RPPT Tensor Operations - Geometric Augmentations.

RPPT Tensor Operations - Geometric Augmentations.#

RPP: RPPT Tensor Operations - Geometric Augmentations.
RPPT Tensor Operations - Geometric Augmentations.

RPPT Tensor Operations - Geometric Augmentations. More...

Functions

RppStatus rppt_crop_host (RppPtr_t srcPtr, RpptDescPtr srcDescPtr, RppPtr_t dstPtr, RpptDescPtr dstDescPtr, RpptROIPtr roiTensorPtrSrc, RpptRoiType roiType, rppHandle_t rppHandle)
 Crop augmentation on HOST backend for a NCHW/NHWC layout tensor. More...
 
RppStatus rppt_crop_gpu (RppPtr_t srcPtr, RpptDescPtr srcDescPtr, RppPtr_t dstPtr, RpptDescPtr dstDescPtr, RpptROIPtr roiTensorPtrSrc, RpptRoiType roiType, rppHandle_t rppHandle)
 Crop augmentation on HIP backend for a NCHW/NHWC layout tensor. More...
 
RppStatus rppt_crop_mirror_normalize_host (RppPtr_t srcPtr, RpptDescPtr srcDescPtr, RppPtr_t dstPtr, RpptDescPtr dstDescPtr, Rpp32f *offsetTensor, Rpp32f *multiplierTensor, Rpp32u *mirrorTensor, RpptROIPtr roiTensorPtrSrc, RpptRoiType roiType, rppHandle_t rppHandle)
 Crop mirror normalize augmentation on HOST backend for a NCHW/NHWC layout tensor. More...
 
RppStatus rppt_crop_mirror_normalize_gpu (RppPtr_t srcPtr, RpptDescPtr srcDescPtr, RppPtr_t dstPtr, RpptDescPtr dstDescPtr, Rpp32f *offsetTensor, Rpp32f *multiplierTensor, Rpp32u *mirrorTensor, RpptROIPtr roiTensorPtrSrc, RpptRoiType roiType, rppHandle_t rppHandle)
 Crop mirror normalize augmentation on HIP backend for a NCHW/NHWC layout tensor. More...
 
RppStatus rppt_warp_affine_host (RppPtr_t srcPtr, RpptDescPtr srcDescPtr, RppPtr_t dstPtr, RpptDescPtr dstDescPtr, Rpp32f *affineTensor, RpptInterpolationType interpolationType, RpptROIPtr roiTensorPtrSrc, RpptRoiType roiType, rppHandle_t rppHandle)
 Warp affine augmentation on HOST backend for a NCHW/NHWC layout tensor. More...
 
RppStatus rppt_warp_affine_gpu (RppPtr_t srcPtr, RpptDescPtr srcDescPtr, RppPtr_t dstPtr, RpptDescPtr dstDescPtr, Rpp32f *affineTensor, RpptInterpolationType interpolationType, RpptROIPtr roiTensorPtrSrc, RpptRoiType roiType, rppHandle_t rppHandle)
 Warp affine augmentation on HIP backend for a NCHW/NHWC layout tensor. More...
 
RppStatus rppt_flip_host (RppPtr_t srcPtr, RpptDescPtr srcDescPtr, RppPtr_t dstPtr, RpptDescPtr dstDescPtr, Rpp32u *horizontalTensor, Rpp32u *verticalTensor, RpptROIPtr roiTensorPtrSrc, RpptRoiType roiType, rppHandle_t rppHandle)
 Flip augmentation on HOST backend for a NCHW/NHWC layout tensor. More...
 
RppStatus rppt_flip_gpu (RppPtr_t srcPtr, RpptDescPtr srcDescPtr, RppPtr_t dstPtr, RpptDescPtr dstDescPtr, Rpp32u *horizontalTensor, Rpp32u *verticalTensor, RpptROIPtr roiTensorPtrSrc, RpptRoiType roiType, rppHandle_t rppHandle)
 Flip augmentation on HIP backend for a NCHW/NHWC layout tensor. More...
 
RppStatus rppt_resize_host (RppPtr_t srcPtr, RpptDescPtr srcDescPtr, RppPtr_t dstPtr, RpptDescPtr dstDescPtr, RpptImagePatchPtr dstImgSizes, RpptInterpolationType interpolationType, RpptROIPtr roiTensorPtrSrc, RpptRoiType roiType, rppHandle_t rppHandle)
 Resize augmentation on HOST backend for a NCHW/NHWC layout tensor. More...
 
RppStatus rppt_resize_gpu (RppPtr_t srcPtr, RpptDescPtr srcDescPtr, RppPtr_t dstPtr, RpptDescPtr dstDescPtr, RpptImagePatchPtr dstImgSizes, RpptInterpolationType interpolationType, RpptROIPtr roiTensorPtrSrc, RpptRoiType roiType, rppHandle_t rppHandle)
 Resize augmentation on HIP backend for a NCHW/NHWC layout tensor. More...
 
