinned / HIP memory (for HIP backend) or HOST memory (for HOST backend), of size batchSize, with horizontalTensor[i] = 0/1)
[in]verticalTensorvertical flag values to set vertical flip on/off (1D tensor in pinned / HIP memory (for HIP backend) or HOST memory (for HOST backend), of size batchSize, with verticalTensor[i] = 0/1)
[in]depthTensordepth flag values to set depth flip on/off (1D tensor in pinned / HIP memory (for HIP backend) or HOST memory (for HOST backend), of size batchSize, with depthTensor[i] = 0/1)
[in]roiGenericPtrSrcROI data for each image in source tensor (tensor of batchSize RpptRoiGeneric values)
[in]roiTypeROI type used (RpptRoi3DType::XYZWHD or RpptRoi3DType::LTFRBB)
[in]rppHandleRPP HIP/HOST handle created with rppCreate()
[in]executionBackendexecution backend to run the augmentation on (RppBackend::RPP_HOST_BACKEND or RppBackend::RPP_HIP_BACKEND)
Returns
A RppStatus enumeration.
Return values
RPP_SUCCESSSuccessful completion.
RPP_ERROR*Unsuccessful completion.

◆ rppt_jpeg_compression_distortion()

RppStatus rppt_jpeg_compression_distortion ( RppPtr_t  srcPtr,
RpptDescPtr  srcDescPtr,
RppPtr_t  dstPtr,
RpptDescPtr  dstDescPtr,
Rpp32s qualityTensor,
RpptROIPtr  roiTensorPtrSrc,
RpptRoiType  roiType,
rppHandle_t  rppHandle,
RppBackend  executionBackend 
)

JPEG Compression Distortion on HIP/HOST backend.

This function simulates JPEG compression distortion on an image tensor. It introduces artifacts seen in lossy JPEG compression by converting the image to the frequency domain using the Discrete Cosine Transform (DCT), applying quantization, and then reconstructing the image using the inverse DCT (IDCT). This process introduces compression-related distortions similar to those in JPEG images.

Sample Input
Sample Output
Parameters
[in]srcPtrsource tensor in HIP memory (for HIP backend) or HOST memory (for HOST backend)
[in]srcGenericDescPtrsource tensor descriptor
[out]dstPtrdestination tensor in HIP memory (for HIP backend) or HOST memory (for HOST backend)
[in]dstGenericDescPtrdestination tensor descriptor
[in]qualityTensorJPEG quality factor controlling the level of compression (1D tensor in pinned / HIP memory (for HIP backend) or HOST memory (for HOST backend)). Valid range is 1 to 99 (inclusive).
[in]roiTensorPtrSrcROI data in HIP memory (for HIP backend) or HOST memory (for HOST backend), for each image in source tensor (2D tensor of size batchSize * 4, in either format - XYWH(xy.x, xy.y, roiWidth, roiHeight) or LTRB(lt.x, lt.y, rb.x, rb.y))
[in]roiTypeROI type used (RpptRoiType::XYWH or RpptRoiType::LTRB)
[in]rppHandleRPP HIP/HOST handle created with rppCreate()
[in]executionBackendbackend for execution (RppBackend::RPP_HOST_BACKEND or RppBackend::RPP_HIP_BACKEND)
Returns
A RppStatus enumeration.
Return values
RPP_SUCCESSSuccessful completion.
RPP_ERROR*Unsuccessful completion.

◆ rppt_lens_correction()

RppStatus rppt_lens_correction ( RppPtr_t  srcPtr,
RpptDescPtr  srcDescPtr,
RppPtr_t  dstPtr,
RpptDescPtr  dstDescPtr,
Rpp32f rowRemapTable,
Rpp32f colRemapTable,
RpptDescPtr  tableDescPtr,
Rpp32f cameraMatrixTensor,
Rpp32f distortionCoeffsTensor,
RpptROIPtr  roiTensorPtrSrc,
RpptRoiType  roiType,
rppHandle_t  rppHandle,
RppBackend  executionBackend 
)

Lens correction transformation on HIP/HOST backend for a NCHW/NHWC layout tensor.

Performs lens correction transforms on an image to compensate barrel lens distortion of RGB(3 channel) / greyscale(1 channel) images with an NHWC/NCHW tensor layout.

