RPPT Tensor Operations - Statistical Operations.#
RPPT Tensor Operations - Statistical Operations. More...
Functions | |
RppStatus | rppt_tensor_sum_host (RppPtr_t srcPtr, RpptDescPtr srcDescPtr, RppPtr_t tensorSumArr, Rpp32u tensorSumArrLength, RpptROIPtr roiTensorPtrSrc, RpptRoiType roiType, rppHandle_t rppHandle) |
Tensor sum operation on HOST backend for a NCHW/NHWC layout tensor. More... | |
RppStatus | rppt_tensor_sum_gpu (RppPtr_t srcPtr, RpptDescPtr srcDescPtr, RppPtr_t tensorSumArr, Rpp32u tensorSumArrLength, RpptROIPtr roiTensorPtrSrc, RpptRoiType roiType, rppHandle_t rppHandle) |
Tensor sum operation on HIP backend for a NCHW/NHWC layout tensor. More... | |
RppStatus | rppt_tensor_min_host (RppPtr_t srcPtr, RpptDescPtr srcDescPtr, RppPtr_t minArr, Rpp32u minArrLength, RpptROIPtr roiTensorPtrSrc, RpptRoiType roiType, rppHandle_t rppHandle) |
Tensor min operation on HOST backend for a NCHW/NHWC layout tensor. More... | |
RppStatus | rppt_tensor_min_gpu (RppPtr_t srcPtr, RpptDescPtr srcDescPtr, RppPtr_t imageMinArr, Rpp32u imageMinArrLength, RpptROIPtr roiTensorPtrSrc, RpptRoiType roiType, rppHandle_t rppHandle) |
Tensor min operation on HIP backend for a NCHW/NHWC layout tensor. More... | |
RppStatus | rppt_tensor_max_host (RppPtr_t srcPtr, RpptDescPtr srcDescPtr, RppPtr_t maxArr, Rpp32u maxArrLength, RpptROIPtr roiTensorPtrSrc, RpptRoiType roiType, rppHandle_t rppHandle) |
Tensor max operation on HOST backend for a NCHW/NHWC layout tensor. More... | |
RppStatus | rppt_tensor_max_gpu (RppPtr_t srcPtr, RpptDescPtr srcDescPtr, RppPtr_t imageMaxArr, Rpp32u imageMaxArrLength, RpptROIPtr roiTensorPtrSrc, RpptRoiType roiType, rppHandle_t rppHandle) |
Tensor max operation on HIP backend for a NCHW/NHWC layout tensor. More... | |
RppStatus | rppt_normalize_host (RppPtr_t srcPtr, RpptGenericDescPtr srcGenericDescPtr, RppPtr_t dstPtr, RpptGenericDescPtr dstGenericDescPtr, Rpp32u axisMask, Rpp32f *meanTensor, Rpp32f *stdDevTensor, Rpp8u computeMeanStddev, Rpp32f scale, Rpp32f shift, Rpp32u *roiTensor, rppHandle_t rppHandle) |
Normalize Generic augmentation on HOST backend. More... | |
RppStatus | rppt_normalize_gpu (RppPtr_t srcPtr, RpptGenericDescPtr srcGenericDescPtr, RppPtr_t dstPtr, RpptGenericDescPtr dstGenericDescPtr, Rpp32u axisMask, Rpp32f *meanTensor, Rpp32f *stdDevTensor, Rpp8u computeMeanStddev, Rpp32f scale, Rpp32f shift, Rpp32u *roiTensor, rppHandle_t rppHandle) |
Normalize Generic augmentation on HIP backend. More... | |
RppStatus | rppt_tensor_mean_host (RppPtr_t srcPtr, RpptDescPtr srcDescPtr, RppPtr_t tensorMeanArr, Rpp32u tensorMeanArrLength, RpptROIPtr roiTensorPtrSrc, RpptRoiType roiType, rppHandle_t rppHandle) |
Tensor mean operation on HOST backend for a NCHW/NHWC layout tensor. More... | |
RppStatus | rppt_tensor_mean_gpu (RppPtr_t srcPtr, RpptDescPtr srcDescPtr, RppPtr_t tensorMeanArr, Rpp32u tensorMeanArrLength, RpptROIPtr roiTensorPtrSrc, RpptRoiType roiType, rppHandle_t rppHandle) |
Tensor mean operation on HIP backend for a NCHW/NHWC layout tensor. More... | |
RppStatus | rppt_tensor_stddev_host (RppPtr_t srcPtr, RpptDescPtr srcDescPtr, RppPtr_t tensorStddevArr, Rpp32u tensorStddevArrLength, Rpp32f *meanTensor, RpptROIPtr roiTensorPtrSrc, RpptRoiType roiType, rppHandle_t rppHandle) |
Tensor stddev operation on HOST backend for a NCHW/NHWC layout tensor. More... | |
RppStatus | rppt_tensor_stddev_gpu (RppPtr_t srcPtr, RpptDescPtr srcDescPtr, RppPtr_t tensorStddevArr, Rpp32u tensorStddevArrLength, Rpp32f *meanTensor, RpptROIPtr roiTensorPtrSrc, RpptRoiType roiType, rppHandle_t rppHandle) |
Tensor stddev operation on HIP backend for a NCHW/NHWC layout tensor. More... | |
RppStatus | rppt_threshold_host (RppPtr_t srcPtr, RpptDescPtr srcDescPtr, RppPtr_t dstPtr, RpptDescPtr dstDescPtr, Rpp32f *minTensor, Rpp32f *maxTensor, RpptROIPtr roiTensorPtrSrc, RpptRoiType roiType, rppHandle_t rppHandle) |
Threshold augmentation on HOST backend for a NCHW/NHWC layout tensor. More... | |
RppStatus | rppt_threshold_gpu (RppPtr_t srcPtr, RpptDescPtr srcDescPtr, RppPtr_t dstPtr, RpptDescPtr dstDescPtr, Rpp32f *minTensor, Rpp32f *maxTensor, RpptROIPtr roiTensorPtrSrc, RpptRoiType roiType, rppHandle_t rppHandle) |
Threshold augmentation on HIP backend for a NCHW/NHWC layout tensor. More... | |
Detailed Description
RPPT Tensor Operations - Statistical Operations.