RppStatus rppt_resize_mirror_normalize_host (RppPtr_t srcPtr, RpptDescPtr srcDescPtr, RppPtr_t dstPtr, RpptDescPtr dstDescPtr, RpptImagePatchPtr dstImgSizes, RpptInterpolationType interpolationType, Rpp32f *meanTensor, Rpp32f *stdDevTensor, Rpp32u *mirrorTensor, RpptROIPtr roiTensorPtrSrc, RpptRoiType roiType, rppHandle_t rppHandle)
 Resize mirror normalize augmentation on HOST backend for a NCHW/NHWC layout tensor. More...
 
RppStatus rppt_resize_mirror_normalize_gpu (RppPtr_t srcPtr, RpptDescPtr srcDescPtr, RppPtr_t dstPtr, RpptDescPtr dstDescPtr, RpptImagePatchPtr dstImgSizes, RpptInterpolationType interpolationType, Rpp32f *meanTensor, Rpp32f *stdDevTensor, Rpp32u *mirrorTensor, RpptROIPtr roiTensorPtrSrc, RpptRoiType roiType, rppHandle_t rppHandle)
 Resize mirror normalize augmentation on HIP backend for a NCHW/NHWC layout tensor. More...
 
RppStatus rppt_resize_crop_mirror_host (RppPtr_t srcPtr, RpptDescPtr srcDescPtr, RppPtr_t dstPtr, RpptDescPtr dstDescPtr, RpptImagePatchPtr dstImgSizes, RpptInterpolationType interpolationType, Rpp32u *mirrorTensor, RpptROIPtr roiTensorPtrSrc, RpptRoiType roiType, rppHandle_t rppHandle)
 Resize crop mirror augmentation on HOST backend for a NCHW/NHWC layout tensor. More...
 
RppStatus rppt_resize_crop_mirror_gpu (RppPtr_t srcPtr, RpptDescPtr srcDescPtr, RppPtr_t dstPtr, RpptDescPtr dstDescPtr, RpptImagePatchPtr dstImgSizes, RpptInterpolationType interpolationType, Rpp32u *mirrorTensor, RpptROIPtr roiTensorPtrSrc, RpptRoiType roiType, rppHandle_t rppHandle)
 Resize crop mirror augmentation on HIP backend for a NCHW/NHWC layout tensor. More...
 
RppStatus rppt_rotate_host (RppPtr_t srcPtr, RpptDescPtr srcDescPtr, RppPtr_t dstPtr, RpptDescPtr dstDescPtr, Rpp32f *angle, RpptInterpolationType interpolationType, RpptROIPtr roiTensorPtrSrc, RpptRoiType roiType, rppHandle_t rppHandle)
 Rotate augmentation on HOST backend for a NCHW/NHWC layout tensor. More...
 
RppStatus rppt_rotate_gpu (RppPtr_t srcPtr, RpptDescPtr srcDescPtr, RppPtr_t dstPtr, RpptDescPtr dstDescPtr, Rpp32f *angle, RpptInterpolationType interpolationType, RpptROIPtr roiTensorPtrSrc, RpptRoiType roiType, rppHandle_t rppHandle)
 Rotate augmentation on HIP backend for a NCHW/NHWC layout tensor. More...
 
RppStatus rppt_phase_host (RppPtr_t srcPtr1, RppPtr_t srcPtr2, RpptDescPtr srcDescPtr, RppPtr_t dstPtr, RpptDescPtr dstDescPtr, RpptROIPtr roiTensorPtrSrc, RpptRoiType roiType, rppHandle_t rppHandle)
 Phase augmentation on HOST backend for a NCHW/NHWC layout tensor. More...
 
RppStatus rppt_phase_gpu (RppPtr_t srcPtr1, RppPtr_t srcPtr2, RpptDescPtr srcDescPtr, RppPtr_t dstPtr, RpptDescPtr dstDescPtr, RpptROIPtr roiTensorPtrSrc, RpptRoiType roiType, rppHandle_t rppHandle)
 Phase augmentation on HIP backend for a NCHW/NHWC layout tensor. More...
 
RppStatus rppt_slice_host (RppPtr_t srcPtr, RpptGenericDescPtr srcGenericDescPtr, RppPtr_t dstPtr, RpptGenericDescPtr dstGenericDescPtr, Rpp32s *anchorTensor, Rpp32s *shapeTensor, RppPtr_t fillValue, bool enablePadding, Rpp32u *roiTensor, rppHandle_t rppHandle)
 Slice augmentation HOST. More...
 
RppStatus rppt_slice_gpu (RppPtr_t srcPtr, RpptGenericDescPtr srcGenericDescPtr, RppPtr_t dstPtr, RpptGenericDescPtr dstGenericDescPtr, Rpp32s *anchorTensor, Rpp32s *shapeTensor, RppPtr_t fillValue, bool enablePadding, Rpp32u *roiTensor, rppHandle_t rppHandle)
 Slice augmentation GPU. More...
 
RppStatus rppt_crop_and_patch_host (RppPtr_t srcPtr1, RppPtr_t srcPtr2, RpptDescPtr srcDescPtr, RppPtr_t dstPtr, RpptDescPtr dstDescPtr, RpptROIPtr roiTensorPtrDst, RpptROIPtr cropRoiTensor, RpptROIPtr patchRoiTensor, RpptRoiType roiType, rppHandle_t rppHandle)
 Crop and Patch augmentation on HOST backend for a NCHW/NHWC layout tensor. More...
 