  • srcPtr depth ranges - Rpp8u (0 to 255), Rpp16f (0 to 1), Rpp32f (0 to 1), Rpp8s (-128 to 127).
  • dstPtr depth ranges - Will be same depth as srcPtr. Note: Returns a black image if the passed camera matrix has a 0 determinant
    Sample Input
    Sample Output
    Parameters
    [in]srcPtrsource tensor in HIP memory (for HIP backend) or HOST memory (for HOST backend)
    [in]srcDescPtrsource tensor descriptor (Restrictions - numDims = 4, offsetInBytes >= 0, dataType = U8/F16/F32/I8, layout = NCHW/NHWC, c = 1/3)
    [out]dstPtrdestination tensor in HIP memory (for HIP backend) or HOST memory (for HOST backend)
    [in]dstDescPtrdestination tensor descriptor (Restrictions - numDims = 4, offsetInBytes >= 0, dataType = U8/F16/F32/I8, layout = NCHW/NHWC, c = same as that of srcDescPtr)
    [in]rowRemapTableRpp32f row numbers in HIP memory (for HIP backend) or HOST memory (for HOST backend) for every pixel in the input batch of images (1D tensor of size width * height * batchSize)
    [in]colRemapTableRpp32f column numbers in HIP memory (for HIP backend) or HOST memory (for HOST backend) for every pixel in the input batch of images (1D tensor of size width * height * batchSize)
    [in]tableDescPtrtable tensor descriptor (Restrictions - numDims = 4, offsetInBytes >= 0, dataType = F32, layout = NHWC, c = 1)
    [in]cameraMatrixTensorcontains camera intrinsic parameters required to compute lens corrected image. (1D tensor in pinned / HIP memory (for HIP backend) or HOST memory (for HOST backend), of size 9 * batchSize)
    [in]distortionCoeffsTensorcontains distortion coefficients required to compute lens corrected image. (1D tensor in pinned / HIP memory (for HIP backend) or HOST memory (for HOST backend), of size 8 * batchSize)
    [in]roiTensorPtrSrcROI data in HIP memory (for HIP backend) or HOST memory (for HOST backend), for each image in source tensor (2D tensor of size batchSize * 4, in either format - XYWH(xy.x, xy.y, roiWidth, roiHeight) or LTRB(lt.x, lt.y, rb.x, rb.y))
    [in]roiTypeROI type used (RpptRoiType::XYWH or RpptRoiType::LTRB)
    [in]rppHandleRPP HIP/HOST handle created with rppCreate()
    [in]executionBackendbackend for execution (RppBackend::RPP_HOST_BACKEND or RppBackend::RPP_HIP_BACKEND)
    Returns
    A RppStatus enumeration.
    Return values
    RPP_SUCCESSSuccessful completion.
    RPP_ERROR*Unsuccessful completion.

◆ rppt_phase()

RppStatus rppt_phase ( RppPtr_t  srcPtr1,
RppPtr_t  srcPtr2,
RpptDescPtr  srcDescPtr,
RppPtr_t  dstPtr,
RpptDescPtr  dstDescPtr,
RpptROIPtr  roiTensorPtrSrc,
RpptRoiType  roiType,
rppHandle_t  rppHandle,
RppBackend  executionBackend 
)

Phase augmentation on HIP/HOST backend for a NCHW/NHWC layout tensor.

The phase augmentation computes phase of corresponding pixels for a batch of RGB(3 channel) / greyscale(1 channel) images with an NHWC/NCHW tensor layout.

