RPPT Tensor Operations - Statistical Operations.

RPPT Tensor Operations - Statistical Operations.#

RPP: RPPT Tensor Operations - Statistical Operations.
RPPT Tensor Operations - Statistical Operations.

RPPT Tensor Operations - Statistical Operations. More...

Functions

RppStatus rppt_tensor_sum_host (RppPtr_t srcPtr, RpptDescPtr srcDescPtr, RppPtr_t tensorSumArr, Rpp32u tensorSumArrLength, RpptROIPtr roiTensorPtrSrc, RpptRoiType roiType, rppHandle_t rppHandle)
 Tensor sum operation on HOST backend for a NCHW/NHWC layout tensor. More...
 
RppStatus rppt_tensor_sum_gpu (RppPtr_t srcPtr, RpptDescPtr srcDescPtr, RppPtr_t tensorSumArr, Rpp32u tensorSumArrLength, RpptROIPtr roiTensorPtrSrc, RpptRoiType roiType, rppHandle_t rppHandle)
 Tensor sum operation on HIP backend for a NCHW/NHWC layout tensor. More...
 
RppStatus rppt_tensor_min_host (RppPtr_t srcPtr, RpptDescPtr srcDescPtr, RppPtr_t minArr, Rpp32u minArrLength, RpptROIPtr roiTensorPtrSrc, RpptRoiType roiType, rppHandle_t rppHandle)
 Tensor min operation on HOST backend for a NCHW/NHWC layout tensor. More...
 
RppStatus rppt_tensor_min_gpu (RppPtr_t srcPtr, RpptDescPtr srcDescPtr, RppPtr_t imageMinArr, Rpp32u imageMinArrLength, RpptROIPtr roiTensorPtrSrc, RpptRoiType roiType, rppHandle_t rppHandle)
 Tensor min operation on HIP backend for a NCHW/NHWC layout tensor. More...
 
RppStatus rppt_tensor_max_host (RppPtr_t srcPtr, RpptDescPtr srcDescPtr, RppPtr_t maxArr, Rpp32u maxArrLength, RpptROIPtr roiTensorPtrSrc, RpptRoiType roiType, rppHandle_t rppHandle)
 Tensor max operation on HOST backend for a NCHW/NHWC layout tensor. More...
 
RppStatus rppt_tensor_max_gpu (RppPtr_t srcPtr, RpptDescPtr srcDescPtr, RppPtr_t imageMaxArr, Rpp32u imageMaxArrLength, RpptROIPtr roiTensorPtrSrc, RpptRoiType roiType, rppHandle_t rppHandle)
 Tensor max operation on HIP backend for a NCHW/NHWC layout tensor. More...
 
RppStatus rppt_normalize_host (RppPtr_t srcPtr, RpptGenericDescPtr srcGenericDescPtr, RppPtr_t dstPtr, RpptGenericDescPtr dstGenericDescPtr, Rpp32u axisMask, Rpp32f *meanTensor, Rpp32f *stdDevTensor, Rpp8u computeMeanStddev, Rpp32f scale, Rpp32f shift, Rpp32u *roiTensor, rppHandle_t rppHandle)
 Normalize Generic augmentation on HOST backend. More...
 
RppStatus rppt_normalize_gpu (RppPtr_t srcPtr, RpptGenericDescPtr srcGenericDescPtr, RppPtr_t dstPtr, RpptGenericDescPtr dstGenericDescPtr, Rpp32u axisMask, Rpp32f *meanTensor, Rpp32f *stdDevTensor, Rpp8u computeMeanStddev, Rpp32f scale, Rpp32f shift, Rpp32u *roiTensor, rppHandle_t rppHandle)
 Normalize Generic augmentation on HIP backend. More...
 
RppStatus rppt_tensor_mean_host (RppPtr_t srcPtr, RpptDescPtr srcDescPtr, RppPtr_t tensorMeanArr, Rpp32u tensorMeanArrLength, RpptROIPtr roiTensorPtrSrc, RpptRoiType roiType, rppHandle_t rppHandle)
 Tensor mean operation on HOST backend for a NCHW/NHWC layout tensor. More...
 
RppStatus rppt_tensor_mean_gpu (RppPtr_t srcPtr, RpptDescPtr srcDescPtr, RppPtr_t tensorMeanArr, Rpp32u tensorMeanArrLength, RpptROIPtr roiTensorPtrSrc, RpptRoiType roiType, rppHandle_t rppHandle)
 Tensor mean operation on HIP backend for a NCHW/NHWC layout tensor. More...
 
RppStatus rppt_tensor_stddev_host (RppPtr_t srcPtr, RpptDescPtr srcDescPtr, RppPtr_t tensorStddevArr, Rpp32u tensorStddevArrLength, Rpp32f *meanTensor, RpptROIPtr roiTensorPtrSrc, RpptRoiType roiType, rppHandle_t rppHandle)
 Tensor stddev operation on HOST backend for a NCHW/NHWC layout tensor. More...
 
