Profile mode#
The following chapter walks you through ROCm Compute Profiler’s core profiling features by example.
Learn about analysis with ROCm Compute Profiler in Analyze mode. For an overview of ROCm Compute Profiler’s other modes, see Modes.
Profiling#
Use the rocprof-compute executable to acquire all necessary performance monitoring
data through analysis of compute workloads.
Profiling with ROCm Compute Profiler yields the following benefits.
Automate counter collection: ROCm Compute Profiler handles all of your profiling via pre-configured input files.
Profiling output format: ROCm Compute Profile can adjust the output format of underlying rocprof tool which changes the output format of raw performance counter data in the workload folder created during profiling. Supported output formats are
csvandrocpd. The default output format iscsv.
Note
The default output format will be changed to rocpd in a future release of ROCm Compute Profiler.
Filtering: Apply runtime filters to speed up the profiling process.
Standalone roofline: Isolate a subset of built-in metrics or build your own profiling configuration.
Iteration multiplexing: Collect a large number of performance counters with minimal profiling overhead.
Run rocprof-compute profile -h for more details. See
Basic usage.
Profiling example#
The ROCm/rocm-systems repository
includes source code for a sample GPU compute workload, vcopy.cpp. A copy of
this file is available in the share/sample subdirectory after a normal
ROCm Compute Profiler installation, or via the $ROCPROFCOMPUTE_SHARE/sample directory when
using the supplied modulefile.
The examples in this section use a compiled version of the vcopy workload to
demonstrate the use of ROCm Compute Profiler in MI accelerator performance analysis. Unless
otherwise noted, the performance analysis is done on the
MI200 platform.
Workload compilation#
The following example demonstrates compilation of vcopy.
$ hipcc vcopy.cpp -o vcopy
$ ls
vcopy vcopy.cpp
$ ./vcopy -n 1048576 -b 256
vcopy testing on GCD 0
Finished allocating vectors on the CPU
Finished allocating vectors on the GPU
Finished copying vectors to the GPU
sw thinks it moved 1.000000 KB per wave
Total threads: 1048576, Grid Size: 4096 block Size:256, Wavefronts:16384:
Launching the kernel on the GPU
Finished executing kernel
Finished copying the output vector from the GPU to the CPU
Releasing GPU memory
Releasing CPU memory
The following sample command profiles the vcopy workload.
$ rocprof-compute profile --name vcopy -- ./vcopy -n 1048576 -b 256
__ _
_ __ ___ ___ _ __ _ __ ___ / _| ___ ___ _ __ ___ _ __ _ _| |_ ___
| '__/ _ \ / __| '_ \| '__/ _ \| |_ _____ / __/ _ \| '_ ` _ \| '_ \| | | | __/ _ \
| | | (_) | (__| |_) | | | (_) | _|_____| (_| (_) | | | | | | |_) | |_| | || __/
|_| \___/ \___| .__/|_| \___/|_| \___\___/|_| |_| |_| .__/ \__,_|\__\___|
|_| |_|
rocprofiler-compute version: 2.0.0
Profiler choice: rocprofv1
Path: /home/auser/repos/rocprofiler-compute/sample/workloads/vcopy/MI200
Target: MI200
Command: ./vcopy -n 1048576 -b 256
Kernel Selection: None
Dispatch Selection: None
Hardware Blocks: All
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Collecting Performance Counters
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
[profiling] Current input file: /home/auser/repos/rocprofiler-compute/sample/workloads/vcopy/MI200/perfmon/SQ_IFETCH_LEVEL.txt
|-> [rocprof] RPL: on '240312_174329' from '/opt/rocm-5.2.1' in '/home/auser/repos/rocprofiler-compute/src/rocprof-compute'
|-> [rocprof] RPL: profiling '""./vcopy -n 1048576 -b 256""'
|-> [rocprof] RPL: input file '/home/auser/repos/rocprofiler-compute/sample/workloads/vcopy/MI200/perfmon/SQ_IFETCH_LEVEL.txt'
|-> [rocprof] RPL: output dir '/tmp/rpl_data_240312_174329_692890'
|-> [rocprof] RPL: result dir '/tmp/rpl_data_240312_174329_692890/input0_results_240312_174329'
|-> [rocprof] ROCProfiler: input from "/tmp/rpl_data_240312_174329_692890/input0.xml"
|-> [rocprof] gpu_index =
|-> [rocprof] kernel =
|-> [rocprof] range =
|-> [rocprof] 6 metrics
|-> [rocprof] GRBM_COUNT, GRBM_GUI_ACTIVE, SQ_WAVES, SQ_IFETCH, SQ_IFETCH_LEVEL, SQ_ACCUM_PREV_HIRES
|-> [rocprof] vcopy testing on GCD 0
|-> [rocprof] Finished allocating vectors on the CPU
|-> [rocprof] Finished allocating vectors on the GPU
|-> [rocprof] Finished copying vectors to the GPU
|-> [rocprof] sw thinks it moved 1.000000 KB per wave
|-> [rocprof] Total threads: 1048576, Grid Size: 4096 block Size:256, Wavefronts:16384:
|-> [rocprof] Launching the kernel on the GPU
|-> [rocprof] Finished executing kernel
|-> [rocprof] Finished copying the output vector from the GPU to the CPU
|-> [rocprof] Releasing GPU memory
|-> [rocprof] Releasing CPU memory
|-> [rocprof]
|-> [rocprof] ROCPRofiler: 1 contexts collected, output directory /tmp/rpl_data_240312_174329_692890/input0_results_240312_174329
|-> [rocprof] File '/home/auser/repos/rocprofiler-compute/sample/workloads/vcopy/MI200/SQ_IFETCH_LEVEL.csv' is generating
|-> [rocprof]
[profiling] Current input file: /home/auser/repos/rocprofiler-compute/sample/workloads/vcopy/MI200/perfmon/SQ_INST_LEVEL_LDS.txt
...