Function Documentation
◆ rppt_normalize_gpu()
RppStatus rppt_normalize_gpu | ( | RppPtr_t | srcPtr, |
RpptGenericDescPtr | srcGenericDescPtr, | ||
RppPtr_t | dstPtr, | ||
RpptGenericDescPtr | dstGenericDescPtr, | ||
Rpp32u | axisMask, | ||
Rpp32f * | meanTensor, | ||
Rpp32f * | stdDevTensor, | ||
Rpp8u | computeMeanStddev, | ||
Rpp32f | scale, | ||
Rpp32f | shift, | ||
Rpp32u * | roiTensor, | ||
rppHandle_t | rppHandle | ||
) |
Normalize Generic augmentation on HIP backend.
Normalizes the input generic ND buffer by removing the mean and dividing by the standard deviation for a given ND Tensor.
- Parameters
-
[in] srcPtr source tensor memory in HIP memory [in] srcGenericDescPtr source tensor descriptor [out] dstPtr destination tensor memory in HIP memory [in] dstGenericDescPtr destination tensor descriptor [in] axisMask axis along which normalization needs to be done [in] meanTensor values to be subtracted from input [in] stdDevTensor standard deviation values to scale the input [in] computeMeanStddev flag to represent internal computation of mean, stddev (Wherein 0th bit used to represent computeMean and 1st bit for computeStddev, 0- Externally provided) [in] scale value to be multiplied with data after subtracting from mean [in] shift value to be added finally [in] roiTensor values to represent dimensions of input tensor [in] rppHandle RPP HIP handle created with rppCreateWithStreamAndBatchSize()
- Returns
- A
RppStatus
enumeration.
- Return values
-
RPP_SUCCESS Successful completion. RPP_ERROR* Unsuccessful completion.
◆ rppt_normalize_host()
RppStatus rppt_normalize_host | ( | RppPtr_t | srcPtr, |
RpptGenericDescPtr | srcGenericDescPtr, | ||
RppPtr_t | dstPtr, | ||
RpptGenericDescPtr | dstGenericDescPtr, | ||
Rpp32u | axisMask, | ||
Rpp32f * | meanTensor, | ||
Rpp32f * | stdDevTensor, | ||
Rpp8u | computeMeanStddev, | ||
Rpp32f | scale, | ||
Rpp32f | shift, | ||
Rpp32u * | roiTensor, | ||
rppHandle_t | rppHandle | ||
) |
Normalize Generic augmentation on HOST backend.
Normalizes the input generic ND buffer by removing the mean and dividing by the standard deviation for a given ND Tensor. Supports u8->f32, i8->f32, f16->f16 and f32->f32 datatypes. Also has toggle variant(NHWC->NCHW) support for 3D.
- Parameters
-
[in] srcPtr source tensor memory in HOST memory [in] srcGenericDescPtr source tensor descriptor [out] dstPtr destination tensor memory in HOST memory [in] dstGenericDescPtr destination tensor descriptor [in] axisMask axis along which normalization needs to be done [in] meanTensor values to be subtracted from input [in] stdDevTensor standard deviation values to scale the input [in] computeMeanStddev flag to represent internal computation of mean, stddev (Wherein 0th bit used to represent computeMean and 1st bit for computeStddev, 0- Externally provided) [in] scale value to be multiplied with data after subtracting from mean [in] shift value to be added finally [in] roiTensor values to represent dimensions of input tensor [in] rppHandle RPP HOST handle created with rppCreateWithBatchSize()
- Returns
- A
RppStatus
enumeration.
- Return values
-
RPP_SUCCESS Successful completion. RPP_ERROR* Unsuccessful completion.