RppStatus rppt_tensor_stddev_gpu (RppPtr_t srcPtr, RpptDescPtr srcDescPtr, RppPtr_t tensorStddevArr, Rpp32u tensorStddevArrLength, Rpp32f *meanTensor, RpptROIPtr roiTensorPtrSrc, RpptRoiType roiType, rppHandle_t rppHandle)
 Tensor stddev operation on HIP backend for a NCHW/NHWC layout tensor. More...
 
RppStatus rppt_threshold_host (RppPtr_t srcPtr, RpptDescPtr srcDescPtr, RppPtr_t dstPtr, RpptDescPtr dstDescPtr, Rpp32f *minTensor, Rpp32f *maxTensor, RpptROIPtr roiTensorPtrSrc, RpptRoiType roiType, rppHandle_t rppHandle)
 Threshold augmentation on HOST backend for a NCHW/NHWC layout tensor. More...
 
RppStatus rppt_threshold_gpu (RppPtr_t srcPtr, RpptDescPtr srcDescPtr, RppPtr_t dstPtr, RpptDescPtr dstDescPtr, Rpp32f *minTensor, Rpp32f *maxTensor, RpptROIPtr roiTensorPtrSrc, RpptRoiType roiType, rppHandle_t rppHandle)
 Threshold augmentation on HIP backend for a NCHW/NHWC layout tensor. More...
 

Detailed Description

RPPT Tensor Operations - Statistical Operations.

Function Documentation

◆ rppt_normalize_gpu()

RppStatus rppt_normalize_gpu ( RppPtr_t  srcPtr,
RpptGenericDescPtr  srcGenericDescPtr,
RppPtr_t  dstPtr,
RpptGenericDescPtr  dstGenericDescPtr,
Rpp32u  axisMask,
Rpp32f meanTensor,
Rpp32f stdDevTensor,
Rpp8u  computeMeanStddev,
Rpp32f  scale,
Rpp32f  shift,
Rpp32u roiTensor,
rppHandle_t  rppHandle 
)

Normalize Generic augmentation on HIP backend.

Normalizes the input generic ND buffer by removing the mean and dividing by the standard deviation for a given ND Tensor.

Parameters
[in]srcPtrsource tensor memory in HIP memory
[in]srcGenericDescPtrsource tensor descriptor
[out]dstPtrdestination tensor memory in HIP memory
[in]dstGenericDescPtrdestination tensor descriptor
[in]axisMaskaxis along which normalization needs to be done
[in]meanTensorvalues to be subtracted from input
[in]stdDevTensorstandard deviation values to scale the input
[in]computeMeanStddevflag to represent internal computation of mean, stddev (Wherein 0th bit used to represent computeMean and 1st bit for computeStddev, 0- Externally provided)
[in]scalevalue to be multiplied with data after subtracting from mean
[in]shiftvalue to be added finally
[in]roiTensorvalues to represent dimensions of input tensor
[in]rppHandleRPP HIP handle created with rppCreateWithStreamAndBatchSize()
Returns
A RppStatus enumeration.
Return values
RPP_SUCCESSSuccessful completion.
RPP_ERROR*Unsuccessful completion.

◆ rppt_normalize_host()

RppStatus rppt_normalize_host ( RppPtr_t  srcPtr,
RpptGenericDescPtr  srcGenericDescPtr,
RppPtr_t  dstPtr,
RpptGenericDescPtr  dstGenericDescPtr,
Rpp32u  axisMask,
Rpp32f meanTensor,
Rpp32f stdDevTensor,
Rpp8u  computeMeanStddev,
Rpp32f  scale,
Rpp32f  shift,
Rpp32u roiTensor,
rppHandle_t  rppHandle 
)

Normalize Generic augmentation on HOST backend.

Normalizes the input generic ND buffer by removing the mean and dividing by the standard deviation for a given ND Tensor. Supports u8->f32, i8->f32, f16->f16 and f32->f32 datatypes. Also has toggle variant(NHWC->NCHW) support for 3D.

Parameters
[in]srcPtrsource tensor memory in HOST memory
[in]srcGenericDescPtrsource tensor descriptor
[out]dstPtrdestination tensor memory in HOST memory
[in]dstGenericDescPtrdestination tensor descriptor
[in]axisMaskaxis along which normalization needs to be done
[in]meanTensorvalues to be subtracted from input
[in]stdDevTensorstandard deviation values to scale the input
[in]computeMeanStddevflag to represent internal computation of mean, stddev (Wherein 0th bit used to represent computeMean and 1st bit for computeStddev, 0- Externally provided)
[in]scalevalue to be multiplied with data after subtracting from mean
[in]shiftvalue to be added finally
[in]roiTensorvalues to represent dimensions of input tensor
[in]rppHandleRPP HOST handle created with rppCreateWithBatchSize()
Returns
A RppStatus enumeration.
Return values
RPP_SUCCESSSuccessful completion.
RPP_ERROR*Unsuccessful completion.