RppStatus rppt_crop_and_patch_gpu (RppPtr_t srcPtr1, RppPtr_t srcPtr2, RpptDescPtr srcDescPtr, RppPtr_t dstPtr, RpptDescPtr dstDescPtr, RpptROIPtr roiTensorPtrDst, RpptROIPtr cropRoiTensor, RpptROIPtr patchRoiTensor, RpptRoiType roiType, rppHandle_t rppHandle)
 Crop and Patch augmentation on HIP backend for a NCHW/NHWC layout tensor. More...
 
RppStatus rppt_flip_voxel_host (RppPtr_t srcPtr, RpptGenericDescPtr srcGenericDescPtr, RppPtr_t dstPtr, RpptGenericDescPtr dstGenericDescPtr, Rpp32u *horizontalTensor, Rpp32u *verticalTensor, Rpp32u *depthTensor, RpptROI3DPtr roiGenericPtrSrc, RpptRoi3DType roiType, rppHandle_t rppHandle)
 Flip voxel augmentation HOST. More...
 
RppStatus rppt_flip_voxel_gpu (RppPtr_t srcPtr, RpptGenericDescPtr srcGenericDescPtr, RppPtr_t dstPtr, RpptGenericDescPtr dstGenericDescPtr, Rpp32u *horizontalTensor, Rpp32u *verticalTensor, Rpp32u *depthTensor, RpptROI3DPtr roiGenericPtrSrc, RpptRoi3DType roiType, rppHandle_t rppHandle)
 Flip voxel augmentation GPU. More...
 
RppStatus rppt_remap_host (RppPtr_t srcPtr, RpptDescPtr srcDescPtr, RppPtr_t dstPtr, RpptDescPtr dstDescPtr, Rpp32f *rowRemapTable, Rpp32f *colRemapTable, RpptDescPtr tableDescPtr, RpptInterpolationType interpolationType, RpptROIPtr roiTensorPtrSrc, RpptRoiType roiType, rppHandle_t rppHandle)
 Remap augmentation on HOST backend for a NCHW/NHWC layout tensor. More...
 
RppStatus rppt_remap_gpu (RppPtr_t srcPtr, RpptDescPtr srcDescPtr, RppPtr_t dstPtr, RpptDescPtr dstDescPtr, Rpp32f *rowRemapTable, Rpp32f *colRemapTable, RpptDescPtr tableDescPtr, RpptInterpolationType interpolationType, RpptROIPtr roiTensorPtrSrc, RpptRoiType roiType, rppHandle_t rppHandle)
 Remap augmentation on HIP backend for a NCHW/NHWC layout tensor. More...
 
RppStatus rppt_lens_correction_host (RppPtr_t srcPtr, RpptDescPtr srcDescPtr, RppPtr_t dstPtr, RpptDescPtr dstDescPtr, Rpp32f *rowRemapTable, Rpp32f *colRemapTable, RpptDescPtr tableDescPtr, Rpp32f *cameraMatrixTensor, Rpp32f *distortionCoeffsTensor, RpptROIPtr roiTensorPtrSrc, RpptRoiType roiType, rppHandle_t rppHandle)
 Lens correction transformation on HOST backend for a NCHW/NHWC layout tensor. More...
 
RppStatus rppt_lens_correction_gpu (RppPtr_t srcPtr, RpptDescPtr srcDescPtr, RppPtr_t dstPtr, RpptDescPtr dstDescPtr, Rpp32f *rowRemapTable, Rpp32f *colRemapTable, RpptDescPtr tableDescPtr, Rpp32f *cameraMatrixTensor, Rpp32f *distortionCoeffsTensor, RpptROIPtr roiTensorPtrSrc, RpptRoiType roiType, rppHandle_t rppHandle)
 Lens correction transformation on HIP backend for a NCHW/NHWC layout tensor. More...
 
RppStatus rppt_transpose_host (RppPtr_t srcPtr, RpptGenericDescPtr srcGenericDescPtr, RppPtr_t dstPtr, RpptGenericDescPtr dstGenericDescPtr, Rpp32u *permTensor, Rpp32u *roiTensor, rppHandle_t rppHandle)
 Transpose Generic augmentation on HOST backend. More...
 
RppStatus rppt_transpose_gpu (RppPtr_t srcPtr, RpptGenericDescPtr srcGenericDescPtr, RppPtr_t dstPtr, RpptGenericDescPtr dstGenericDescPtr, Rpp32u *permTensor, Rpp32u *roiTensor, rppHandle_t rppHandle)
 Transpose Generic augmentation on HIP backend. More...
 
RppStatus rppt_warp_perspective_host (RppPtr_t srcPtr, RpptDescPtr srcDescPtr, RppPtr_t dstPtr, RpptDescPtr dstDescPtr, Rpp32f *perspectiveTensor, RpptInterpolationType interpolationType, RpptROIPtr roiTensorPtrSrc, RpptRoiType roiType, rppHandle_t rppHandle)
 Warp perspective augmentation on HOST backend for a NCHW/NHWC layout tensor. More...
 