[roofline] Checking for roofline.csv in /home/auser/repos/rocprofiler-compute/sample/workloads/vcopy/MI200
[roofline] No roofline data found. Generating...
Empirical Roofline Calculation
Copyright © 2022 Advanced Micro Devices, Inc. All rights reserved.
Total detected GPU devices: 4
GPU Device 0: Profiling...
99% [||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| ]
HBM BW, GPU ID: 0, workgroupSize:256, workgroups:2097152, experiments:100, traffic:8589934592 bytes, duration:6.2 ms, mean:1388.0 GB/sec, stdev=3.1 GB/sec
99% [||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| ]
L2 BW, GPU ID: 0, workgroupSize:256, workgroups:8192, experiments:100, traffic:687194767360 bytes, duration:136.5 ms, mean:5020.8 GB/sec, stdev=16.5 GB/sec
99% [||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| ]
L1 BW, GPU ID: 0, workgroupSize:256, workgroups:16384, experiments:100, traffic:26843545600 bytes, duration:2.9 ms, mean:9229.5 GB/sec, stdev=2.9 GB/sec
99% [||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| ]
LDS BW, GPU ID: 0, workgroupSize:256, workgroups:16384, experiments:100, traffic:33554432000 bytes, duration:1.9 ms, mean:17645.6 GB/sec, stdev=20.1 GB/sec
99% [||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| ]
Peak FLOPs (FP32), GPU ID: 0, workgroupSize:256, workgroups:16384, experiments:100, FLOP:274877906944, duration:13.078 ms, mean:20986.9 GFLOPS, stdev=310.8 GFLOPS
99% [||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| ]
Peak FLOPs (FP64), GPU ID: 0, workgroupSize:256, workgroups:16384, experiments:100, FLOP:137438953472, duration:6.7 ms, mean:20408.029297.1 GFLOPS, stdev=2.7 GFLOPS
99% [||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| ]
Peak MFMA FLOPs (BF16), GPU ID: 0, workgroupSize:256, workgroups:16384, experiments:100, FLOP:2147483648000, duration:12.6 ms, mean:170280.0 GFLOPS, stdev=22.3 GFLOPS
99% [||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| ]
Peak MFMA FLOPs (F16), GPU ID: 0, workgroupSize:256, workgroups:16384, experiments:100, FLOP:2147483648000, duration:13.0 ms, mean:164733.6 GFLOPS, stdev=24.3 GFLOPS
99% [||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| ]
Peak MFMA FLOPs (F32), GPU ID: 0, workgroupSize:256, workgroups:16384, experiments:100, FLOP:536870912000, duration:13.0 ms, mean:41399.6 GFLOPS, stdev=4.1 GFLOPS
99% [||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| ]
Peak MFMA FLOPs (F64), GPU ID: 0, workgroupSize:256, workgroups:16384, experiments:100, FLOP:268435456000, duration:6.5 ms, mean:41379.2 GFLOPS, stdev=4.4 GFLOPS
99% [||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| ]
Peak MFMA IOPs (I8), GPU ID: 0, workgroupSize:256, workgroups:16384, experiments:100, IOP:2147483648000, duration:12.9 ms, mean:166281.9 GOPS, stdev=2495.9 GOPS
GPU Device 1: Profiling...
...
GPU Device 2: Profiling...
...
GPU Device 3: Profiling...
...
Tip
To reduce verbosity of profiling output try the --quiet flag. This hides
rocprof output and activates a progress bar.
Notice the two main stages in ROCm Compute Profiler’s default profiling routine.
The first stage collects all the counters needed for ROCm Compute Profiler analysis (omitting any filters you have provided).
The second stage collects data for the roofline analysis (this stage can be disabled using
--no-roof).
At the end of profiling, you can find all resulting csv files in a
SoC-specific target directory; for
example:
“MI300A” or “MI300X” for the AMD Instinct™ MI300 family of accelerators
“MI200” for the AMD Instinct MI200 family of accelerators
“MI100” for the AMD Instinct MI100 family of accelerators
The SoC names are generated as a part of ROCm Compute Profiler, and do not always distinguish between different accelerators in the same family; for instance, an Instinct MI210 vs an Instinct MI250.
Note
Additionally, you will notice a few extra files. An SoC parameters file,
sysinfo.csv, is created to reflect the target device settings. All
profiling output is stored in log.txt. Roofline-specific benchmark
results are stored in roofline.csv and roofline plots are outputted into HTMLs as
empirRoof_gpu-0_[datatype1]_..._[datatypeN].html where data types requested through
--roofline-data-type option are listed in the file name.