◆ rppt_tensor_max_gpu()

RppStatus rppt_tensor_max_gpu ( RppPtr_t  srcPtr,
RpptDescPtr  srcDescPtr,
RppPtr_t  imageMaxArr,
Rpp32u  imageMaxArrLength,
RpptROIPtr  roiTensorPtrSrc,
RpptRoiType  roiType,
rppHandle_t  rppHandle 
)

Tensor max operation on HIP backend for a NCHW/NHWC layout tensor.

The tensor max is a reduction operation that finds the channel-wise (R max / G max / B max) and overall max for each image in a batch of RGB(3 channel) / greyscale(1 channel) images with an NHWC/NCHW tensor layout.

  • srcPtr depth ranges - Rpp8u (0 to 255), Rpp16f (0 to 1), Rpp32f (0 to 1), Rpp8s (-128 to 127).
  • dstPtr depth ranges - Will be same depth as srcPtr.
    Parameters
    [in]srcPtrsource tensor in HIP memory
    [in]srcDescPtrsource tensor descriptor (Restrictions - numDims = 4, offsetInBytes >= 0, dataType = U8/F16/F32/I8, layout = NCHW/NHWC, c = 1/3)
    [out]maxArrdestination array in HIP memory
    [in]maxArrLengthlength of provided destination array (Restrictions - if srcDescPtr->c == 1 then tensorSumArrLength >= srcDescPtr->n, and if srcDescPtr->c == 3 then tensorSumArrLength >= srcDescPtr->n * 4)
    [in]roiTensorPtrSrcROI data in HIP memory, for each image in source tensor (2D tensor of size batchSize * 4, in either format - XYWH(xy.x, xy.y, roiWidth, roiHeight) or LTRB(lt.x, lt.y, rb.x, rb.y)) | (Restrictions - roiTensorPtrSrc[i].xywhROI.roiWidth <= 3840 and roiTensorPtrSrc[i].xywhROI.roiHeight <= 2160)
    [in]roiTypeROI type used (RpptRoiType::XYWH or RpptRoiType::LTRB)
    [in]rppHandleRPP HIP handle created with rppCreateWithBatchSize()
    Returns
    A RppStatus enumeration.
    Return values
    RPP_SUCCESSSuccessful completion.
    RPP_ERROR*Unsuccessful completion.

◆ rppt_tensor_max_host()

RppStatus rppt_tensor_max_host ( RppPtr_t  srcPtr,
RpptDescPtr  srcDescPtr,
RppPtr_t  maxArr,
Rpp32u  maxArrLength,
RpptROIPtr  roiTensorPtrSrc,
RpptRoiType  roiType,
rppHandle_t  rppHandle 
)

Tensor max operation on HOST backend for a NCHW/NHWC layout tensor.

The tensor max is a reduction operation that finds the channel-wise (R max / G max / B max) and overall max for each image in a batch of RGB(3 channel) / greyscale(1 channel) images with an NHWC/NCHW tensor layout.

  • srcPtr depth ranges - Rpp8u (0 to 255), Rpp16f (0 to 1), Rpp32f (0 to 1), Rpp8s (-128 to 127).
  • dstPtr depth ranges - Will be same depth as srcPtr.
    Parameters
    [in]srcPtrsource tensor in HOST memory
    [in]srcDescPtrsource tensor descriptor (Restrictions - numDims = 4, offsetInBytes >= 0, dataType = U8/F16/F32/I8, layout = NCHW/NHWC, c = 1/3)
    [out]maxArrdestination array in HOST memory
    [in]maxArrLengthlength of provided destination array (Restrictions - if srcDescPtr->c == 1 then tensorSumArrLength >= srcDescPtr->n, and if srcDescPtr->c == 3 then tensorSumArrLength >= srcDescPtr->n * 4)
    [in]roiTensorPtrSrcROI data in HOST memory, for each image in source tensor (2D tensor of size batchSize * 4, in either format - XYWH(xy.x, xy.y, roiWidth, roiHeight) or LTRB(lt.x, lt.y, rb.x, rb.y)) | (Restrictions - roiTensorPtrSrc[i].xywhROI.roiWidth <= 3840 and roiTensorPtrSrc[i].xywhROI.roiHeight <= 2160)
    [in]roiTypeROI type used (RpptRoiType::XYWH or RpptRoiType::LTRB)
    [in]rppHandleRPP HOST handle created with rppCreateWithBatchSize()
    Returns
    A RppStatus enumeration.
    Return values
    RPP_SUCCESSSuccessful completion.
    RPP_ERROR*Unsuccessful completion.

◆ rppt_tensor_mean_gpu()

RppStatus rppt_tensor_mean_gpu ( RppPtr_t  srcPtr,
RpptDescPtr  srcDescPtr,
RppPtr_t  tensorMeanArr,
Rpp32u  tensorMeanArrLength,
RpptROIPtr  roiTensorPtrSrc,
RpptRoiType  roiType,
rppHandle_t  rppHandle 
)

Tensor mean operation on HIP backend for a NCHW/NHWC layout tensor.