  • srcPtr depth ranges - Rpp8u (0 to 255), Rpp16f (0 to 1), Rpp32f (0 to 1), Rpp8s (-128 to 127).
  • dstPtr depth ranges - Will be same depth as srcPtr.
    Sample Input1
    Sample Input2
    Sample Output
    Parameters
    [in]srcPtr1source1 tensor in HIP memory (for HIP backend) or HOST memory (for HOST backend)
    [in]srcPtr2source2 tensor in HIP memory (for HIP backend) or HOST memory (for HOST backend)
    [in]srcDescPtrsource tensor descriptor (Restrictions - numDims = 4, offsetInBytes >= 0, dataType = U8/F16/F32/I8, layout = NCHW/NHWC, c = 1/3)
    [out]dstPtrdestination tensor in HIP memory (for HIP backend) or HOST memory (for HOST backend)
    [in]dstDescPtrdestination tensor descriptor (Restrictions - numDims = 4, offsetInBytes >= 0, dataType = U8/F16/F32/I8, layout = NCHW/NHWC, c = same as that of srcDescPtr)
    [in]roiTensorPtrSrcROI data in HIP memory (for HIP backend) or HOST memory (for HOST backend), for each image in source tensor (2D tensor of size batchSize * 4, in either format - XYWH(xy.x, xy.y, roiWidth, roiHeight) or LTRB(lt.x, lt.y, rb.x, rb.y))
    [in]roiTypeROI type used (RpptRoiType::XYWH or RpptRoiType::LTRB)
    [in]rppHandleRPP HIP/HOST handle created with rppCreate()
    [in]executionBackendexecution backend to run the augmentation on (RppBackend::RPP_HOST_BACKEND or RppBackend::RPP_HIP_BACKEND)
    Returns
    A RppStatus enumeration.
    Return values
    RPP_SUCCESSSuccessful completion.
    RPP_ERROR*Unsuccessful completion.

◆ rppt_remap()

RppStatus rppt_remap ( RppPtr_t  srcPtr,
RpptDescPtr  srcDescPtr,
RppPtr_t  dstPtr,
RpptDescPtr  dstDescPtr,
Rpp32f rowRemapTable,
Rpp32f colRemapTable,
RpptDescPtr  tableDescPtr,
RpptInterpolationType  interpolationType,
RpptROIPtr  roiTensorPtrSrc,
RpptRoiType  roiType,
rppHandle_t  rppHandle,
RppBackend  executionBackend 
)

Remap augmentation on HIP/HOST backend for a NCHW/NHWC layout tensor.

Performs a remap operation using user specified remap tables for a batch of RGB(3 channel) / greyscale(1 channel) images with an NHWC/NCHW tensor layout. For each image, the output(x,y) = input(mapx(x, y), mapy(x, y)) for every (x,y) in the destination image.

  • srcPtr depth ranges - Rpp8u (0 to 255), Rpp16f (0 to 1), Rpp32f (0 to 1), Rpp8s (-128 to 127).
  • dstPtr depth ranges - Will be same depth as srcPtr.
    Sample Input
    Sample Output
    Parameters
    [in]srcPtrsource tensor in HIP memory (for HIP backend) or HOST memory (for HOST backend)
    [in]srcDescPtrsource tensor descriptor (Restrictions - numDims = 4, offsetInBytes >= 0, dataType = U8/F16/F32/I8, layout = NCHW/NHWC, c = 1/3)
    [out]dstPtrdestination tensor in HIP memory (for HIP backend) or HOST memory (for HOST backend)
    [in]dstDescPtrdestination tensor descriptor (Restrictions - numDims = 4, offsetInBytes >= 0, dataType = U8/F16/F32/I8, layout = NCHW/NHWC, c = same as that of srcDescPtr)
    [in]rowRemapTableRpp32f row numbers in HIP memory (for HIP backend) or HOST memory (for HOST backend) for every pixel in the input batch of images (Restrictions - rois in the rowRemapTable data for each image in batch must match roiTensorPtrSrc)
    [in]colRemapTableRpp32f column numbers in HIP memory (for HIP backend) or HOST memory (for HOST backend) for every pixel in the input batch of images (Restrictions - rois in the colRemapTable data for each image in batch must match roiTensorPtrSrc)
    [in]tableDescPtrrowRemapTable and colRemapTable common tensor descriptor (Restrictions - numDims = 4, offsetInBytes >= 0, dataType = F32, layout = NHWC, c = 1)
    [in]interpolationTypeInterpolation type used in RpptInterpolationType (Restrictions - Supports only NEAREST_NEIGHBOR and BILINEAR)
    [in]roiTensorPtrSrcROI data in HIP memory (for HIP backend) or HOST memory (for HOST backend), for each image in source tensor (2D tensor of size batchSize * 4, in either format - XYWH(xy.x, xy.y, roiWidth, roiHeight) or LTRB(lt.x, lt.y, rb.x, rb.y))
    [in]roiTypeROI type used (RpptRoiType::XYWH or RpptRoiType::LTRB)
    [in]rppHandleRPP HIP/HOST handle created with rppCreate()
    [in]executionBackendbackend for execution (RppBackend::RPP_HOST_BACKEND or RppBackend::RPP_HIP_BACKEND)
    Returns
    A RppStatus enumeration.
    Return values
    RPP_SUCCESSSuccessful completion.
    RPP_ERROR*Unsuccessful completion.