RppStatus rppt_warp_perspective_gpu (RppPtr_t srcPtr, RpptDescPtr srcDescPtr, RppPtr_t dstPtr, RpptDescPtr dstDescPtr, Rpp32f *perspectiveTensor, RpptInterpolationType interpolationType, RpptROIPtr roiTensorPtrSrc, RpptRoiType roiType, rppHandle_t rppHandle)
 Warp perspective augmentation on HIP backend for a NCHW/NHWC layout tensor. More...
 
RppStatus rppt_concat_host (RppPtr_t srcPtr1, RppPtr_t srcPtr2, RpptGenericDescPtr srcPtr1GenericDescPtr, RpptGenericDescPtr srcPtr2GenericDescPtr, RppPtr_t dstPtr, RpptGenericDescPtr dstGenericDescPtr, Rpp32u axisMask, Rpp32u *srcPtr1roiTensor, Rpp32u *srcPtr2roiTensor, rppHandle_t rppHandle)
 Concat Generic augmentation on HOST backend. More...
 
RppStatus rppt_concat_gpu (RppPtr_t srcPtr, RppPtr_t srcPtr2, RpptGenericDescPtr srcPtr1GenericDescPtr, RpptGenericDescPtr srcPtr2GenericDescPtr, RppPtr_t dstPtr, RpptGenericDescPtr dstGenericDescPtr, Rpp32u axis, Rpp32u *srcPtr1roiTensor, Rpp32u *srcPtr2roiTensor, rppHandle_t rppHandle)
 Concat Generic augmentation on HIP backend. More...
 
RppStatus rppt_jpeg_compression_distortion_host (RppPtr_t srcPtr, RpptDescPtr srcDescPtr, RppPtr_t dstPtr, RpptDescPtr dstDescPtr, Rpp32s *qualityTensor, RpptROIPtr roiTensorPtrSrc, RpptRoiType roiType, rppHandle_t rppHandle)
 JPEG Compression Distortion on HOST backend. More...
 
RppStatus rppt_jpeg_compression_distortion_gpu (RppPtr_t srcPtr, RpptDescPtr srcDescPtr, RppPtr_t dstPtr, RpptDescPtr dstDescPtr, RpptROIPtr roiTensorPtrSrc, RpptRoiType roiType, rppHandle_t rppHandle)
 JPEG Compression Distortion on HIP backend. More...
 

Detailed Description

RPPT Tensor Operations - Geometric Augmentations.

Function Documentation

◆ rppt_concat_gpu()

RppStatus rppt_concat_gpu ( RppPtr_t  srcPtr,
RppPtr_t  srcPtr2,
RpptGenericDescPtr  srcPtr1GenericDescPtr,
RpptGenericDescPtr  srcPtr2GenericDescPtr,
RppPtr_t  dstPtr,
RpptGenericDescPtr  dstGenericDescPtr,
Rpp32u  axis,
Rpp32u srcPtr1roiTensor,
Rpp32u srcPtr2roiTensor,
rppHandle_t  rppHandle 
)

Concat Generic augmentation on HIP backend.

Concatenates two 2D, 3D or ND tensors in HIP memory along a specified axis. It is optimized for 2D and 3D tensors, ensuring that all dimensions except the concatenation axis must match.

Parameters
[in]srcPtr1source tensor memory in HIP memory
[in]srcPtr2source tensor memory in HIP memory
[in]srcPtr1GenericDescPtrsource tensor descriptor for the input tensor srcPtr1
[in]srcPtr2GenericDescPtrsource tensor descriptor for the input tensor srcPtr2
[out]dstPtrdestination tensor memory in HOST memory
[in]dstGenericDescPtrdestination tensor descriptor
[in]axisaxis along which concat needs to be done
[in]srcPtr1roiTensorvalues to represent dimensions of input tensor srcPtr1
[in]srcPtr2roiTensorvalues to represent dimensions of input tensor srcPtr2
[in]rppHandleRPP HIP handle created with rppCreateWithStreamAndBatchSize()
Returns
A RppStatus enumeration.
Return values
RPP_SUCCESSSuccessful completion.
RPP_ERROR*Unsuccessful completion.

◆ rppt_concat_host()

RppStatus rppt_concat_host ( RppPtr_t  srcPtr1,
RppPtr_t  srcPtr2,
RpptGenericDescPtr  srcPtr1GenericDescPtr,
RpptGenericDescPtr  srcPtr2GenericDescPtr,
RppPtr_t  dstPtr,
RpptGenericDescPtr  dstGenericDescPtr,
Rpp32u  axisMask,
Rpp32u srcPtr1roiTensor,
Rpp32u srcPtr2roiTensor,
rppHandle_t  rppHandle 
)

Concat Generic augmentation on HOST backend.

Concatenates two 2D, 3D or ND tensors in HOST memory along a specified axis. It is optimized for 2D and 3D tensors, ensuring that all dimensions except the concatenation axis must match.