The tensor mean is a reduction operation that finds the channel-wise (R mean / G mean / B mean) and total mean for each image in a batch of RGB(3 channel) / greyscale(1 channel) images with an NHWC/NCHW tensor layout.

  • srcPtr depth ranges - Rpp8u (0 to 255), Rpp16f (0 to 1), Rpp32f (0 to 1), Rpp8s (-128 to 127).
  • dstPtr depth ranges - Will be same depth as srcPtr.
    Parameters
    [in]srcPtrsource tensor in HIP memory
    [in]srcDescPtrsource tensor descriptor (Restrictions - numDims = 4, offsetInBytes >= 0, dataType = U8/F16/F32/I8, layout = NCHW/NHWC, c = 1/3)
    [out]tensorMeanArrdestination array in HIP memory
    [in]tensorMeanArrLengthlength of provided destination array (Restrictions - if srcDescPtr->c == 1 then tensorMeanArrLength = srcDescPtr->n, and if srcDescPtr->c == 3 then tensorMeanArrLength = srcDescPtr->n * 4)
    [in]roiTensorPtrSrcROI data in HIP memory, for each image in source tensor (2D tensor of size batchSize * 4, in either format - XYWH(xy.x, xy.y, roiWidth, roiHeight) or LTRB(lt.x, lt.y, rb.x, rb.y)) | (Restrictions - roiTensorPtrSrc[i].xywhROI.roiWidth <= 3840 and roiTensorPtrSrc[i].xywhROI.roiHeight <= 2160)
    [in]roiTypeROI type used (RpptRoiType::XYWH or RpptRoiType::LTRB)
    [in]rppHandleRPP HIP handle created with rppCreateWithStreamAndBatchSize()
    Returns
    A RppStatus enumeration.
    Return values
    RPP_SUCCESSSuccessful completion.
    RPP_ERROR*Unsuccessful completion.

◆ rppt_tensor_mean_host()

RppStatus rppt_tensor_mean_host ( RppPtr_t  srcPtr,
RpptDescPtr  srcDescPtr,
RppPtr_t  tensorMeanArr,
Rpp32u  tensorMeanArrLength,
RpptROIPtr  roiTensorPtrSrc,
RpptRoiType  roiType,
rppHandle_t  rppHandle 
)

Tensor mean operation on HOST backend for a NCHW/NHWC layout tensor.

The tensor mean is a reduction operation that finds the channel-wise (R mean / G mean / B mean) and total mean for each image in a batch of RGB(3 channel) / greyscale(1 channel) images with an NHWC/NCHW tensor layout.

  • srcPtr depth ranges - Rpp8u (0 to 255), Rpp16f (0 to 1), Rpp32f (0 to 1), Rpp8s (-128 to 127).
  • dstPtr depth ranges - Will be same depth as srcPtr.
    Parameters
    [in]srcPtrsource tensor in HOST memory
    [in]srcDescPtrsource tensor descriptor (Restrictions - numDims = 4, offsetInBytes >= 0, dataType = U8/F16/F32/I8, layout = NCHW/NHWC, c = 1/3)
    [out]tensorMeanArrdestination array in HOST memory
    [in]tensorMeanArrLengthlength of provided destination array (Restrictions - if srcDescPtr->c == 1 then tensorMeanArrLength = srcDescPtr->n, and if srcDescPtr->c == 3 then tensorMeanArrLength = srcDescPtr->n * 4)
    [in]roiTensorPtrSrcROI data in HOST memory, for each image in source tensor (2D tensor of size batchSize * 4, in either format - XYWH(xy.x, xy.y, roiWidth, roiHeight) or LTRB(lt.x, lt.y, rb.x, rb.y)) | (Restrictions - roiTensorPtrSrc[i].xywhROI.roiWidth <= 3840 and roiTensorPtrSrc[i].xywhROI.roiHeight <= 2160)
    [in]roiTypeROI type used (RpptRoiType::XYWH or RpptRoiType::LTRB)
    [in]rppHandleRPP HOST handle created with rppCreateWithBatchSize()
    Returns
    A RppStatus enumeration.
    Return values
    RPP_SUCCESSSuccessful completion.
    RPP_ERROR*Unsuccessful completion.

◆ rppt_tensor_min_gpu()

RppStatus rppt_tensor_min_gpu ( RppPtr_t  srcPtr,
RpptDescPtr  srcDescPtr,
RppPtr_t  imageMinArr,
Rpp32u  imageMinArrLength,
RpptROIPtr  roiTensorPtrSrc,
RpptRoiType  roiType,
rppHandle_t  rppHandle 
)

Tensor min operation on HIP backend for a NCHW/NHWC layout tensor.

The tensor min is a reduction operation that finds the channel-wise (R min / G min / B min) and overall min for each image in a batch of RGB(3 channel) / greyscale(1 channel) images with an NHWC/NCHW tensor layout.