◆ rppt_tensor_max_gpu()
RppStatus rppt_tensor_max_gpu | ( | RppPtr_t | srcPtr, |
RpptDescPtr | srcDescPtr, | ||
RppPtr_t | imageMaxArr, | ||
Rpp32u | imageMaxArrLength, | ||
RpptROIPtr | roiTensorPtrSrc, | ||
RpptRoiType | roiType, | ||
rppHandle_t | rppHandle | ||
) |
Tensor max operation on HIP backend for a NCHW/NHWC layout tensor.
The tensor max is a reduction operation that finds the channel-wise (R max / G max / B max) and overall max for each image in a batch of RGB(3 channel) / greyscale(1 channel) images with an NHWC/NCHW tensor layout.
- srcPtr depth ranges - Rpp8u (0 to 255), Rpp16f (0 to 1), Rpp32f (0 to 1), Rpp8s (-128 to 127).
- dstPtr depth ranges - Will be same depth as srcPtr.
- Parameters
-
[in] srcPtr source tensor in HIP memory [in] srcDescPtr source tensor descriptor (Restrictions - numDims = 4, offsetInBytes >= 0, dataType = U8/F16/F32/I8, layout = NCHW/NHWC, c = 1/3) [out] maxArr destination array in HIP memory [in] maxArrLength length of provided destination array (Restrictions - if srcDescPtr->c == 1 then tensorSumArrLength >= srcDescPtr->n, and if srcDescPtr->c == 3 then tensorSumArrLength >= srcDescPtr->n * 4) [in] roiTensorPtrSrc ROI data in HIP memory, for each image in source tensor (2D tensor of size batchSize * 4, in either format - XYWH(xy.x, xy.y, roiWidth, roiHeight) or LTRB(lt.x, lt.y, rb.x, rb.y)) | (Restrictions - roiTensorPtrSrc[i].xywhROI.roiWidth <= 3840 and roiTensorPtrSrc[i].xywhROI.roiHeight <= 2160) [in] roiType ROI type used (RpptRoiType::XYWH or RpptRoiType::LTRB) [in] rppHandle RPP HIP handle created with rppCreateWithBatchSize()
- Returns
- A
RppStatus
enumeration.
- Return values
-
RPP_SUCCESS Successful completion. RPP_ERROR* Unsuccessful completion.
◆ rppt_tensor_max_host()
RppStatus rppt_tensor_max_host | ( | RppPtr_t | srcPtr, |
RpptDescPtr | srcDescPtr, | ||
RppPtr_t | maxArr, | ||
Rpp32u | maxArrLength, | ||
RpptROIPtr | roiTensorPtrSrc, | ||
RpptRoiType | roiType, | ||
rppHandle_t | rppHandle | ||
) |
Tensor max operation on HOST backend for a NCHW/NHWC layout tensor.
The tensor max is a reduction operation that finds the channel-wise (R max / G max / B max) and overall max for each image in a batch of RGB(3 channel) / greyscale(1 channel) images with an NHWC/NCHW tensor layout.
- srcPtr depth ranges - Rpp8u (0 to 255), Rpp16f (0 to 1), Rpp32f (0 to 1), Rpp8s (-128 to 127).
- dstPtr depth ranges - Will be same depth as srcPtr.
- Parameters
-
[in] srcPtr source tensor in HOST memory [in] srcDescPtr source tensor descriptor (Restrictions - numDims = 4, offsetInBytes >= 0, dataType = U8/F16/F32/I8, layout = NCHW/NHWC, c = 1/3) [out] maxArr destination array in HOST memory [in] maxArrLength length of provided destination array (Restrictions - if srcDescPtr->c == 1 then tensorSumArrLength >= srcDescPtr->n, and if srcDescPtr->c == 3 then tensorSumArrLength >= srcDescPtr->n * 4) [in] roiTensorPtrSrc ROI data in HOST memory, for each image in source tensor (2D tensor of size batchSize * 4, in either format - XYWH(xy.x, xy.y, roiWidth, roiHeight) or LTRB(lt.x, lt.y, rb.x, rb.y)) | (Restrictions - roiTensorPtrSrc[i].xywhROI.roiWidth <= 3840 and roiTensorPtrSrc[i].xywhROI.roiHeight <= 2160) [in] roiType ROI type used (RpptRoiType::XYWH or RpptRoiType::LTRB) [in] rppHandle RPP HOST handle created with rppCreateWithBatchSize()
- Returns
- A
RppStatus
enumeration.
- Return values
-
RPP_SUCCESS Successful completion. RPP_ERROR* Unsuccessful completion.
◆ rppt_tensor_mean_gpu()
RppStatus rppt_tensor_mean_gpu | ( | RppPtr_t | srcPtr, |
RpptDescPtr | srcDescPtr, | ||
RppPtr_t | tensorMeanArr, | ||
Rpp32u | tensorMeanArrLength, | ||
RpptROIPtr | roiTensorPtrSrc, | ||
RpptRoiType | roiType, | ||
rppHandle_t | rppHandle | ||
) |
Tensor mean operation on HIP backend for a NCHW/NHWC layout tensor.