Parameters
[in]srcPtr1source tensor memory in HOST memory
[in]srcPtr2source tensor memory in HOST memory
[in]srcPtr1GenericDescPtrsource tensor descriptor for the input tensor srcPtr1
[in]srcPtr2GenericDescPtrsource tensor descriptor for the input tensor srcPtr2
[out]dstPtrdestination tensor memory in HOST memory
[in]dstGenericDescPtrdestination tensor descriptor
[in]axisMaskaxis along which concat needs to be done
[in]srcPtr1roiTensorvalues to represent dimensions of input tensor srcPtr1
[in]srcPtr2roiTensorvalues to represent dimensions of input tensor srcPtr2
[in]rppHandleRPP HOST handle created with rppCreateWithBatchSize()
Returns
A RppStatus enumeration.
Return values
RPP_SUCCESSSuccessful completion.
RPP_ERROR*Unsuccessful completion.

◆ rppt_crop_and_patch_gpu()

RppStatus rppt_crop_and_patch_gpu ( RppPtr_t  srcPtr1,
RppPtr_t  srcPtr2,
RpptDescPtr  srcDescPtr,
RppPtr_t  dstPtr,
RpptDescPtr  dstDescPtr,
RpptROIPtr  roiTensorPtrDst,
RpptROIPtr  cropRoiTensor,
RpptROIPtr  patchRoiTensor,
RpptRoiType  roiType,
rppHandle_t  rppHandle 
)

Crop and Patch augmentation on HIP backend for a NCHW/NHWC layout tensor.

The crop and patch augmentation crops a ROI from 1st image and patches the cropped region in 2nd image as per the patch co-ordinates for a batch of RGB(3 channel) / greyscale(1 channel) images with an NHWC/NCHW tensor layout.

  • srcPtr1 depth ranges - Rpp8u (0 to 255), Rpp16f (0 to 1), Rpp32f (0 to 1), Rpp8s (-128 to 127).
  • srcPtr2 depth ranges - Rpp8u (0 to 255), Rpp16f (0 to 1), Rpp32f (0 to 1), Rpp8s (-128 to 127).
  • dstPtr depth ranges - Will be same depth as srcPtr.
    Sample Input1
    Sample Input2
    Sample Output
    Parameters
    [in]srcPtr1source tensor1 in HIP memory
    [in]srcPtr2source tensor2 in HIP memory
    [in]srcDescPtrsource tensor descriptor (Restrictions - numDims = 4, offsetInBytes >= 0, dataType = U8/F16/F32/I8, layout = NCHW/NHWC, c = 1/3)
    [out]dstPtrdestination tensor in HIP memory
    [in]dstDescPtrdestination tensor descriptor (Restrictions - numDims = 4, offsetInBytes >= 0, dataType = U8/F16/F32/I8, layout = NCHW/NHWC, c = same as that of srcDescPtr)
    [in]roiTensorPtrDstROI data in HIP memory, for each image in destination tensor (2D tensor of size batchSize * 4, in either format - XYWH(xy.x, xy.y, roiWidth, roiHeight) or LTRB(lt.x, lt.y, rb.x, rb.y))
    [in]cropRoiTensorcrop co-ordinates in HIP memory, for each image in source tensor (2D tensor of size batchSize * 4, in either format - XYWH(xy.x, xy.y, roiWidth, roiHeight) or LTRB(lt.x, lt.y, rb.x, rb.y))
    [in]patchRoiTensorpatch co-ordinates in HIP memory, for each image in source tensor (2D tensor of size batchSize * 4, in either format - XYWH(xy.x, xy.y, roiWidth, roiHeight) or LTRB(lt.x, lt.y, rb.x, rb.y))
    [in]roiTypeROI type used (RpptRoiType::XYWH or RpptRoiType::LTRB)
    [in]rppHandleRPP HIP handle created with rppCreate()
    Returns
    A RppStatus enumeration.
    Return values
    RPP_SUCCESSSuccessful completion.
    RPP_ERROR*Unsuccessful completion.

◆ rppt_crop_and_patch_host()

RppStatus rppt_crop_and_patch_host ( RppPtr_t  srcPtr1,
RppPtr_t  srcPtr2,
RpptDescPtr  srcDescPtr,
RppPtr_t  dstPtr,
RpptDescPtr  dstDescPtr,
RpptROIPtr  roiTensorPtrDst,
RpptROIPtr  cropRoiTensor,
RpptROIPtr  patchRoiTensor,
RpptRoiType  roiType,
rppHandle_t  rppHandle 
)

Crop and Patch augmentation on HOST backend for a NCHW/NHWC layout tensor.

The crop and patch augmentation crops a ROI from 1st image and patches the cropped region in 2nd image as per the patch co-ordinates for a batch of RGB(3 channel) / greyscale(1 channel) images with an NHWC/NCHW tensor layout.