$ ls workloads/vcopy/MI200/
total 112
total 60
-rw-r--r-- 1 auser agroup 27937 Mar 1 15:15 log.txt
drwxr-xr-x 1 auser agroup 0 Mar 1 15:15 perfmon
-rw-r--r-- 1 auser agroup 26175 Mar 1 15:15 pmc_perf.csv
-rw-r--r-- 1 auser agroup 1708 Mar 1 15:17 roofline.csv
-rw-r--r-- 1 auser agroup 519 Mar 1 15:15 SQ_IFETCH_LEVEL.csv
-rw-r--r-- 1 auser agroup 456 Mar 1 15:15 SQ_INST_LEVEL_LDS.csv
-rw-r--r-- 1 auser agroup 474 Mar 1 15:15 SQ_INST_LEVEL_SMEM.csv
-rw-r--r-- 1 auser agroup 474 Mar 1 15:15 SQ_INST_LEVEL_VMEM.csv
-rw-r--r-- 1 auser agroup 599 Mar 1 15:15 SQ_LEVEL_WAVES.csv
-rw-r--r-- 1 auser agroup 650 Mar 1 15:15 sysinfo.csv
-rw-r--r-- 1 auser agroup 399 Mar 1 15:15 timestamps.csv
Profiling output format#
Use the --format-rocprof-output <format> profile mode option to specify the output format
of the underlying rocprof tool. The following formats are supported:
csvformat:Ask underlying rocprof tool to dump raw performance counter data in csv format.
The generated csv files across multiple runs of rocprof are processed and dumped into the workload directory as csv files.
Multiple csv files are merged into single pmc_perf.csv file in workload directory.
rocpdformat:Ask underlying rocprof tool to dump raw performance counter data in rocpd format.
Multiple
rocpddatabase files containding counter collection data are merged into a single csv under the workload folder. The database files are then removed.Use
--retain-rocpd-outputprofile mode option to preserve therocpddatabase(s) in the workload folder. This is useful for custom analysis of profiling data.
Filtering#
To reduce profiling time and the counters collected, you should use profiling filters. Profiling filters and their functionality depend on the underlying profiler being used. While ROCm Compute Profiler is profiler-agnostic, this following is a detailed description of profiling filters available when using ROCm Compute Profiler with ROCProfiler.
Filtering options#
-b,--block <block-id|block-alias|metric-id>Allows system profiling on one or more selected analysis report blocks to speed up the profiling process. See Analysis report block filtering. Note that this option cannot be used with
--roof-onlyor--set.-k,--kernel <kernel-substr>Allows for kernel filtering. Usage is equivalent with the current
rocprofutility. See Kernel filtering.-d,--dispatch <dispatch-id>Allows for dispatch iteration filtering. Usage is equivalent with the current
rocprofutility. See Dispatch filtering.--set <metric-set>Allows for single pass counter collection of sets of metrics with minimized profiling overhead. Cannot be used with
--roof-onlyor--block. See Metric sets filtering.
Tip
Be cautious when combining different profiling filters in the same call. Conflicting filters may result in error.
For example, filtering a dispatch, but that dispatch doesn’t match your kernel name filter.
Analysis report block filtering#
You can profile specific hardware report blocks to speed up the profiling process. In ROCm Compute Profiler, the term analysis report block refers to a section of the analysis report which focuses on metrics associated with a hardware component or a group of hardware components. All profiling results are accumulated in the same target directory without overwriting those for other hardware components. This enables incremental profiling and analysis.
The following example only gathers hardware counters used to calculate metrics
for Compute Unit - Instruction Mix (block 10) and Wavefront Launch Statistics
(block 7) sections of the analysis report, while skipping over all other hardware counters.
$ rocprof-compute profile --name vcopy -b 10 7 -- ./vcopy -n 1048576 -b 256
__ _
_ __ ___ ___ _ __ _ __ ___ / _| ___ ___ _ __ ___ _ __ _ _| |_ ___
| '__/ _ \ / __| '_ \| '__/ _ \| |_ _____ / __/ _ \| '_ ` _ \| '_ \| | | | __/ _ \
| | | (_) | (__| |_) | | | (_) | _|_____| (_| (_) | | | | | | |_) | |_| | || __/
|_| \___/ \___| .__/|_| \___/|_| \___\___/|_| |_| |_| .__/ \__,_|\__\___|
|_| |_|
rocprofiler-compute version: 2.0.0
Profiler choice: rocprofv1
Path: /home/auser/repos/rocprofiler-compute/sample/workloads/vcopy/MI200
Target: MI200
Command: ./vcopy -n 1048576 -b 256
Kernel Selection: None
Dispatch Selection: None
Hardware Blocks: []
Report Sections: ['10', '7']
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Collecting Performance Counters
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
...
It is also possible to collect individual metrics from the analysis report by providing metric ids.
The following example only collects the counters required to calculate Total VALU FLOPs (metric id 11.1.0) and LDS Utilization (metric id 12.1.0).