The tensor mean is a reduction operation that finds the channel-wise (R mean / G mean / B mean) and total mean for each image in a batch of RGB(3 channel) / greyscale(1 channel) images with an NHWC/NCHW tensor layout.
- srcPtr depth ranges - Rpp8u (0 to 255), Rpp16f (0 to 1), Rpp32f (0 to 1), Rpp8s (-128 to 127).
- dstPtr depth ranges - Will be same depth as srcPtr.
- Parameters
-
[in] srcPtr source tensor in HIP memory [in] srcDescPtr source tensor descriptor (Restrictions - numDims = 4, offsetInBytes >= 0, dataType = U8/F16/F32/I8, layout = NCHW/NHWC, c = 1/3) [out] tensorMeanArr destination array in HIP memory [in] tensorMeanArrLength length of provided destination array (Restrictions - if srcDescPtr->c == 1 then tensorMeanArrLength = srcDescPtr->n, and if srcDescPtr->c == 3 then tensorMeanArrLength = srcDescPtr->n * 4) [in] roiTensorPtrSrc ROI data in HIP memory, for each image in source tensor (2D tensor of size batchSize * 4, in either format - XYWH(xy.x, xy.y, roiWidth, roiHeight) or LTRB(lt.x, lt.y, rb.x, rb.y)) | (Restrictions - roiTensorPtrSrc[i].xywhROI.roiWidth <= 3840 and roiTensorPtrSrc[i].xywhROI.roiHeight <= 2160) [in] roiType ROI type used (RpptRoiType::XYWH or RpptRoiType::LTRB) [in] rppHandle RPP HIP handle created with rppCreateWithStreamAndBatchSize()
- Returns
- A
RppStatus
enumeration.
- Return values
-
RPP_SUCCESS Successful completion. RPP_ERROR* Unsuccessful completion.
◆ rppt_tensor_mean_host()
RppStatus rppt_tensor_mean_host | ( | RppPtr_t | srcPtr, |
RpptDescPtr | srcDescPtr, | ||
RppPtr_t | tensorMeanArr, | ||
Rpp32u | tensorMeanArrLength, | ||
RpptROIPtr | roiTensorPtrSrc, | ||
RpptRoiType | roiType, | ||
rppHandle_t | rppHandle | ||
) |
Tensor mean operation on HOST backend for a NCHW/NHWC layout tensor.
The tensor mean is a reduction operation that finds the channel-wise (R mean / G mean / B mean) and total mean for each image in a batch of RGB(3 channel) / greyscale(1 channel) images with an NHWC/NCHW tensor layout.
- srcPtr depth ranges - Rpp8u (0 to 255), Rpp16f (0 to 1), Rpp32f (0 to 1), Rpp8s (-128 to 127).
- dstPtr depth ranges - Will be same depth as srcPtr.
- Parameters
-
[in] srcPtr source tensor in HOST memory [in] srcDescPtr source tensor descriptor (Restrictions - numDims = 4, offsetInBytes >= 0, dataType = U8/F16/F32/I8, layout = NCHW/NHWC, c = 1/3) [out] tensorMeanArr destination array in HOST memory [in] tensorMeanArrLength length of provided destination array (Restrictions - if srcDescPtr->c == 1 then tensorMeanArrLength = srcDescPtr->n, and if srcDescPtr->c == 3 then tensorMeanArrLength = srcDescPtr->n * 4) [in] roiTensorPtrSrc ROI data in HOST memory, for each image in source tensor (2D tensor of size batchSize * 4, in either format - XYWH(xy.x, xy.y, roiWidth, roiHeight) or LTRB(lt.x, lt.y, rb.x, rb.y)) | (Restrictions - roiTensorPtrSrc[i].xywhROI.roiWidth <= 3840 and roiTensorPtrSrc[i].xywhROI.roiHeight <= 2160) [in] roiType ROI type used (RpptRoiType::XYWH or RpptRoiType::LTRB) [in] rppHandle RPP HOST handle created with rppCreateWithBatchSize()
- Returns
- A
RppStatus
enumeration.
- Return values
-
RPP_SUCCESS Successful completion. RPP_ERROR* Unsuccessful completion.
◆ rppt_tensor_min_gpu()
RppStatus rppt_tensor_min_gpu | ( | RppPtr_t | srcPtr, |
RpptDescPtr | srcDescPtr, | ||
RppPtr_t | imageMinArr, | ||
Rpp32u | imageMinArrLength, | ||
RpptROIPtr | roiTensorPtrSrc, | ||
RpptRoiType | roiType, | ||
rppHandle_t | rppHandle | ||
) |
Tensor min operation on HIP backend for a NCHW/NHWC layout tensor.
The tensor min is a reduction operation that finds the channel-wise (R min / G min / B min) and overall min for each image in a batch of RGB(3 channel) / greyscale(1 channel) images with an NHWC/NCHW tensor layout.