  • srcPtr1 depth ranges - Rpp8u (0 to 255), Rpp16f (0 to 1), Rpp32f (0 to 1), Rpp8s (-128 to 127).
  • srcPtr2 depth ranges - Rpp8u (0 to 255), Rpp16f (0 to 1), Rpp32f (0 to 1), Rpp8s (-128 to 127).
  • dstPtr depth ranges - Will be same depth as srcPtr.
    Sample Input1
    Sample Input2
    Sample Output
    Parameters
    [in]srcPtr1source tensor1 in HOST memory
    [in]srcPtr2source tensor2 in HOST memory
    [in]srcDescPtrsource tensor descriptor (Restrictions - numDims = 4, offsetInBytes >= 0, dataType = U8/F16/F32/I8, layout = NCHW/NHWC, c = 1/3)
    [out]dstPtrdestination tensor in HOST memory
    [in]dstDescPtrdestination tensor descriptor (Restrictions - numDims = 4, offsetInBytes >= 0, dataType = U8/F16/F32/I8, layout = NCHW/NHWC, c = same as that of srcDescPtr)
    [in]roiTensorPtrDstROI data in HOST memory, for each image in destination tensor (2D tensor of size batchSize * 4, in either format - XYWH(xy.x, xy.y, roiWidth, roiHeight) or LTRB(lt.x, lt.y, rb.x, rb.y))
    [in]cropRoiTensorcrop co-ordinates in HOST memory, for each image in source tensor (2D tensor of size batchSize * 4, in either format - XYWH(xy.x, xy.y, roiWidth, roiHeight) or LTRB(lt.x, lt.y, rb.x, rb.y))
    [in]patchRoiTensorpatch co-ordinates in HOST memory, for each image in source tensor (2D tensor of size batchSize * 4, in either format - XYWH(xy.x, xy.y, roiWidth, roiHeight) or LTRB(lt.x, lt.y, rb.x, rb.y))
    [in]roiTypeROI type used (RpptRoiType::XYWH or RpptRoiType::LTRB)
    [in]rppHandleRPP HOST handle created with rppCreate()
    Returns
    A RppStatus enumeration.
    Return values
    RPP_SUCCESSSuccessful completion.
    RPP_ERROR*Unsuccessful completion.

◆ rppt_crop_gpu()

RppStatus rppt_crop_gpu ( RppPtr_t  srcPtr,
RpptDescPtr  srcDescPtr,
RppPtr_t  dstPtr,
RpptDescPtr  dstDescPtr,
RpptROIPtr  roiTensorPtrSrc,
RpptRoiType  roiType,
rppHandle_t  rppHandle 
)

Crop augmentation on HIP backend for a NCHW/NHWC layout tensor.

The crop augmentation crops each image to a given ROI, for a batch of RGB(3 channel) / greyscale(1 channel) images with an NHWC/NCHW tensor layout.

  • srcPtr depth ranges - Rpp8u (0 to 255), Rpp16f (0 to 1), Rpp32f (0 to 1), Rpp8s (-128 to 127).
  • dstPtr depth ranges - Will be same depth as srcPtr.
    Sample Input
    Sample Output
    Parameters
    [in]srcPtrsource tensor in HIP memory
    [in]srcDescPtrsource tensor descriptor (Restrictions - numDims = 4, offsetInBytes >= 0, dataType = U8/F16/F32/I8, layout = NCHW/NHWC, c = 1/3)
    [out]dstPtrdestination tensor in HIP memory
    [in]dstDescPtrdestination tensor descriptor (Restrictions - numDims = 4, offsetInBytes >= 0, dataType = U8/F16/F32/I8, layout = NCHW/NHWC, c = same as that of srcDescPtr)
    [in]roiTensorPtrSrcROI data in HIP memory, for each image in source tensor (2D tensor of size batchSize * 4, in either format - XYWH(xy.x, xy.y, roiWidth, roiHeight) or LTRB(lt.x, lt.y, rb.x, rb.y))
    [in]roiTypeROI type used (RpptRoiType::XYWH or RpptRoiType::LTRB)
    [in]rppHandleRPP HIP handle created with rppCreate()
    Returns
    A RppStatus enumeration.
    Return values
    RPP_SUCCESSSuccessful completion.
    RPP_ERROR*Unsuccessful completion.

◆ rppt_crop_host()

RppStatus rppt_crop_host ( RppPtr_t  srcPtr,
RpptDescPtr  srcDescPtr,
RppPtr_t  dstPtr,
RpptDescPtr  dstDescPtr,
RpptROIPtr  roiTensorPtrSrc,
RpptRoiType  roiType,
rppHandle_t  rppHandle 
)

Crop augmentation on HOST backend for a NCHW/NHWC layout tensor.

The crop augmentation crops each image to a given ROI, for a batch of RGB(3 channel) / greyscale(1 channel) images with an NHWC/NCHW tensor layout.

  • srcPtr depth ranges - Rpp8u (0 to 255), Rpp16f (0 to 1), Rpp32f (0 to 1), Rpp8s (-128 to 127).
  • dstPtr depth ranges - Will be same depth as srcPtr.
    Sample Input
    Sample Output
    Parameters
    [in]srcPtrsource tensor in HOST memory
    [in]srcDescPtrsource tensor descriptor (Restrictions - numDims = 4, offsetInBytes >= 0, dataType = U8/F16/F32/I8, layout = NCHW/NHWC, c = 1/3)
    [out]dstPtrdestination tensor in HOST memory
    [in]dstDescPtrdestination tensor descriptor (Restrictions - numDims = 4, offsetInBytes >= 0, dataType = U8/F16/F32/I8, layout = NCHW/NHWC, c = same as that of srcDescPtr)
    [in]roiTensorPtrSrcROI data in HOST memory, for each image in source tensor (2D tensor of size batchSize * 4, in either format - XYWH(xy.x, xy.y, roiWidth, roiHeight) or LTRB(lt.x, lt.y, rb.x, rb.y))
    [in]roiTypeROI type used (RpptRoiType::XYWH or RpptRoiType::LTRB)
    [in]rppHandleRPP HOST handle created with rppCreate()
    Returns
    A RppStatus enumeration.
    Return values
    RPP_SUCCESSSuccessful completion.
    RPP_ERROR*Unsuccessful completion.