◆ rppt_resize()

RppStatus rppt_resize ( RppPtr_t  srcPtr,
RpptDescPtr  srcDescPtr,
RppPtr_t  dstPtr,
RpptDescPtr  dstDescPtr,
RpptImagePatchPtr  dstImgSizes,
RpptInterpolationType  interpolationType,
RpptROIPtr  roiTensorPtrSrc,
RpptRoiType  roiType,
rppHandle_t  rppHandle,
RppBackend  executionBackend 
)

Resize augmentation on HIP/HOST backend for a NCHW/NHWC layout tensor.

The resize augmentation performs an image resize for a batch of RGB(3 channel) / greyscale(1 channel) images with an NHWC/NCHW tensor layout.

  • srcPtr depth ranges - Rpp8u (0 to 255), Rpp16f (0 to 1), Rpp32f (0 to 1), Rpp8s (-128 to 127).
  • dstPtr depth ranges - Will be same depth as srcPtr.
    Sample Input
    Sample Output
    Parameters
    [in]srcPtrsource tensor in HIP memory (for HIP backend) or HOST memory (for HOST backend)
    [in]srcDescPtrsource tensor descriptor (Restrictions - numDims = 4, offsetInBytes >= 0, dataType = U8/F16/F32/I8, layout = NCHW/NHWC, c = 1/3)
    [out]dstPtrdestination tensor in HIP memory (for HIP backend) or HOST memory (for HOST backend)
    [in]dstDescPtrdestination tensor descriptor (Restrictions - numDims = 4, offsetInBytes >= 0, dataType = U8/F16/F32/I8, layout = NCHW/NHWC, c = same as that of srcDescPtr)
    [in]dstImgSizesdestination image sizes ( RpptImagePatchPtr type pointer to array, in pinned / HIP memory (for HIP backend) or HOST memory (for HOST backend), of size batchSize)
    [in]interpolationTypeInterpolation type used in RpptInterpolationType
    [in]roiTensorPtrSrcROI data in HIP memory (for HIP backend) or HOST memory (for HOST backend), for each image in source tensor (2D tensor of size batchSize * 4, in either format - XYWH(xy.x, xy.y, roiWidth, roiHeight) or LTRB(lt.x, lt.y, rb.x, rb.y))
    [in]roiTypeROI type used (RpptRoiType::XYWH or RpptRoiType::LTRB)
    [in]rppHandleRPP HIP/HOST handle created with rppCreate()
    [in]executionBackendbackend for execution (RppBackend::RPP_HOST_BACKEND or RppBackend::RPP_HIP_BACKEND)
    Returns
    A RppStatus enumeration.
    Return values
    RPP_SUCCESSSuccessful completion.
    RPP_ERROR*Unsuccessful completion.

◆ rppt_resize_crop_mirror()

RppStatus rppt_resize_crop_mirror ( RppPtr_t  srcPtr,
RpptDescPtr  srcDescPtr,
RppPtr_t  dstPtr,
RpptDescPtr  dstDescPtr,
RpptImagePatchPtr  dstImgSizes,
RpptInterpolationType  interpolationType,
Rpp32u mirrorTensor,
RpptROIPtr  roiTensorPtrSrc,
RpptRoiType  roiType,
rppHandle_t  rppHandle,
RppBackend  executionBackend 
)

Resize crop mirror augmentation on HIP/HOST backend for a NCHW/NHWC layout tensor.

The resize crop mirror augmentation performs an image resized crop, with an optional mirror, for a batch of RGB(3 channel) / greyscale(1 channel) images with an NHWC/NCHW tensor layout.