  • srcPtr depth ranges - Rpp8u (0 to 255), Rpp16f (0 to 1), Rpp32f (0 to 1), Rpp8s (-128 to 127).
  • dstPtr depth ranges - Will be same depth as srcPtr.
    Parameters
    [in]srcPtrsource tensor in HIP memory
    [in]srcDescPtrsource tensor descriptor (Restrictions - numDims = 4, offsetInBytes >= 0, dataType = U8/F16/F32/I8, layout = NCHW/NHWC, c = 1/3)
    [out]minArrdestination array in HIP memory
    [in]minArrLengthlength of provided destination array (Restrictions - if srcDescPtr->c == 1 then tensorSumArrLength >= srcDescPtr->n, and if srcDescPtr->c == 3 then tensorSumArrLength >= srcDescPtr->n * 4)
    [in]roiTensorPtrSrcROI data in HIP memory, for each image in source tensor (2D tensor of size batchSize * 4, in either format - XYWH(xy.x, xy.y, roiWidth, roiHeight) or LTRB(lt.x, lt.y, rb.x, rb.y)) | (Restrictions - roiTensorPtrSrc[i].xywhROI.roiWidth <= 3840 and roiTensorPtrSrc[i].xywhROI.roiHeight <= 2160)
    [in]roiTypeROI type used (RpptRoiType::XYWH or RpptRoiType::LTRB)
    [in]rppHandleRPP HIP handle created with rppCreateWithStreamAndBatchSize()
    Returns
    A RppStatus enumeration.
    Return values
    RPP_SUCCESSSuccessful completion.
    RPP_ERROR*Unsuccessful completion.

◆ rppt_tensor_min_host()

RppStatus rppt_tensor_min_host ( RppPtr_t  srcPtr,
RpptDescPtr  srcDescPtr,
RppPtr_t  minArr,
Rpp32u  minArrLength,
RpptROIPtr  roiTensorPtrSrc,
RpptRoiType  roiType,
rppHandle_t  rppHandle 
)

Tensor min operation on HOST backend for a NCHW/NHWC layout tensor.

The tensor min is a reduction operation that finds the channel-wise (R min / G min / B min) and overall min for each image in a batch of RGB(3 channel) / greyscale(1 channel) images with an NHWC/NCHW tensor layout.

  • srcPtr depth ranges - Rpp8u (0 to 255), Rpp16f (0 to 1), Rpp32f (0 to 1), Rpp8s (-128 to 127).
  • dstPtr depth ranges - Will be same depth as srcPtr.
    Parameters
    [in]srcPtrsource tensor in HOST memory
    [in]srcDescPtrsource tensor descriptor (Restrictions - numDims = 4, offsetInBytes >= 0, dataType = U8/F16/F32/I8, layout = NCHW/NHWC, c = 1/3)
    [out]minArrdestination array in HOST memory
    [in]minArrLengthlength of provided destination array (Restrictions - if srcDescPtr->c == 1 then tensorSumArrLength >= srcDescPtr->n, and if srcDescPtr->c == 3 then tensorSumArrLength >= srcDescPtr->n * 4)
    [in]roiTensorPtrSrcROI data in HOST memory, for each image in source tensor (2D tensor of size batchSize * 4, in either format - XYWH(xy.x, xy.y, roiWidth, roiHeight) or LTRB(lt.x, lt.y, rb.x, rb.y)) | (Restrictions - roiTensorPtrSrc[i].xywhROI.roiWidth <= 3840 and roiTensorPtrSrc[i].xywhROI.roiHeight <= 2160)
    [in]roiTypeROI type used (RpptRoiType::XYWH or RpptRoiType::LTRB)
    [in]rppHandleRPP HOST handle created with rppCreateWithBatchSize()
    Returns
    A RppStatus enumeration.
    Return values
    RPP_SUCCESSSuccessful completion.
    RPP_ERROR*Unsuccessful completion.

◆ rppt_tensor_stddev_gpu()

RppStatus rppt_tensor_stddev_gpu ( RppPtr_t  srcPtr,
RpptDescPtr  srcDescPtr,
RppPtr_t  tensorStddevArr,
Rpp32u  tensorStddevArrLength,
Rpp32f meanTensor,
RpptROIPtr  roiTensorPtrSrc,
RpptRoiType  roiType,
rppHandle_t  rppHandle 
)

Tensor stddev operation on HIP backend for a NCHW/NHWC layout tensor.

The tensor stddev is a reduction operation that finds the channel-wise (R stddev / G stddev / B stddev) and total standard deviation for each image with respect to meanTensor passed.