◆ rppt_crop_mirror_normalize_gpu()

RppStatus rppt_crop_mirror_normalize_gpu ( RppPtr_t  srcPtr,
RpptDescPtr  srcDescPtr,
RppPtr_t  dstPtr,
RpptDescPtr  dstDescPtr,
Rpp32f offsetTensor,
Rpp32f multiplierTensor,
Rpp32u mirrorTensor,
RpptROIPtr  roiTensorPtrSrc,
RpptRoiType  roiType,
rppHandle_t  rppHandle 
)

Crop mirror normalize augmentation on HIP backend for a NCHW/NHWC layout tensor.

The crop mirror normalize augmentation crops each image to a given ROI, does an optional mirror and/or normalize for a batch of RGB(3 channel) / greyscale(1 channel) images with an NHWC/NCHW tensor layout.

  • srcPtr depth ranges - Rpp8u (0 to 255), Rpp16f (0 to 1), Rpp32f (0 to 1), Rpp8s (-128 to 127).
  • dstPtr depth ranges - Will be same depth as srcPtr.
    Sample Input
    Sample Output
    Parameters
    [in]srcPtrsource tensor in HIP memory
    [in]srcDescPtrsource tensor descriptor (Restrictions - numDims = 4, offsetInBytes >= 0, dataType = U8/F16/F32/I8, layout = NCHW/NHWC, c = 1/3)
    [out]dstPtrdestination tensor in HIP memory
    [in]dstDescPtrdestination tensor descriptor (Restrictions - numDims = 4, offsetInBytes >= 0, dataType = U8/F16/F32/I8, layout = NCHW/NHWC, c = same as that of srcDescPtr)
    [in]offsetTensoroffset values for normalization (1D tensor in pinned/HOST memory, of size batchSize, with offsetTensor[n] <= 0)
    [in]multiplierTensormultiplier values for normalization (1D tensor in pinned/HOST memory, of size batchSize, with multiplierTensor[n] > 0)
    [in]mirrorTensormirror flag values to set mirroring on/off (1D tensor in pinned/HOST memory, of size batchSize, with mirrorTensor[n] = 0/1)
    [in]roiTensorPtrSrcROI data in HIP memory, for each image in source tensor (2D tensor of size batchSize * 4, in either format - XYWH(xy.x, xy.y, roiWidth, roiHeight) or LTRB(lt.x, lt.y, rb.x, rb.y))
    [in]roiTypeROI type used (RpptRoiType::XYWH or RpptRoiType::LTRB)
    [in]rppHandleRPP HIP handle created with rppCreate()
    Returns
    A RppStatus enumeration.
    Return values
    RPP_SUCCESSSuccessful completion.
    RPP_ERROR*Unsuccessful completion.

◆ rppt_crop_mirror_normalize_host()

RppStatus rppt_crop_mirror_normalize_host ( RppPtr_t  srcPtr,
RpptDescPtr  srcDescPtr,
RppPtr_t  dstPtr,
RpptDescPtr  dstDescPtr,
Rpp32f offsetTensor,
Rpp32f multiplierTensor,
Rpp32u mirrorTensor,
RpptROIPtr  roiTensorPtrSrc,
RpptRoiType  roiType,
rppHandle_t  rppHandle 
)

Crop mirror normalize augmentation on HOST backend for a NCHW/NHWC layout tensor.

The crop mirror normalize augmentation crops each image to a given ROI, does an optional mirror and/or normalize for a batch of RGB(3 channel) / greyscale(1 channel) images with an NHWC/NCHW tensor layout.

  • srcPtr depth ranges - Rpp8u (0 to 255), Rpp16f (0 to 1), Rpp32f (0 to 1), Rpp8s (-128 to 127).
  • dstPtr depth ranges - Will be same depth as srcPtr.
    Sample Input
    Sample Output
    Parameters
    [in]srcPtrsource tensor in HOST memory
    [in]srcDescPtrsource tensor descriptor (Restrictions - numDims = 4, offsetInBytes >= 0, dataType = U8/F16/F32/I8, layout = NCHW/NHWC, c = 1/3)
    [out]dstPtrdestination tensor in HOST memory
    [in]dstDescPtrdestination tensor descriptor (Restrictions - numDims = 4, offsetInBytes >= 0, dataType = U8/F16/F32/I8, layout = NCHW/NHWC, c = same as that of srcDescPtr)
    [in]offsetTensoroffset values for normalization (1D tensor in HOST memory, of size batchSize, with offsetTensor[n] <= 0)
    [in]multiplierTensormultiplier values for normalization (1D tensor in HOST memory, of size batchSize, with multiplierTensor[n] > 0)
    [in]mirrorTensormirror flag values to set mirroring on/off (1D tensor in HOST memory, of size batchSize, with mirrorTensor[n] = 0/1)
    [in]roiTensorPtrSrcROI data in HOST memory, for each image in source tensor (2D tensor of size batchSize * 4, in either format - XYWH(xy.x, xy.y, roiWidth, roiHeight) or LTRB(lt.x, lt.y, rb.x, rb.y))
    [in]roiTypeROI type used (RpptRoiType::XYWH or RpptRoiType::LTRB)
    [in]rppHandleRPP HOST handle created with rppCreate()
    Returns
    A RppStatus enumeration.
    Return values
    RPP_SUCCESSSuccessful completion.
    RPP_ERROR*Unsuccessful completion.