  • srcPtr depth ranges - Rpp8u (0 to 255), Rpp16f (0 to 1), Rpp32f (0 to 1), Rpp8s (-128 to 127).
  • dstPtr depth ranges - Will be same depth as srcPtr.
    Sample Input
    Sample Output
    Parameters
    [in]srcPtrsource tensor in HIP memory (for HIP backend) or HOST memory (for HOST backend)
    [in]srcDescPtrsource tensor descriptor (Restrictions - numDims = 4, offsetInBytes >= 0, dataType = U8/F16/F32/I8, layout = NCHW/NHWC, c = 1/3)
    [out]dstPtrdestination tensor in HIP memory (for HIP backend) or HOST memory (for HOST backend)
    [in]dstDescPtrdestination tensor descriptor (Restrictions - numDims = 4, offsetInBytes >= 0, dataType = U8/F16/F32/I8, layout = NCHW/NHWC, c = same as that of srcDescPtr)
    [in]dstImgSizesdestination image sizes ( RpptImagePatchPtr type pointer to array, in HOST memory, of size batchSize)
    [in]interpolationTypeInterpolation type used in RpptInterpolationType
    [in]mirrorTensormirror flag value to set mirroring on/off (1D tensor in pinned / HIP memory (for HIP backend) or HOST memory (for HOST backend), of size batchSize, with mirrorTensor[n] = 0/1)
    [in]roiTensorPtrSrcROI data in HIP memory (for HIP backend) or HOST memory (for HOST backend), for each image in source tensor (2D tensor of size batchSize * 4, in either format - XYWH(xy.x, xy.y, roiWidth, roiHeight) or LTRB(lt.x, lt.y, rb.x, rb.y))
    [in]roiTypeROI type used (RpptRoiType::XYWH or RpptRoiType::LTRB)
    [in]rppHandleRPP HIP/HOST handle created with rppCreate()
    [in]executionBackendbackend for execution (RppBackend::RPP_HOST_BACKEND or RppBackend::RPP_HIP_BACKEND)
    Returns
    A RppStatus enumeration.
    Return values
    RPP_SUCCESSSuccessful completion.
    RPP_ERROR*Unsuccessful completion.

◆ rppt_resize_mirror_normalize()

RppStatus rppt_resize_mirror_normalize ( RppPtr_t  srcPtr,
RpptDescPtr  srcDescPtr,
RppPtr_t  dstPtr,
RpptDescPtr  dstDescPtr,
RpptImagePatchPtr  dstImgSizes,
RpptInterpolationType  interpolationType,
Rpp32f meanTensor,
Rpp32f stdDevTensor,
Rpp32u mirrorTensor,
RpptROIPtr  roiTensorPtrSrc,
RpptRoiType  roiType,
rppHandle_t  rppHandle,
RppBackend  executionBackend 
)

Resize mirror normalize augmentation on HIP/HOST backend for a NCHW/NHWC layout tensor.

The resize mirror normalize augmentation performs an image resize, an optional mirror and/or normalize, for a batch of RGB(3 channel) / greyscale(1 channel) images with an NHWC/NCHW tensor layout.

  • srcPtr depth ranges - Rpp8u (0 to 255), Rpp16f (0 to 1), Rpp32f (0 to 1), Rpp8s (-128 to 127).
  • dstPtr depth ranges - Will be same depth as srcPtr.
    Sample Input
    Sample Output
    Parameters
    [in]srcPtrsource tensor in HIP memory (for HIP backend) or HOST memory (for HOST backend)
    [in]srcDescPtrsource tensor descriptor (Restrictions - numDims = 4, offsetInBytes >= 0, dataType = U8/F16/F32/I8, layout = NCHW/NHWC, c = 1/3)
    [out]dstPtrdestination tensor in HIP memory (for HIP backend) or HOST memory (for HOST backend)
    [in]dstDescPtrdestination tensor descriptor (Restrictions - numDims = 4, offsetInBytes >= 0, dataType = U8/F16/F32/I8, layout = NCHW/NHWC, c = same as that of srcDescPtr)
    [in]dstImgSizesdestination image sizes ( RpptImagePatchPtr type pointer to array, in HOST memory, of size batchSize)
    [in]interpolationTypeInterpolation type used in RpptInterpolationType
    [in]meanTensormean value for each image in the batch (meanTensor[n] >= 0, 1D tensor in pinned / HIP memory (for HIP backend) or HOST memory (for HOST backend), of size = batchSize for greyscale images, size = batchSize * 3 for RGB images))
    [in]stdDevTensorstandard deviation value for each image in the batch (stdDevTensor[n] >= 0, 1D tensor in pinned / HIP memory (for HIP backend) or HOST memory (for HOST backend), of size = batchSize for greyscale images, size = batchSize * 3 for RGB images)
    [in]mirrorTensormirror flag value to set mirroring on/off (1D tensor in pinned / HIP memory (for HIP backend) or HOST memory (for HOST backend), of size batchSize, with mirrorTensor[n] = 0/1)
    [in]roiTensorPtrSrcROI data in HIP memory (for HIP backend) or HOST memory (for HOST backend), for each image in source tensor (2D tensor of size batchSize * 4, in either format - XYWH(xy.x, xy.y, roiWidth, roiHeight) or LTRB(lt.x, lt.y, rb.x, rb.y))
    [in]roiTypeROI type used (RpptRoiType::XYWH or RpptRoiType::LTRB)
    [in]rppHandleRPP HIP/HOST handle created with rppCreate()
    [in]executionBackendbackend for execution (RppBackend::RPP_HOST_BACKEND or RppBackend::RPP_HIP_BACKEND)
    Returns
    A RppStatus enumeration.
    Return values
    RPP_SUCCESSSuccessful completion.
    RPP_ERROR*Unsuccessful completion.