  • srcPtr depth ranges - Rpp8u (0 to 255), Rpp16f (0 to 1), Rpp32f (0 to 1), Rpp8s (-128 to 127).
  • dstPtr depth ranges - Will be same depth as srcPtr.
    Parameters
    [in]srcPtrsource tensor in HIP memory
    [in]srcDescPtrsource tensor descriptor (Restrictions - numDims = 4, offsetInBytes >= 0, dataType = U8/F16/F32/I8, layout = NCHW/NHWC, c = 1/3)
    [out]tensorStddevArrdestination array in HIP memory
    [in]tensorStddevArrLengthlength of provided destination array (Restrictions - if srcDescPtr->c == 1 then tensorStddevArrLength = srcDescPtr->n, and if srcDescPtr->c == 3 then tensorStddevArrLength = srcDescPtr->n * 4)
    [in]meanTensormean values for stddev calculation (1D tensor of size batchSize * 4 in format (MeanR, MeanG, MeanB, MeanImage) for each image in batch)
    [in]roiTensorPtrSrcROI data in HIP memory, for each image in source tensor (2D tensor of size batchSize * 4, in either format - XYWH(xy.x, xy.y, roiWidth, roiHeight) or LTRB(lt.x, lt.y, rb.x, rb.y)) | (Restrictions - roiTensorPtrSrc[i].xywhROI.roiWidth <= 3840 and roiTensorPtrSrc[i].xywhROI.roiHeight <= 2160)
    [in]roiTypeROI type used (RpptRoiType::XYWH or RpptRoiType::LTRB)
    [in]rppHandleRPP HIP handle created with rppCreateWithStreamAndBatchSize()
    Returns
    A RppStatus enumeration.
    Return values
    RPP_SUCCESSSuccessful completion.
    RPP_ERROR*Unsuccessful completion.

◆ rppt_tensor_stddev_host()

RppStatus rppt_tensor_stddev_host ( RppPtr_t  srcPtr,
RpptDescPtr  srcDescPtr,
RppPtr_t  tensorStddevArr,
Rpp32u  tensorStddevArrLength,
Rpp32f meanTensor,
RpptROIPtr  roiTensorPtrSrc,
RpptRoiType  roiType,
rppHandle_t  rppHandle 
)

Tensor stddev operation on HOST backend for a NCHW/NHWC layout tensor.

The tensor stddev is a reduction operation that finds the channel-wise (R stddev / G stddev / B stddev) and total standard deviation for each image with respect to meanTensor passed.

  • srcPtr depth ranges - Rpp8u (0 to 255), Rpp16f (0 to 1), Rpp32f (0 to 1), Rpp8s (-128 to 127).
  • dstPtr depth ranges - Will be same depth as srcPtr.
    Parameters
    [in]srcPtrsource tensor in HOST memory
    [in]srcDescPtrsource tensor descriptor (Restrictions - numDims = 4, offsetInBytes >= 0, dataType = U8/F16/F32/I8, layout = NCHW/NHWC, c = 1/3)
    [out]tensorStddevArrdestination array in HOST memory
    [in]tensorStddevArrLengthlength of provided destination array (Restrictions - if srcDescPtr->c == 1 then tensorStddevArrLength = srcDescPtr->n, and if srcDescPtr->c == 3 then tensorStddevArrLength = srcDescPtr->n * 4)
    [in]meanTensormean values for stddev calculation (1D tensor of size batchSize * 4 in format (MeanR, MeanG, MeanB, MeanImage) for each image in batch)
    [in]roiTensorPtrSrcROI data in HOST memory, for each image in source tensor (2D tensor of size batchSize * 4, in either format - XYWH(xy.x, xy.y, roiWidth, roiHeight) or LTRB(lt.x, lt.y, rb.x, rb.y)) | (Restrictions - roiTensorPtrSrc[i].xywhROI.roiWidth <= 3840 and roiTensorPtrSrc[i].xywhROI.roiHeight <= 2160)
    [in]roiTypeROI type used (RpptRoiType::XYWH or RpptRoiType::LTRB)
    [in]rppHandleRPP HOST handle created with rppCreateWithBatchSize()
    Returns
    A RppStatus enumeration.
    Return values
    RPP_SUCCESSSuccessful completion.
    RPP_ERROR*Unsuccessful completion.

◆ rppt_tensor_sum_gpu()

RppStatus rppt_tensor_sum_gpu ( RppPtr_t  srcPtr,
RpptDescPtr  srcDescPtr,
RppPtr_t  tensorSumArr,
Rpp32u  tensorSumArrLength,
RpptROIPtr  roiTensorPtrSrc,
RpptRoiType  roiType,
rppHandle_t  rppHandle 
)

Tensor sum operation on HIP backend for a NCHW/NHWC layout tensor.

The tensor sum is a reduction operation that finds the channel-wise (R sum / G sum / B sum) and total sum for each image in a batch of RGB(3 channel) / greyscale(1 channel) images with an NHWC/NCHW tensor layout.