$ rocprof-compute profile --name vcopy -b 11.1.1 12.1.1 -- ./vcopy -n 1048576 -b 256
__ _
_ __ ___ ___ _ __ _ __ ___ / _| ___ ___ _ __ ___ _ __ _ _| |_ ___
| '__/ _ \ / __| '_ \| '__/ _ \| |_ _____ / __/ _ \| '_ ` _ \| '_ \| | | | __/ _ \
| | | (_) | (__| |_) | | | (_) | _|_____| (_| (_) | | | | | | |_) | |_| | || __/
|_| \___/ \___| .__/|_| \___/|_| \___\___/|_| |_| |_| .__/ \__,_|\__\___|
|_| |_|
rocprofiler-compute version: 2.0.0
Profiler choice: rocprofv1
Path: /home/auser/repos/rocprofiler-compute/sample/workloads/vcopy/MI200
Target: MI200
Command: ./vcopy -n 1048576 -b 256
Kernel Selection: None
Dispatch Selection: None
Hardware Blocks: []
Report Sections: ['11.1.0', '12.1.0']
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Collecting Performance Counters
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
...
To see a list of available hardware report blocks, use the --list-available-metrics option.
$ rocprof-compute profile --list-available-metrics
__ _
_ __ ___ ___ _ __ _ __ ___ / _| ___ ___ _ __ ___ _ __ _ _| |_ ___
| '__/ _ \ / __| '_ \| '__/ _ \| |_ _____ / __/ _ \| '_ ` _ \| '_ \| | | | __/ _ \
| | | (_) | (__| |_) | | | (_) | _|_____| (_| (_) | | | | | | |_) | |_| | || __/
|_| \___/ \___| .__/|_| \___/|_| \___\___/|_| |_| |_| .__/ \__,_|\__\___|
|_| |_|
0 -> Top Stats
1 -> System Info
2 -> System Speed-of-Light
2.1 -> Speed-of-Light
2.1.0 -> VALU FLOPs
2.1.1 -> VALU IOPs
2.1.2 -> MFMA FLOPs (F8)
...
5 -> Command Processor (CPC/CPF)
5.1 -> Command Processor Fetcher
5.1.0 -> CPF Utilization
5.1.1 -> CPF Stall
5.1.2 -> CPF-L2 Utilization
5.2 -> Packet Processor
5.2.0 -> CPC Utilization
5.2.1 -> CPC Stall Rate
5.2.5 -> CPC-UTCL1 Stall
...
6 -> Workgroup Manager (SPI)
6.1 -> Workgroup Manager Utilizations
6.1.0 -> Accelerator Utilization
6.1.1 -> Scheduler-Pipe Utilization
6.1.2 -> Workgroup Manager Utilization
Kernel filtering#
Kernel filtering is based on the name of the kernels you want to isolate. Use a kernel name substring list to isolate desired kernels.
The following example demonstrates profiling isolating the kernel matching
substring vecCopy.
$ rocprof-compute profile --name vcopy -k vecCopy -- ./vcopy -n 1048576 -b 256
__ _
_ __ ___ ___ _ __ _ __ ___ / _| ___ ___ _ __ ___ _ __ _ _| |_ ___
| '__/ _ \ / __| '_ \| '__/ _ \| |_ _____ / __/ _ \| '_ ` _ \| '_ \| | | | __/ _ \
| | | (_) | (__| |_) | | | (_) | _|_____| (_| (_) | | | | | | |_) | |_| | || __/
|_| \___/ \___| .__/|_| \___/|_| \___\___/|_| |_| |_| .__/ \__,_|\__\___|
|_| |_|
rocprofiler-compute version: 2.0.0
Profiler choice: rocprofv1
Path: /home/auser/repos/rocprofiler-compute/sample/workloads/vcopy/MI200
Target: MI200
Command: ./vcopy -n 1048576 -b 256
Kernel Selection: ['vecCopy']
Dispatch Selection: None
Hardware Blocks: All
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Collecting Performance Counters
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
...
Dispatch filtering#
Dispatch filtering is based on the global dispatch index of kernels in a run.
The following example profiles only the first kernel dispatch in the execution of the application (note zero-based indexing).
$ rocprof-compute profile --name vcopy -d 0 -- ./vcopy -n 1048576 -b 256
__ _
_ __ ___ ___ _ __ _ __ ___ / _| ___ ___ _ __ ___ _ __ _ _| |_ ___
| '__/ _ \ / __| '_ \| '__/ _ \| |_ _____ / __/ _ \| '_ ` _ \| '_ \| | | | __/ _ \
| | | (_) | (__| |_) | | | (_) | _|_____| (_| (_) | | | | | | |_) | |_| | || __/
|_| \___/ \___| .__/|_| \___/|_| \___\___/|_| |_| |_| .__/ \__,_|\__\___|
|_| |_|
rocprofiler-compute version: 2.0.0
Profiler choice: rocprofv1
Path: /home/auser/repos/rocprofiler-compute/sample/workloads/vcopy/MI200
Target: MI200
Command: ./vcopy -n 1048576 -b 256
Kernel Selection: None
Dispatch Selection: ['0']
Hardware Blocks: All
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Collecting Performance Counters
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
...