◆ rppt_rotate()

RppStatus rppt_rotate ( RppPtr_t  srcPtr,
RpptDescPtr  srcDescPtr,
RppPtr_t  dstPtr,
RpptDescPtr  dstDescPtr,
Rpp32f angle,
RpptInterpolationType  interpolationType,
RpptROIPtr  roiTensorPtrSrc,
RpptRoiType  roiType,
rppHandle_t  rppHandle,
RppBackend  executionBackend 
)

Rotate augmentation on HIP/HOST backend for a NCHW/NHWC layout tensor.

The rotate augmentation performs a rotate transformations for a batch of RGB(3 channel) / greyscale(1 channel) images with an NHWC/NCHW tensor layout.

  • srcPtr depth ranges - Rpp8u (0 to 255), Rpp16f (0 to 1), Rpp32f (0 to 1), Rpp8s (-128 to 127).
  • dstPtr depth ranges - Will be same depth as srcPtr.
    Sample Input
    Sample Output
    Parameters
    [in]srcPtrsource tensor in HIP memory (for HIP backend) or HOST memory (for HOST backend)
    [in]srcDescPtrsource tensor descriptor (Restrictions - numDims = 4, offsetInBytes >= 0, dataType = U8/F16/F32/I8, layout = NCHW/NHWC, c = 1/3)
    [out]dstPtrdestination tensor in HIP memory (for HIP backend) or HOST memory (for HOST backend)
    [in]dstDescPtrdestination tensor descriptor (Restrictions - numDims = 4, offsetInBytes >= 0, dataType = U8/F16/F32/I8, layout = NCHW/NHWC, c = same as that of srcDescPtr)
    [in]angleimage rotation angle in degrees - positive deg-anticlockwise/negative deg-clockwise (1D tensor in pinned / HIP memory (for HIP backend) or HOST memory (for HOST backend), of size batchSize)
    [in]interpolationTypeInterpolation type used (RpptInterpolationType::XYWH or RpptRoiType::LTRB)
    [in]roiTensorPtrSrcROI data in HIP memory (for HIP backend) or HOST memory (for HOST backend), for each image in source tensor (2D tensor of size batchSize * 4, in either format - XYWH(xy.x, xy.y, roiWidth, roiHeight) or LTRB(lt.x, lt.y, rb.x, rb.y))
    [in]roiTypeROI type used (RpptRoiType::XYWH or RpptRoiType::LTRB)
    [in]rppHandleRPP HIP/HOST handle created with rppCreate()
    [in]executionBackendexecution backend to run the augmentation on (RppBackend::RPP_HOST_BACKEND or RppBackend::RPP_HIP_BACKEND)
    Returns
    A RppStatus enumeration.
    Return values
    RPP_SUCCESSSuccessful completion.
    RPP_ERROR*Unsuccessful completion.

◆ rppt_slice()

RppStatus rppt_slice ( RppPtr_t  srcPtr,
RpptGenericDescPtr  srcGenericDescPtr,
RppPtr_t  dstPtr,
RpptGenericDescPtr  dstGenericDescPtr,
Rpp32s anchorTensor,
Rpp32s shapeTensor,
RppPtr_t  fillValue,
bool  enablePadding,
Rpp32u roiTensor,
rppHandle_t  rppHandle,
RppBackend  executionBackend 
)

Slice augmentation on HIP/HOST backend.