  • srcPtr depth ranges - Rpp8u (0 to 255), Rpp16f (0 to 1), Rpp32f (0 to 1), Rpp8s (-128 to 127).
  • dstPtr depth ranges - Will be same depth as srcPtr.
    Parameters
    [in]srcPtrsource tensor in HIP memory
    [in]srcDescPtrsource tensor descriptor (Restrictions - numDims = 4, offsetInBytes >= 0, dataType = U8/F16/F32/I8, layout = NCHW/NHWC, c = 1/3)
    [out]tensorSumArrdestination array in HIP memory
    [in]tensorSumArrLengthlength of provided destination array (Restrictions - if srcDescPtr->c == 1 then tensorSumArrLength >= srcDescPtr->n, and if srcDescPtr->c == 3 then tensorSumArrLength >= srcDescPtr->n * 4)
    [in]roiTensorPtrSrcROI data in HIP memory, for each image in source tensor (2D tensor of size batchSize * 4, in either format - XYWH(xy.x, xy.y, roiWidth, roiHeight) or LTRB(lt.x, lt.y, rb.x, rb.y)) | (Restrictions - roiTensorPtrSrc[i].xywhROI.roiWidth <= 3840 and roiTensorPtrSrc[i].xywhROI.roiHeight <= 2160)
    [in]roiTypeROI type used (RpptRoiType::XYWH or RpptRoiType::LTRB)
    [in]rppHandleRPP HIP handle created with rppCreateWithStreamAndBatchSize()
    Returns
    A RppStatus enumeration.
    Return values
    RPP_SUCCESSSuccessful completion.
    RPP_ERROR*Unsuccessful completion.

◆ rppt_tensor_sum_host()

RppStatus rppt_tensor_sum_host ( RppPtr_t  srcPtr,
RpptDescPtr  srcDescPtr,
RppPtr_t  tensorSumArr,
Rpp32u  tensorSumArrLength,
RpptROIPtr  roiTensorPtrSrc,
RpptRoiType  roiType,
rppHandle_t  rppHandle 
)

Tensor sum operation on HOST backend for a NCHW/NHWC layout tensor.

The tensor sum is a reduction operation that finds the channel-wise (R sum / G sum / B sum) and total sum for each image in a batch of RGB(3 channel) / greyscale(1 channel) images with an NHWC/NCHW tensor layout.

  • srcPtr depth ranges - Rpp8u (0 to 255), Rpp16f (0 to 1), Rpp32f (0 to 1), Rpp8s (-128 to 127).
  • dstPtr depth ranges - Will be same depth as srcPtr.
    Parameters
    [in]srcPtrsource tensor in HOST memory
    [in]srcDescPtrsource tensor descriptor (Restrictions - numDims = 4, offsetInBytes >= 0, dataType = U8/F16/F32/I8, layout = NCHW/NHWC, c = 1/3)
    [out]tensorSumArrdestination array in HOST memory
    [in]tensorSumArrLengthlength of provided destination array (Restrictions - if srcDescPtr->c == 1 then tensorSumArrLength >= srcDescPtr->n, and if srcDescPtr->c == 3 then tensorSumArrLength >= srcDescPtr->n * 4)
    [in]roiTensorPtrSrcROI data in HOST memory, for each image in source tensor (2D tensor of size batchSize * 4, in either format - XYWH(xy.x, xy.y, roiWidth, roiHeight) or LTRB(lt.x, lt.y, rb.x, rb.y)) | (Restrictions - roiTensorPtrSrc[i].xywhROI.roiWidth <= 3840 and roiTensorPtrSrc[i].xywhROI.roiHeight <= 2160)
    [in]roiTypeROI type used (RpptRoiType::XYWH or RpptRoiType::LTRB)
    [in]rppHandleRPP HOST handle created with rppCreateWithBatchSize()
    Returns
    A RppStatus enumeration.
    Return values
    RPP_SUCCESSSuccessful completion.
    RPP_ERROR*Unsuccessful completion.

◆ rppt_threshold_gpu()

RppStatus rppt_threshold_gpu ( RppPtr_t  srcPtr,
RpptDescPtr  srcDescPtr,
RppPtr_t  dstPtr,
RpptDescPtr  dstDescPtr,
Rpp32f minTensor,
Rpp32f maxTensor,
RpptROIPtr  roiTensorPtrSrc,
RpptRoiType  roiType,
rppHandle_t  rppHandle 
)

Threshold augmentation on HIP backend for a NCHW/NHWC layout tensor.

The Threshold augmentation outputs a black/white binary mask image, based on whether or not each pixel is within the user-specified pixel-range bounds, for a batch of RGB(3 channel) / greyscale(1 channel) images with an NHWC/NCHW tensor layout.