Metric sets filtering#
A metrics set contains a subset of metrics that can be collected in a single pass. This filtering option minimizes profiling overhead by only collecting counters of interest.
The –set filter option provides a convenient way to group related metrics for common profiling scenarios, eliminating the need to manually specify individual metrics for typical analysis workflows.
This option cannot be used with --roof-only and --block.
$ rocprof-compute profile --name vcopy --set compute_thruput_util -- ./vcopy -n 1048576 -b 256
__ _
_ __ ___ ___ _ __ _ __ ___ / _| ___ ___ _ __ ___ _ __ _ _| |_ ___
| '__/ _ \ / __| '_ \| '__/ _ \| |_ _____ / __/ _ \| '_ ` _ \| '_ \| | | | __/ _ \
| | | (_) | (__| |_) | | | (_) | _|_____| (_| (_) | | | | | | |_) | |_| | || __/
|_| \___/ \___| .__/|_| \___/|_| \___\___/|_| |_| |_| .__/ \__,_|\__\___|
|_| |_|
rocprofiler-compute version: 2.0.0
Profiler choice: rocprofv1
Path: /home/auser/repos/rocprofiler-compute/sample/workloads/vcopy/MI200
Target: MI200
Command: ./vcopy -n 1048576 -b 256
Kernel Selection: None
Dispatch Selection: ['0']
Set Selection: compute_thruput_util
Report Sections: ['11.2.3', '11.2.4', '11.2.6', '11.2.7', '11.2.9']
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Collecting Performance Counters
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
...
To see a list of available sets, use the --list-sets option.
$ rocprof-compute profile --list-sets
__ _
_ __ ___ ___ _ __ _ __ ___ / _| ___ ___ _ __ ___ _ __ _ _| |_ ___
| '__/ _ \ / __| '_ \| '__/ _ \| |_ _____ / __/ _ \| '_ ` _ \| '_ \| | | | __/ _ \
| | | (_) | (__| |_) | | | (_) | _|_____| (_| (_) | | | | | | |_) | |_| | || __/
|_| \___/ \___| .__/|_| \___/|_| \___\___/|_| |_| |_| .__/ \__,_|\__\___|
|_| |_|
Available Sets:
===================================================================================================================
Set Option Set Title Metric Name Metric ID
-------------------------------------------------------------------------------------------------------------------
compute_thruput_util Compute Throughput Utilization SALU Utilization 11.2.3
VALU Utilization 11.2.4
VMEM Utilization 11.2.6
Branch Utilization 11.2.7
...
launch_stats Launch Stats Grid Size 7.1.0
Workgroup Size 7.1.1
Total Wavefronts 7.1.2
VGPRs 7.1.5
AGPRs 7.1.6
SGPRs 7.1.7
LDS Allocation 7.1.8
Scratch Allocation 7.1.9
Usage Examples:
rocprof-compute profile --set compute_thruput_util # Profile this set
rocprof-compute profile --list-sets # Show this help
Standalone roofline#
Roofline analysis occurs on any profile mode run, provided --no-roof option is not included.
You don’t need to include any additional roofline-specific options for roofline analysis.
If you want to focus only on roofline-specific performance data and reduce the time it takes to profile, you can use the --roof-only option.
This option checks if there is existing profiling data in the workload directory (pmc_perf.csv and roofline.csv):
If found, uses the data files with the provided arguments to create another roofline HTML output; otherwise,
Profile mode runs but is limited to collecting only roofline performance counters.
Note that --roof-only cannot be used with --block or --set options.
Roofline options#
--sort <desired_sort>Allows you to specify whether you would like to overlay top kernel or top dispatch data in your roofline plot.
-m,--mem-level <cache_level>Allows you to specify specific levels of cache to include in your roofline plot.
--device <gpu_id>Allows you to specify a device ID to collect performance data from when running a roofline benchmark on your system.
-k,--kernel <kernel-substr>Allows for kernel filtering. Usage is equivalent with the current
rocprofutility. See Kernel filtering.--roofline-data-type <datatype>Allows you to specify data types that you want plotted in the roofline HTML output(s). Selecting more than one data type will overlay the results onto the same plot. Default: FP32
Note
For more information on data types supported based on the GPU architecture, see Performance model
Each kernel in your .html roofline plot is automatically distinguished with a unique marker identifiable from the plot’s key. The roofline HTML includes an integrated multi-subplot layout with:
Roofline Plot - Shows performance ceilings and kernel arithmetic intensity points
Plot Points & Values Table - Displays AI values, performance metrics, memory/compute bound status, and cache levels for each kernel
Full Kernel Names Table - Lists complete kernel names with their corresponding plot markers
Roofline only#
The following example demonstrates profiling roofline data only:
$ rocprof-compute profile --name occupancy --roof-only -- ./tests/occupancy -n 1048576 -b 256
__ _
_ __ ___ ___ _ __ _ __ ___ / _| ___ ___ _ __ ___ _ __ _ _| |_ ___
| '__/ _ \ / __| '_ \| '__/ _ \| |_ _____ / __/ _ \| '_ ` _ \| '_ \| | | | __/ _ \
| | | (_) | (__| |_) | | | (_) | _|_____| (_| (_) | | | | | | |_) | |_| | || __/
|_| \___/ \___| .__/|_| \___/|_| \___\___/|_| |_| |_| .__/ \__,_|\__\___|
|_| |_|
...