- srcPtr depth ranges - Rpp8u (0 to 255), Rpp16f (0 to 1), Rpp32f (0 to 1), Rpp8s (-128 to 127).
- dstPtr depth ranges - Will be same depth as srcPtr.
- Parameters
-
[in] srcPtr source tensor in HIP memory [in] srcDescPtr source tensor descriptor (Restrictions - numDims = 4, offsetInBytes >= 0, dataType = U8/F16/F32/I8, layout = NCHW/NHWC, c = 1/3) [out] minArr destination array in HIP memory [in] minArrLength length of provided destination array (Restrictions - if srcDescPtr->c == 1 then tensorSumArrLength >= srcDescPtr->n, and if srcDescPtr->c == 3 then tensorSumArrLength >= srcDescPtr->n * 4) [in] roiTensorPtrSrc ROI data in HIP memory, for each image in source tensor (2D tensor of size batchSize * 4, in either format - XYWH(xy.x, xy.y, roiWidth, roiHeight) or LTRB(lt.x, lt.y, rb.x, rb.y)) | (Restrictions - roiTensorPtrSrc[i].xywhROI.roiWidth <= 3840 and roiTensorPtrSrc[i].xywhROI.roiHeight <= 2160) [in] roiType ROI type used (RpptRoiType::XYWH or RpptRoiType::LTRB) [in] rppHandle RPP HIP handle created with rppCreateWithStreamAndBatchSize()
- Returns
- A
RppStatus
enumeration.
- Return values
-
RPP_SUCCESS Successful completion. RPP_ERROR* Unsuccessful completion.
◆ rppt_tensor_min_host()
RppStatus rppt_tensor_min_host | ( | RppPtr_t | srcPtr, |
RpptDescPtr | srcDescPtr, | ||
RppPtr_t | minArr, | ||
Rpp32u | minArrLength, | ||
RpptROIPtr | roiTensorPtrSrc, | ||
RpptRoiType | roiType, | ||
rppHandle_t | rppHandle | ||
) |
Tensor min operation on HOST backend for a NCHW/NHWC layout tensor.
The tensor min is a reduction operation that finds the channel-wise (R min / G min / B min) and overall min for each image in a batch of RGB(3 channel) / greyscale(1 channel) images with an NHWC/NCHW tensor layout.
- srcPtr depth ranges - Rpp8u (0 to 255), Rpp16f (0 to 1), Rpp32f (0 to 1), Rpp8s (-128 to 127).
- dstPtr depth ranges - Will be same depth as srcPtr.
- Parameters
-
[in] srcPtr source tensor in HOST memory [in] srcDescPtr source tensor descriptor (Restrictions - numDims = 4, offsetInBytes >= 0, dataType = U8/F16/F32/I8, layout = NCHW/NHWC, c = 1/3) [out] minArr destination array in HOST memory [in] minArrLength length of provided destination array (Restrictions - if srcDescPtr->c == 1 then tensorSumArrLength >= srcDescPtr->n, and if srcDescPtr->c == 3 then tensorSumArrLength >= srcDescPtr->n * 4) [in] roiTensorPtrSrc ROI data in HOST memory, for each image in source tensor (2D tensor of size batchSize * 4, in either format - XYWH(xy.x, xy.y, roiWidth, roiHeight) or LTRB(lt.x, lt.y, rb.x, rb.y)) | (Restrictions - roiTensorPtrSrc[i].xywhROI.roiWidth <= 3840 and roiTensorPtrSrc[i].xywhROI.roiHeight <= 2160) [in] roiType ROI type used (RpptRoiType::XYWH or RpptRoiType::LTRB) [in] rppHandle RPP HOST handle created with rppCreateWithBatchSize()
- Returns
- A
RppStatus
enumeration.
- Return values
-
RPP_SUCCESS Successful completion. RPP_ERROR* Unsuccessful completion.
◆ rppt_tensor_stddev_gpu()
RppStatus rppt_tensor_stddev_gpu | ( | RppPtr_t | srcPtr, |
RpptDescPtr | srcDescPtr, | ||
RppPtr_t | tensorStddevArr, | ||
Rpp32u | tensorStddevArrLength, | ||
Rpp32f * | meanTensor, | ||
RpptROIPtr | roiTensorPtrSrc, | ||
RpptRoiType | roiType, | ||
rppHandle_t | rppHandle | ||
) |
Tensor stddev operation on HIP backend for a NCHW/NHWC layout tensor.
The tensor stddev is a reduction operation that finds the channel-wise (R stddev / G stddev / B stddev) and total standard deviation for each image with respect to meanTensor passed.
- srcPtr depth ranges - Rpp8u (0 to 255), Rpp16f (0 to 1), Rpp32f (0 to 1), Rpp8s (-128 to 127).
- dstPtr depth ranges - Will be same depth as srcPtr.