This function performs slice augmentation on a generic 4D tensor. Slice augmentation involves selecting a region of interest (ROI) from the source tensor and copying it to the destination tensor. Support added for f32 -> f32 and u8 -> u8 dataypes.

Parameters
[in]srcPtrsource tensor in HIP memory (for HIP backend) or HOST memory (for HOST backend)
[in]srcGenericDescPtrsource tensor descriptor
[out]dstPtrdestination tensor in HIP memory (for HIP backend) or HOST memory (for HOST backend)
[in]dstGenericDescPtrdestination tensor descriptor
[in]anchorTensorstarting index of the slice for each dimension in input (1D tensor in pinned / HIP memory (for HIP backend) or HOST memory (for HOST backend), of size = batchSize * numberOfDimensions)
[in]shapeTensorlength of the slice for each dimension in input (1D tensor in pinned / HIP memory (for HIP backend) or HOST memory (for HOST backend), of size = batchSize * numberOfDimensions)
[in]fillValuefill value that is used to fill output if enablePadding is set to true
[in]enablePaddingboolean flag to specify if padding is enabled or not
[in]roiTensorroi data in pinned / HIP memory (for HIP backend) or HOST memory (for HOST backend) (1D tensor of size = batchSize * numberOfDimensions * 2)
[in]rppHandleRPP HIP/HOST handle created with rppCreate()
[in]executionBackendexecution backend to run the augmentation on (RppBackend::RPP_HOST_BACKEND or RppBackend::RPP_HIP_BACKEND)
Returns
A RppStatus enumeration.
Return values
RPP_SUCCESSSuccessful completion.
RPP_ERROR*Unsuccessful completion.

◆ rppt_transpose()

RppStatus rppt_transpose ( RppPtr_t  srcPtr,
RpptGenericDescPtr  srcGenericDescPtr,
RppPtr_t  dstPtr,
RpptGenericDescPtr  dstGenericDescPtr,
Rpp32u permTensor,
Rpp32u roiTensor,
rppHandle_t  rppHandle,
RppBackend  executionBackend 
)

Transpose Generic augmentation on HIP/HOST backend.

The transpose augmentation performs an input-permutation based transpose on a generic ND Tensor.

Parameters
[in]srcPtrsource tensor in HIP memory (for HIP backend) or HOST memory (for HOST backend)
[in]srcGenericDescPtrsource tensor descriptor
[out]dstPtrdestination tensor in HIP memory (for HIP backend) or HOST memory (for HOST backend)
[in]dstGenericDescPtrdestination tensor descriptor
[in]permTensorpermutation tensor for transpose operation in pinned / HIP memory (for HIP backend) or HOST memory (for HOST backend)
[in]roiTensorROI data in pinned / HIP memory (for HIP backend) or HOST memory (for HOST backend) for each element in source tensor (tensor of batchSize * number of dimensions * 2 values)
[in]rppHandleRPP HIP/HOST handle created with rppCreate()
[in]executionBackendbackend for execution (RppBackend::RPP_HOST_BACKEND or RppBackend::RPP_HIP_BACKEND)
Returns
A RppStatus enumeration.
Return values
RPP_SUCCESSSuccessful completion.
RPP_ERROR*Unsuccessful completion.

◆ rppt_warp_affine()

RppStatus rppt_warp_affine ( RppPtr_t  srcPtr,
RpptDescPtr  srcDescPtr,
RppPtr_t  dstPtr,
RpptDescPtr  dstDescPtr,
Rpp32f affineTensor,
RpptInterpolationType  interpolationType,
RpptROIPtr  roiTensorPtrSrc,
RpptRoiType  roiType,
rppHandle_t  rppHandle,
RppBackend  executionBackend 
)

Warp affine augmentation on HIP/HOST backend for a NCHW/NHWC layout tensor.

The warp affine augmentation performs affine transformations for a batch of RGB(3 channel) / greyscale(1 channel) images with an NHWC/NCHW tensor layout.