INFO [roofline] Generating pmc_perf.csv (roofline counters only).
INFO Rocprofiler-Compute version: 3.3.0
INFO Profiler choice: rocprofiler-sdk
INFO Path: /app/projects/rocprofiler-compute/workloads/occupancy/MI300X_A1
INFO Target: MI300X_A1
INFO Command: ./tests/occupancy -n 1048576 -b 256
INFO Kernel Selection: None
INFO Dispatch Selection: None
INFO Filtered sections: ['4']
INFO
INFO ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
INFO Collecting Performance Counters (Roofline Only)
INFO ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
INFO
INFO [Run 1/3][Approximate profiling time left: pending first measurement...]
INFO [profiling] Current input file: /app/projects/rocprofiler-compute/workloads/occupancy/MI300X_A1/perfmon/pmc_perf_0.txt
...
INFO [roofline] Checking for roofline.csv in /app/projects/rocprofiler-compute/workloads/occupancy/MI300X_A1
INFO [roofline] No roofline data found. Generating...
Empirical Roofline Calculation
Copyright © 2025 Advanced Micro Devices, Inc. All rights reserved.
Total detected GPU devices: 8
GPU Device 0 (gfx942) with 304 CUs: Profiling...
99% [||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| ]
...
An inspection of our workload output folder shows .html plots were generated
successfully.
$ ls workloads/occupancy/MI300X_A1
total 48
-rw-r--r-- 1 auser agroup 13331 Oct 29 10:33 empirRoof_gpu-0_FP32.html
drwxr-xr-x 1 auser agroup 0 Oct 29 10:33 perfmon
-rw-r--r-- 1 auser agroup 1101 Oct 29 10:33 pmc_perf.csv
-rw-r--r-- 1 auser agroup 1715 Oct 29 10:33 roofline.csv
-rw-r--r-- 1 auser agroup 650 Oct 29 10:33 sysinfo.csv
-rw-r--r-- 1 auser agroup 399 Oct 29 10:33 timestamps.csv
Note
ROCm Compute Profiler currently captures roofline profiling for all data types, and you can reduce the clutter in the HTML outputs by filtering the data type(s). Selecting multiple data types will overlay the results into the same HTML. To generate results in separate HTML for each data type from the same workload run, you can re-run the profiling command with each data type as long as the
roofline.csvfile still exists in the workload folder.
The following image is a sample empirRoof_gpu-0_FP32.html roofline
plot.
Iteration Multiplexing#
To reduce profiling overhead when collecting a large number of performance counters, ROCm Compute Profiler supports iteration multiplexing. This technique divides the total set of requested performance counters into smaller subsets that can be collected over multiple iterations of the kernel execution, thereby preventing the need for application replay. Each iteration collects a different subset of counters, and the results are later combined to provide a comprehensive view of the performance metrics.
Note
Iteration multiplexing is most beneficial for large workloads that take a long time to run, as it helps reduce profiling overhead by eliminating the need for application replay while spreading counter collection across iterations. For small workloads with few kernel dispatches, iteration multiplexing may result in incomplete metric calculations due to insufficient kernel dispatch counts to cover all counter subsets.
Usage#
To enable iteration multiplexing in ROCm Compute Profiler, use the
--iteration-multiplexing option in your profiling command. You can optionally specify
the policy for multiplexing. The available policies are:
kernelThe counters are divided based on the kernels being executed. Each kernel call for a particular kernel collects a different subset of counters.
kernel_launch_paramsThe counters are divided based on both the kernels and their launch parameters. This allows for more granular control over counter collection. Each unique combination of kernel and launch parameters collects a different subset of counters.
By default, if no policy is specified, ROCm Compute Profiler uses the kernel_launch_params policy.
Note
Do not use
--no-native-toolwith--iteration-multiplexing. Iteration multiplexing is only supported when using ROCm Compute Profiler with the native counter collection tool. Ensure that--no-native-toolis not used in your profiling command.Do not use
--attach-pidwith--iteration-multiplexing. Iteration multiplexing is only supported when using ROCm Compute Profiler with the native counter collection tool. Ensure that--attach-pidis not used in your profiling command.Ensure that your workload runs for enough iterations to cover all counter subsets. When using iteration multiplexing, the total number of iterations, for each kernel (for
kernelpolicy) or for each unique kernel and launch parameters combination (forkernel_launch_paramspolicy), specified in the workload should be sufficient to cover all subsets of counters. If the number of iterations is too low, some counters may not be collected.Launch paramaters for
kernel_launch_paramspolicy. Launch parameters refer to the following paramaters:Grid size
Workgroup size
LDS size
The following example demonstrates how to use iteration multiplexing with the
vcopy workload:
$ rocprof-compute profile --name vcopy --iteration-multiplexing kernel -- ./vcopy -i 20 -n 1048576 -b 256
...