- Parameters
-
[in] srcPtr source tensor in HIP memory [in] srcDescPtr source tensor descriptor (Restrictions - numDims = 4, offsetInBytes >= 0, dataType = U8/F16/F32/I8, layout = NCHW/NHWC, c = 1/3) [out] tensorStddevArr destination array in HIP memory [in] tensorStddevArrLength length of provided destination array (Restrictions - if srcDescPtr->c == 1 then tensorStddevArrLength = srcDescPtr->n, and if srcDescPtr->c == 3 then tensorStddevArrLength = srcDescPtr->n * 4) [in] meanTensor mean values for stddev calculation (1D tensor of size batchSize * 4 in format (MeanR, MeanG, MeanB, MeanImage) for each image in batch) [in] roiTensorPtrSrc ROI data in HIP memory, for each image in source tensor (2D tensor of size batchSize * 4, in either format - XYWH(xy.x, xy.y, roiWidth, roiHeight) or LTRB(lt.x, lt.y, rb.x, rb.y)) | (Restrictions - roiTensorPtrSrc[i].xywhROI.roiWidth <= 3840 and roiTensorPtrSrc[i].xywhROI.roiHeight <= 2160) [in] roiType ROI type used (RpptRoiType::XYWH or RpptRoiType::LTRB) [in] rppHandle RPP HIP handle created with rppCreateWithStreamAndBatchSize()
- Returns
- A
RppStatus
enumeration.
- Return values
-
RPP_SUCCESS Successful completion. RPP_ERROR* Unsuccessful completion.
◆ rppt_tensor_stddev_host()
RppStatus rppt_tensor_stddev_host | ( | RppPtr_t | srcPtr, |
RpptDescPtr | srcDescPtr, | ||
RppPtr_t | tensorStddevArr, | ||
Rpp32u | tensorStddevArrLength, | ||
Rpp32f * | meanTensor, | ||
RpptROIPtr | roiTensorPtrSrc, | ||
RpptRoiType | roiType, | ||
rppHandle_t | rppHandle | ||
) |
Tensor stddev operation on HOST backend for a NCHW/NHWC layout tensor.
The tensor stddev is a reduction operation that finds the channel-wise (R stddev / G stddev / B stddev) and total standard deviation for each image with respect to meanTensor passed.
- srcPtr depth ranges - Rpp8u (0 to 255), Rpp16f (0 to 1), Rpp32f (0 to 1), Rpp8s (-128 to 127).
- dstPtr depth ranges - Will be same depth as srcPtr.
- Parameters
-
[in] srcPtr source tensor in HOST memory [in] srcDescPtr source tensor descriptor (Restrictions - numDims = 4, offsetInBytes >= 0, dataType = U8/F16/F32/I8, layout = NCHW/NHWC, c = 1/3) [out] tensorStddevArr destination array in HOST memory [in] tensorStddevArrLength length of provided destination array (Restrictions - if srcDescPtr->c == 1 then tensorStddevArrLength = srcDescPtr->n, and if srcDescPtr->c == 3 then tensorStddevArrLength = srcDescPtr->n * 4) [in] meanTensor mean values for stddev calculation (1D tensor of size batchSize * 4 in format (MeanR, MeanG, MeanB, MeanImage) for each image in batch) [in] roiTensorPtrSrc ROI data in HOST memory, for each image in source tensor (2D tensor of size batchSize * 4, in either format - XYWH(xy.x, xy.y, roiWidth, roiHeight) or LTRB(lt.x, lt.y, rb.x, rb.y)) | (Restrictions - roiTensorPtrSrc[i].xywhROI.roiWidth <= 3840 and roiTensorPtrSrc[i].xywhROI.roiHeight <= 2160) [in] roiType ROI type used (RpptRoiType::XYWH or RpptRoiType::LTRB) [in] rppHandle RPP HOST handle created with rppCreateWithBatchSize()
- Returns
- A
RppStatus
enumeration.
- Return values
-
RPP_SUCCESS Successful completion. RPP_ERROR* Unsuccessful completion.
◆ rppt_tensor_sum_gpu()
RppStatus rppt_tensor_sum_gpu | ( | RppPtr_t | srcPtr, |
RpptDescPtr | srcDescPtr, | ||
RppPtr_t | tensorSumArr, | ||
Rpp32u | tensorSumArrLength, | ||
RpptROIPtr | roiTensorPtrSrc, | ||
RpptRoiType | roiType, | ||
rppHandle_t | rppHandle | ||
) |
Tensor sum operation on HIP backend for a NCHW/NHWC layout tensor.
The tensor sum is a reduction operation that finds the channel-wise (R sum / G sum / B sum) and total sum for each image in a batch of RGB(3 channel) / greyscale(1 channel) images with an NHWC/NCHW tensor layout.
- srcPtr depth ranges - Rpp8u (0 to 255), Rpp16f (0 to 1), Rpp32f (0 to 1), Rpp8s (-128 to 127).
- dstPtr depth ranges - Will be same depth as srcPtr.