  • srcPtr depth ranges - Rpp8u (0 to 255), Rpp16f (0 to 1), Rpp32f (0 to 1), Rpp8s (-128 to 127).
  • dstPtr depth ranges - Will be same depth as srcPtr.
    Sample Input
    Sample Output
    Parameters
    [in]srcPtrsource tensor in HIP/HOST memory
    [in]srcDescPtrsource tensor descriptor (Restrictions - numDims = 4, offsetInBytes >= 0, dataType = U8/F16/F32/I8, layout = NCHW/NHWC, c = 1/3)
    [out]dstPtrdestination tensor in HIP/HOST memory
    [in]dstDescPtrdestination tensor descriptor (Restrictions - numDims = 4, offsetInBytes >= 0, dataType = U8/F16/F32/I8, layout = NCHW/NHWC, c = same as that of srcDescPtr)
    [in]affineTensoraffine matrix values for transformation calculation (2D tensor in pinned / HIP memory (for HIP backend) or HOST memory (for HOST backend), of size batchSize * 6 for each image in batch)
    [in]interpolationTypeInterpolation type used (RpptInterpolationType::XYWH or RpptRoiType::LTRB)
    [in]roiTensorPtrSrcROI data in HIP memory (for HIP backend) or HOST memory (for HOST backend), for each image in source tensor (2D tensor of size batchSize * 4, in either format - XYWH(xy.x, xy.y, roiWidth, roiHeight) or LTRB(lt.x, lt.y, rb.x, rb.y))
    [in]roiTypeROI type used (RpptRoiType::XYWH or RpptRoiType::LTRB)
    [in]rppHandleRPP HIP/HOST handle created with rppCreate()
    [in]executionBackendbackend for execution (RppBackend::RPP_HOST_BACKEND or RppBackend::RPP_HIP_BACKEND)
    Returns
    A RppStatus enumeration.
    Return values
    RPP_SUCCESSSuccessful completion.
    RPP_ERROR*Unsuccessful completion.

◆ rppt_warp_perspective()

RppStatus rppt_warp_perspective ( RppPtr_t  srcPtr,
RpptDescPtr  srcDescPtr,
RppPtr_t  dstPtr,
RpptDescPtr  dstDescPtr,
Rpp32f perspectiveTensor,
RpptInterpolationType  interpolationType,
RpptROIPtr  roiTensorPtrSrc,
RpptRoiType  roiType,
rppHandle_t  rppHandle,
RppBackend  executionBackend 
)

Warp perspective augmentation on HIP/HOST backend for a NCHW/NHWC layout tensor.

The warp perspective performs perspective transformations for a batch of RGB(3 channel) / greyscale(1 channel) images with an NHWC/NCHW tensor layout.

  • srcPtr depth ranges - Rpp8u (0 to 255), Rpp16f (0 to 1), Rpp32f (0 to 1), Rpp8s (-128 to 127).
  • dstPtr depth ranges - Will be same depth as srcPtr.
    Sample Input
    Sample Output
    Parameters
    [in]srcPtrsource tensor in HIP memory (for HIP backend) or HOST memory (for HOST backend)
    [in]srcDescPtrsource tensor descriptor (Restrictions - numDims = 4, offsetInBytes >= 0, dataType = U8/F16/F32/I8, layout = NCHW/NHWC, c = 1/3)
    [out]dstPtrdestination tensor in HIP memory (for HIP backend) or HOST memory (for HOST backend)
    [in]dstDescPtrdestination tensor descriptor (Restrictions - numDims = 4, offsetInBytes >= 0, dataType = U8/F16/F32/I8, layout = NCHW/NHWC, c = same as that of srcDescPtr)
    [in]perspectiveTensorperspective matrix values for transformation calculation (2D tensor in pinned / HIP memory (for HIP backend) or HOST memory (for HOST backend), of size batchSize * 9 for each image in batch)
    [in]interpolationTypeInterpolation type used (RpptInterpolationType::BILINEAR or RpptRoiType::NEAREST_NEIGHBOR)
    [in]roiTensorPtrSrcROI data in HIP memory (for HIP backend) or HOST memory (for HOST backend), for each image in source tensor (2D tensor of size batchSize * 4, in either format - XYWH(xy.x, xy.y, roiWidth, roiHeight) or LTRB(lt.x, lt.y, rb.x, rb.y))
    [in]roiTypeROI type used (RpptRoiType::XYWH or RpptRoiType::LTRB)
    [in]rppHandleRPP HIP/HOST handle created with rppCreate()
    [in]executionBackendbackend for execution (RppBackend::RPP_HOST_BACKEND or RppBackend::RPP_HIP_BACKEND)
    Returns
    A RppStatus enumeration.
    Return values
    RPP_SUCCESSSuccessful completion.
    RPP_ERROR*Unsuccessful completion.