[INFO] Rocprofiler-Compute version: 3.3.1
[INFO] Profiler choice: rocprofiler-sdk
[INFO] Path: /home/rocm-systems/projects/rocprofiler-compute/sample/workloads/vcopy_kernel/MI200
[INFO] Target: MI200
[INFO] Command: ./vcopy -i 20 -n 1048576 -b 256
[INFO] Kernel Selection: None
[INFO] Dispatch Selection: None
[INFO] Filtered sections: All
[INFO]
[INFO] ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
[INFO] Collecting Performance Counters
[INFO] ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
[INFO]
[INFO] Using native counter collection tool: /tmp/rocprofiler-compute-tool-hlz4fagh/librocprofiler-compute-tool.so
[INFO] Iteration multiplexing: kernel
[INFO] [profiling] Current input files: /home/rocm-systems/projects/rocprofiler-compute/sample/workloads/vcopy_kernel/MI200/perfmon/SQC_DCACHE_INFLIGHT_LEVEL.txt, /home/rocm-systems/projects/rocprofiler-compute/sample/workloads/vcopy_kernel/MI200/perfmon/SQC_ICACHE_INFLIGHT_LEVEL.txt, /home/rocm-systems/projects/rocprofiler-compute/sample/workloads/vcopy_kernel/MI200/perfmon/SQ_IFETCH_LEVEL.txt, /home/rocm-systems/projects/rocprofiler-compute/sample/workloads/vcopy_kernel/MI200/perfmon/SQ_INST_LEVEL_LDS.txt, /home/rocm-systems/projects/rocprofiler-compute/sample/workloads/vcopy_kernel/MI200/perfmon/SQ_INST_LEVEL_SMEM.txt, /home/rocm-systems/projects/rocprofiler-compute/sample/workloads/vcopy_kernel/MI200/perfmon/SQ_INST_LEVEL_VMEM.txt, /home/rocm-systems/projects/rocprofiler-compute/sample/workloads/vcopy_kernel/MI200/perfmon/SQ_LEVEL_WAVES.txt, /home/rocm-systems/projects/rocprofiler-compute/sample/workloads/vcopy_kernel/MI200/perfmon/pmc_perf_0.txt, /home/rocm-systems/projects/rocprofiler-compute/sample/workloads/vcopy_kernel/MI200/perfmon/pmc_perf_1.txt, /home/rocm-systems/projects/rocprofiler-compute/sample/workloads/vcopy_kernel/MI200/perfmon/pmc_perf_10.txt, /home/rocm-systems/projects/rocprofiler-compute/sample/workloads/vcopy_kernel/MI200/perfmon/pmc_perf_11.txt, /home/rocm-systems/projects/rocprofiler-compute/sample/workloads/vcopy_kernel/MI200/perfmon/pmc_perf_12.txt, /home/rocm-systems/projects/rocprofiler-compute/sample/workloads/vcopy_kernel/MI200/perfmon/pmc_perf_2.txt, /home/rocm-systems/projects/rocprofiler-compute/sample/workloads/vcopy_kernel/MI200/perfmon/pmc_perf_3.txt, /home/rocm-systems/projects/rocprofiler-compute/sample/workloads/vcopy_kernel/MI200/perfmon/pmc_perf_4.txt, /home/rocm-systems/projects/rocprofiler-compute/sample/workloads/vcopy_kernel/MI200/perfmon/pmc_perf_5.txt, /home/rocm-systems/projects/rocprofiler-compute/sample/workloads/vcopy_kernel/MI200/perfmon/pmc_perf_6.txt, /home/rocm-systems/projects/rocprofiler-compute/sample/workloads/vcopy_kernel/MI200/perfmon/pmc_perf_7.txt, /home/rocm-systems/projects/rocprofiler-compute/sample/workloads/vcopy_kernel/MI200/perfmon/pmc_perf_8.txt, /home/rocm-systems/projects/rocprofiler-compute/sample/workloads/vcopy_kernel/MI200/perfmon/pmc_perf_9.txt
[INFO] |-> [rocprofiler-sdk] [rocprofiler-compute] [rocprofiler_configure] (priority=1) is using rocprofiler-sdk v1.0.0 (1.0.0)
[INFO] |-> [rocprofiler-sdk] [rocprofiler-compute] [create_tool_data] Logging counter collection to: /home/rocm-systems/projects/rocprofiler-compute/sample/workloads/vcopy_kernel/MI200/out/pmc_1/counter_collection_dc877c12.csv
[INFO] |-> [rocprofiler-sdk] W20251106 22:30:29.205097 139710715580160 simple_timer.cpp:55] [rocprofv3] tool initialization :: 0.393942 sec
[INFO] |-> [rocprofiler-sdk] [rocprofiler-compute] In tool init
[INFO] |-> [rocprofiler-sdk] W20251106 22:30:29.205260 139710715580160 simple_timer.cpp:55] [rocprofv3] './vcopy -i 20 -n 1048576 -b 256' :: 0.000000 sec
[INFO] |-> [rocprofiler-sdk] W20251106 22:30:29.320658 139710715580160 tool.cpp:2420] HSA version 8.20.0 initialized (instance=0)
[INFO] |-> [rocprofiler-sdk] W20251106 22:30:29.541811 139710715580160 simple_timer.cpp:55] [rocprofv3] './vcopy -i 20 -n 1048576 -b 256' :: 0.336552 sec
[INFO] |-> [rocprofiler-sdk] W20251106 22:30:29.551750 139710715580160 generateRocpd.cpp:582] writing SQL database for process 2606306 on node 1574819130