  • srcPtr depth ranges - Rpp8u (0 to 255), Rpp16f (0 to 1), Rpp32f (0 to 1), Rpp8s (-128 to 127).
  • dstPtr depth ranges - Will be same depth as srcPtr.
    Note: Returns a black image for below 2 cases:
    1. If the minimum cutoff value greater than the maximum cutoff value for the given input in a batch.
    2. Values provided for minimum cutoff value, maximum cutoff value are beyond the below specified min and max values.
      Rpp8u (0 to 255), Rpp16f (0 to 1), Rpp32f (0 to 1), Rpp8s (-128 to 127).
      Sample Input
      Sample Output
      Parameters
      [in]srcPtrsource tensor in HIP memory
      [in]srcDescPtrsource tensor descriptor (Restrictions - numDims = 4, offsetInBytes >= 0, dataType = U8/F16/F32/I8, layout = NCHW/NHWC, c = 1/3)
      [out]dstPtrdestination tensor in HIP memory
      [in]dstDescPtrdestination tensor descriptor (Restrictions - numDims = 4, offsetInBytes >= 0, dataType = U8/F16/F32/I8, layout = NCHW/NHWC, c = same as that of srcDescPtr)
      [in]minTensorminimum cutoff value (1D tensor in pinned/HIP memory, of size batchSize * channels) - minTensor ranges - Rpp8u (0 to 255), Rpp16f (0 to 1), Rpp32f (0 to 1), Rpp8s (-128 to 127).
      [in]maxTensormaximum cutoff value (1D tensor in pinned/HIP memory, of size batchSize * channels) - maxTensor ranges - Rpp8u (0 to 255), Rpp16f (0 to 1), Rpp32f (0 to 1), Rpp8s (-128 to 127).
      [in]roiTensorPtrSrcROI data in HIP memory, for each image in source tensor (2D tensor of size batchSize * 4, in either format - XYWH(xy.x, xy.y, roiWidth, roiHeight) or LTRB(lt.x, lt.y, rb.x, rb.y)) | (Restrictions - roiTensorSrc[i].xywhROI.roiWidth <= 3840 and roiTensorSrc[i].xywhROI.roiHeight <= 2160)
      [in]roiTypeROI type used (RpptRoiType::XYWH or RpptRoiType::LTRB)
      [in]rppHandleRPP HIP handle created with rppCreateWithStreamAndBatchSize()
      Returns
      A RppStatus enumeration.
      Return values
      RPP_SUCCESSSuccessful completion.
      RPP_ERROR*Unsuccessful completion.

◆ rppt_threshold_host()

RppStatus rppt_threshold_host ( RppPtr_t  srcPtr,
RpptDescPtr  srcDescPtr,
RppPtr_t  dstPtr,
RpptDescPtr  dstDescPtr,
Rpp32f minTensor,
Rpp32f maxTensor,
RpptROIPtr  roiTensorPtrSrc,
RpptRoiType  roiType,
rppHandle_t  rppHandle 
)

Threshold augmentation on HOST backend for a NCHW/NHWC layout tensor.

The Threshold augmentation outputs a black/white binary mask image, based on whether or not each pixel is within the user-specified pixel-range bounds, for a batch of RGB(3 channel) / greyscale(1 channel) images with an NHWC/NCHW tensor layout.

  • srcPtr depth ranges - Rpp8u (0 to 255), Rpp16f (0 to 1), Rpp32f (0 to 1), Rpp8s (-128 to 127).
  • dstPtr depth ranges - Will be same depth as srcPtr.
    Note: Returns a black image for below 2 cases:
    1. If the minimum cutoff value greater than the maximum cutoff value for the given input in a batch.
    2. Values provided for minimum cutoff value, maximum cutoff value are beyond the below specified min and max values.
      Rpp8u (0 to 255), Rpp16f (0 to 1), Rpp32f (0 to 1), Rpp8s (-128 to 127).
      Sample Input
      Sample Output
      Parameters
      [in]srcPtrsource tensor in HOST memory
      [in]srcDescPtrsource tensor descriptor (Restrictions - numDims = 4, offsetInBytes >= 0, dataType = U8/F16/F32/I8, layout = NCHW/NHWC, c = 1/3)
      [out]dstPtrdestination tensor in HOST memory
      [in]dstDescPtrdestination tensor descriptor (Restrictions - numDims = 4, offsetInBytes >= 0, dataType = U8/F16/F32/I8, layout = NCHW/NHWC, c = same as that of srcDescPtr)
      [in]minTensorminimum cutoff value (1D tensor in HOST memory, of size batchSize * channels) - minTensor ranges - Rpp8u (0 to 255), Rpp16f (0 to 1), Rpp32f (0 to 1), Rpp8s (-128 to 127).
      [in]maxTensormaximum cutoff value (1D tensor in HOST memory, of size batchSize * channels) - maxTensor ranges - Rpp8u (0 to 255), Rpp16f (0 to 1), Rpp32f (0 to 1), Rpp8s (-128 to 127).
      [in]roiTensorPtrSrcROI data in HOST memory, for each image in source tensor (2D tensor of size batchSize * 4, in either format - XYWH(xy.x, xy.y, roiWidth, roiHeight) or LTRB(lt.x, lt.y, rb.x, rb.y))
      [in]roiTypeROI type used (RpptRoiType::XYWH or RpptRoiType::LTRB)
      [in]rppHandleRPP HOST handle created with rppCreateWithBatchSize()
      Returns
      A RppStatus enumeration.
      Return values
      RPP_SUCCESSSuccessful completion.
      RPP_ERROR*Unsuccessful completion.