- Parameters
-
[in] srcPtr source tensor in HIP memory [in] srcDescPtr source tensor descriptor (Restrictions - numDims = 4, offsetInBytes >= 0, dataType = U8/F16/F32/I8, layout = NCHW/NHWC, c = 1/3) [out] tensorSumArr destination array in HIP memory [in] tensorSumArrLength length of provided destination array (Restrictions - if srcDescPtr->c == 1 then tensorSumArrLength >= srcDescPtr->n, and if srcDescPtr->c == 3 then tensorSumArrLength >= srcDescPtr->n * 4) [in] roiTensorPtrSrc ROI data in HIP memory, for each image in source tensor (2D tensor of size batchSize * 4, in either format - XYWH(xy.x, xy.y, roiWidth, roiHeight) or LTRB(lt.x, lt.y, rb.x, rb.y)) | (Restrictions - roiTensorPtrSrc[i].xywhROI.roiWidth <= 3840 and roiTensorPtrSrc[i].xywhROI.roiHeight <= 2160) [in] roiType ROI type used (RpptRoiType::XYWH or RpptRoiType::LTRB) [in] rppHandle RPP HIP handle created with rppCreateWithStreamAndBatchSize()
- Returns
- A
RppStatus
enumeration.
- Return values
-
RPP_SUCCESS Successful completion. RPP_ERROR* Unsuccessful completion.
◆ rppt_tensor_sum_host()
RppStatus rppt_tensor_sum_host | ( | RppPtr_t | srcPtr, |
RpptDescPtr | srcDescPtr, | ||
RppPtr_t | tensorSumArr, | ||
Rpp32u | tensorSumArrLength, | ||
RpptROIPtr | roiTensorPtrSrc, | ||
RpptRoiType | roiType, | ||
rppHandle_t | rppHandle | ||
) |
Tensor sum operation on HOST backend for a NCHW/NHWC layout tensor.
The tensor sum is a reduction operation that finds the channel-wise (R sum / G sum / B sum) and total sum for each image in a batch of RGB(3 channel) / greyscale(1 channel) images with an NHWC/NCHW tensor layout.
- srcPtr depth ranges - Rpp8u (0 to 255), Rpp16f (0 to 1), Rpp32f (0 to 1), Rpp8s (-128 to 127).
- dstPtr depth ranges - Will be same depth as srcPtr.
- Parameters
-
[in] srcPtr source tensor in HOST memory [in] srcDescPtr source tensor descriptor (Restrictions - numDims = 4, offsetInBytes >= 0, dataType = U8/F16/F32/I8, layout = NCHW/NHWC, c = 1/3) [out] tensorSumArr destination array in HOST memory [in] tensorSumArrLength length of provided destination array (Restrictions - if srcDescPtr->c == 1 then tensorSumArrLength >= srcDescPtr->n, and if srcDescPtr->c == 3 then tensorSumArrLength >= srcDescPtr->n * 4) [in] roiTensorPtrSrc ROI data in HOST memory, for each image in source tensor (2D tensor of size batchSize * 4, in either format - XYWH(xy.x, xy.y, roiWidth, roiHeight) or LTRB(lt.x, lt.y, rb.x, rb.y)) | (Restrictions - roiTensorPtrSrc[i].xywhROI.roiWidth <= 3840 and roiTensorPtrSrc[i].xywhROI.roiHeight <= 2160) [in] roiType ROI type used (RpptRoiType::XYWH or RpptRoiType::LTRB) [in] rppHandle RPP HOST handle created with rppCreateWithBatchSize()
- Returns
- A
RppStatus
enumeration.
- Return values
-
RPP_SUCCESS Successful completion. RPP_ERROR* Unsuccessful completion.
◆ rppt_threshold_gpu()
RppStatus rppt_threshold_gpu | ( | RppPtr_t | srcPtr, |
RpptDescPtr | srcDescPtr, | ||
RppPtr_t | dstPtr, | ||
RpptDescPtr | dstDescPtr, | ||
Rpp32f * | minTensor, | ||
Rpp32f * | maxTensor, | ||
RpptROIPtr | roiTensorPtrSrc, | ||
RpptRoiType | roiType, | ||
rppHandle_t | rppHandle | ||
) |
Threshold augmentation on HIP backend for a NCHW/NHWC layout tensor.
The Threshold augmentation outputs a black/white binary mask image, based on whether or not each pixel is within the user-specified pixel-range bounds, for a batch of RGB(3 channel) / greyscale(1 channel) images with an NHWC/NCHW tensor layout.
- srcPtr depth ranges - Rpp8u (0 to 255), Rpp16f (0 to 1), Rpp32f (0 to 1), Rpp8s (-128 to 127).
- dstPtr depth ranges - Will be same depth as srcPtr.
Note: Returns a black image for below 2 cases:- If the minimum cutoff value greater than the maximum cutoff value for the given input in a batch.
- Values provided for minimum cutoff value, maximum cutoff value are beyond the below specified min and max values.