[INFO] |-> [rocprofiler-sdk] E20251106 22:30:29.552127 139710715580160 generateRocpd.cpp:605] Opened result file: /home/rocm-systems/projects/rocprofiler-compute/sample/workloads/vcopy_kernel/MI200/out/pmc_1/MI200-1/2606306_results.db (UUID=ab2345e4-7f3e-4f7c-8f6d-1c9e4f5b6c7d)
[INFO] |-> [rocprofiler-sdk] W20251106 22:30:29.584905 139710715580160 simple_timer.cpp:55] SQLite3 generation :: rocpd_string :: 0.016552 sec
[INFO] |-> [rocprofiler-sdk] W20251106 22:30:29.585113 139710715580160 simple_timer.cpp:55] SQLite3 generation :: rocpd_info_node :: 0.000200 sec
[INFO] |-> [rocprofiler-sdk] W20251106 22:30:29.586186 139710715580160 simple_timer.cpp:55] SQLite3 generation :: rocpd_info_process :: 0.001069 sec
[INFO] |-> [rocprofiler-sdk] W20251106 22:30:29.592977 139710715580160 simple_timer.cpp:55] SQLite3 generation :: rocpd_info_agent :: 0.006506 sec
[INFO] |-> [rocprofiler-sdk] W20251106 22:30:31.791895 139710715580160 simple_timer.cpp:55] SQLite3 generation :: rocpd_info_pmc :: 2.198912 sec
[INFO] |-> [rocprofiler-sdk] W20251106 22:30:31.792565 139710715580160 simple_timer.cpp:55] SQLite3 generation :: rocpd kernel info :: 0.000645 sec
[INFO] |-> [rocprofiler-sdk] W20251106 22:30:31.792572 139710715580160 simple_timer.cpp:55] SQLite3 generation :: rocpd_region :: 0.000002 sec
[INFO] |-> [rocprofiler-sdk] W20251106 22:30:31.795306 139710715580160 simple_timer.cpp:55] SQLite3 generation :: rocpd_kernel_dispatch :: 0.002731 sec
[INFO] |-> [rocprofiler-sdk] W20251106 22:30:31.795311 139710715580160 simple_timer.cpp:55] SQLite3 generation :: rocpd_pmc_event :: 0.000000 sec
[INFO] |-> [rocprofiler-sdk] W20251106 22:30:31.795313 139710715580160 simple_timer.cpp:55] SQLite3 generation :: rocpd_memory_copy :: 0.000000 sec
[INFO] |-> [rocprofiler-sdk] W20251106 22:30:31.795315 139710715580160 simple_timer.cpp:55] SQLite3 generation :: rocpd_memory_allocate :: 0.000001 sec
[INFO] |-> [rocprofiler-sdk] W20251106 22:30:31.795405 139710715580160 simple_timer.cpp:55] SQLite3 generation :: SQL indexing :: 0.000089 sec
[INFO] |-> [rocprofiler-sdk] W20251106 22:30:31.796398 139710715580160 simple_timer.cpp:55] SQLite3 generation :: total :: 2.244648 sec
[INFO] |-> [rocprofiler-sdk] W20251106 22:30:31.797844 139710715580160 simple_timer.cpp:55] [rocprofv3] output generation :: 2.254739 sec
[INFO] |-> [rocprofiler-sdk] W20251106 22:30:31.800089 139710715580160 simple_timer.cpp:55] [rocprofv3] tool finalization :: 2.258250 sec
[INFO] |-> [rocprofiler-sdk] [rocprofiler-compute] In tool fini
[INFO] |-> [rocprofiler-sdk] vcopy testing on GCD 0
[INFO] |-> [rocprofiler-sdk] Finished allocating vectors on the CPU
...
Caveats#
Iteration multiplexing feature comes with some caveats to be considered when profiling any workload:
Accuracy vs speed trade-off
Iteration multiplexing provides a trade-off with decreased profiling time by eliminating application replay while sacrificing accuracy since only a handful of counters can be collected per kernel dispatch; while we test for closeness in metric values with and without iteration multiplexing in our automatic test suite, more accurate results can be obtained by not using iteration multiplexing.
Minimum number of kernel dispatches required
When using iteration multiplexing it is recommended to filter by kernel(s) of interest and make sure these kernels are dispatched enough times (50 recommended) to cover all counter subsets (currently around 15); a warning is thrown for kernels with insufficient dispatch counts to warn the user about missing counter data for those kernels, and it is not possible to calculate some metrics for these kernels.
Non-deterministic workloads
Workloads which dispatch kernels with non-deterministic names and launch parameters may trigger warnings for insufficient dispatch counts because iteration multiplexing identifies unique kernels by their names and optionally by their launch parameters; this is especially true of large AI workloads that dispatch kernels non-deterministically based on the model layers being used for the current input, and in such cases kernel filtering of common kernels is recommended.