Rpp8u (0 to 255), Rpp16f (0 to 1), Rpp32f (0 to 1), Rpp8s (-128 to 127).Sample InputSample Output- Parameters
-
[in] srcPtr source tensor in HIP memory [in] srcDescPtr source tensor descriptor (Restrictions - numDims = 4, offsetInBytes >= 0, dataType = U8/F16/F32/I8, layout = NCHW/NHWC, c = 1/3) [out] dstPtr destination tensor in HIP memory [in] dstDescPtr destination tensor descriptor (Restrictions - numDims = 4, offsetInBytes >= 0, dataType = U8/F16/F32/I8, layout = NCHW/NHWC, c = same as that of srcDescPtr) [in] minTensor minimum cutoff value (1D tensor in pinned/HIP memory, of size batchSize * channels) - minTensor ranges - Rpp8u (0 to 255), Rpp16f (0 to 1), Rpp32f (0 to 1), Rpp8s (-128 to 127). [in] maxTensor maximum cutoff value (1D tensor in pinned/HIP memory, of size batchSize * channels) - maxTensor ranges - Rpp8u (0 to 255), Rpp16f (0 to 1), Rpp32f (0 to 1), Rpp8s (-128 to 127). [in] roiTensorPtrSrc ROI data in HIP memory, for each image in source tensor (2D tensor of size batchSize * 4, in either format - XYWH(xy.x, xy.y, roiWidth, roiHeight) or LTRB(lt.x, lt.y, rb.x, rb.y)) | (Restrictions - roiTensorSrc[i].xywhROI.roiWidth <= 3840 and roiTensorSrc[i].xywhROI.roiHeight <= 2160) [in] roiType ROI type used (RpptRoiType::XYWH or RpptRoiType::LTRB) [in] rppHandle RPP HIP handle created with rppCreateWithStreamAndBatchSize()
- Returns
- A
RppStatus
enumeration.
- Return values
-
RPP_SUCCESS Successful completion. RPP_ERROR* Unsuccessful completion.
- If the minimum cutoff value greater than the maximum cutoff value for the given input in a batch.
◆ rppt_threshold_host()
RppStatus rppt_threshold_host | ( | RppPtr_t | srcPtr, |
RpptDescPtr | srcDescPtr, | ||
RppPtr_t | dstPtr, | ||
RpptDescPtr | dstDescPtr, | ||
Rpp32f * | minTensor, | ||
Rpp32f * | maxTensor, | ||
RpptROIPtr | roiTensorPtrSrc, | ||
RpptRoiType | roiType, | ||
rppHandle_t | rppHandle | ||
) |
Threshold augmentation on HOST backend for a NCHW/NHWC layout tensor.
The Threshold augmentation outputs a black/white binary mask image, based on whether or not each pixel is within the user-specified pixel-range bounds, for a batch of RGB(3 channel) / greyscale(1 channel) images with an NHWC/NCHW tensor layout.
- srcPtr depth ranges - Rpp8u (0 to 255), Rpp16f (0 to 1), Rpp32f (0 to 1), Rpp8s (-128 to 127).
- dstPtr depth ranges - Will be same depth as srcPtr.
Note: Returns a black image for below 2 cases:- If the minimum cutoff value greater than the maximum cutoff value for the given input in a batch.
- Values provided for minimum cutoff value, maximum cutoff value are beyond the below specified min and max values.
Rpp8u (0 to 255), Rpp16f (0 to 1), Rpp32f (0 to 1), Rpp8s (-128 to 127).Sample InputSample Output- Parameters
-
[in] srcPtr source tensor in HOST memory [in] srcDescPtr source tensor descriptor (Restrictions - numDims = 4, offsetInBytes >= 0, dataType = U8/F16/F32/I8, layout = NCHW/NHWC, c = 1/3) [out] dstPtr destination tensor in HOST memory [in] dstDescPtr destination tensor descriptor (Restrictions - numDims = 4, offsetInBytes >= 0, dataType = U8/F16/F32/I8, layout = NCHW/NHWC, c = same as that of srcDescPtr) [in] minTensor minimum cutoff value (1D tensor in HOST memory, of size batchSize * channels) - minTensor ranges - Rpp8u (0 to 255), Rpp16f (0 to 1), Rpp32f (0 to 1), Rpp8s (-128 to 127). [in] maxTensor maximum cutoff value (1D tensor in HOST memory, of size batchSize * channels) - maxTensor ranges - Rpp8u (0 to 255), Rpp16f (0 to 1), Rpp32f (0 to 1), Rpp8s (-128 to 127). [in] roiTensorPtrSrc ROI data in HOST memory, for each image in source tensor (2D tensor of size batchSize * 4, in either format - XYWH(xy.x, xy.y, roiWidth, roiHeight) or LTRB(lt.x, lt.y, rb.x, rb.y)) [in] roiType ROI type used (RpptRoiType::XYWH or RpptRoiType::LTRB) [in] rppHandle RPP HOST handle created with rppCreateWithBatchSize()
- Returns
- A
RppStatus
enumeration.
- Return values
-
RPP_SUCCESS Successful completion. RPP_ERROR* Unsuccessful completion.
- If the minimum cutoff value greater than the maximum cutoff value for the given input in a batch.