◆ rppt_flip_gpu()

RppStatus rppt_flip_gpu ( RppPtr_t  srcPtr,
RpptDescPtr  srcDescPtr,
RppPtr_t  dstPtr,
RpptDescPtr  dstDescPtr,
Rpp32u horizontalTensor,
Rpp32u verticalTensor,
RpptROIPtr  roiTensorPtrSrc,
RpptRoiType  roiType,
rppHandle_t  rppHandle 
)

Flip augmentation on HIP backend for a NCHW/NHWC layout tensor.

The flip augmentation performs a mask-controlled horizontal/vertical flip for a batch of RGB(3 channel) / greyscale(1 channel) images with an NHWC/NCHW tensor layout.

  • srcPtr depth ranges - Rpp8u (0 to 255), Rpp16f (0 to 1), Rpp32f (0 to 1), Rpp8s (-128 to 127).
  • dstPtr depth ranges - Will be same depth as srcPtr.
    Sample Input
    Sample Output
    Parameters
    [in]srcPtrsource tensor in HIP memory
    [in]srcDescPtrsource tensor descriptor (Restrictions - numDims = 4, offsetInBytes >= 0, dataType = U8/F16/F32/I8, layout = NCHW/NHWC, c = 1/3)
    [out]dstPtrdestination tensor in HIP memory
    [in]dstDescPtrdestination tensor descriptor (Restrictions - numDims = 4, offsetInBytes >= 0, dataType = U8/F16/F32/I8, layout = NCHW/NHWC, c = same as that of srcDescPtr)
    [in]horizontalTensorhorizontal flag values to set horizontal flip on/off (1D tensor in pinned/HOST memory, of size batchSize, with horizontalTensor[i] = 0/1)
    [in]verticalTensorvertical flag values to set vertical flip on/off (1D tensor in pinned/HOST memory, of size batchSize, with verticalTensor[i] = 0/1)
    [in]roiTensorPtrSrcROI data in HIP memory, for each image in source tensor (2D tensor of size batchSize * 4, in either format - XYWH(xy.x, xy.y, roiWidth, roiHeight) or LTRB(lt.x, lt.y, rb.x, rb.y))
    [in]roiTypeROI type used (RpptRoiType::XYWH or RpptRoiType::LTRB)
    [in]rppHandleRPP HIP handle created with rppCreate()
    Returns
    A RppStatus enumeration.
    Return values
    RPP_SUCCESSSuccessful completion.
    RPP_ERROR*Unsuccessful completion.

◆ rppt_flip_host()

RppStatus rppt_flip_host ( RppPtr_t  srcPtr,
RpptDescPtr  srcDescPtr,
RppPtr_t  dstPtr,
RpptDescPtr  dstDescPtr,
Rpp32u horizontalTensor,
Rpp32u verticalTensor,
RpptROIPtr  roiTensorPtrSrc,
RpptRoiType  roiType,
rppHandle_t  rppHandle 
)

Flip augmentation on HOST backend for a NCHW/NHWC layout tensor.

The flip augmentation performs a mask-controlled horizontal/vertical flip for a batch of RGB(3 channel) / greyscale(1 channel) images with an NHWC/NCHW tensor layout.

  • srcPtr depth ranges - Rpp8u (0 to 255), Rpp16f (0 to 1), Rpp32f (0 to 1), Rpp8s (-128 to 127).
  • dstPtr depth ranges - Will be same depth as srcPtr.
    Sample Input
    Sample Output
    Parameters
    [in]srcPtrsource tensor in HOST memory
    [in]srcDescPtrsource tensor descriptor (Restrictions - numDims = 4, offsetInBytes >= 0, dataType = U8/F16/F32/I8, layout = NCHW/NHWC, c = 1/3)
    [out]dstPtrdestination tensor in HOST memory
    [in]dstDescPtrdestination tensor descriptor (Restrictions - numDims = 4, offsetInBytes >= 0, dataType = U8/F16/F32/I8, layout = NCHW/NHWC, c = same as that of srcDescPtr)
    [in]horizontalTensorhorizontal flag values to set horizontal flip on/off (1D tensor in HOST memory, of size batchSize, with horizontalTensor[i] = 0/1)
    [in]verticalTensorvertical flag values to set vertical flip on/off (1D tensor in HOST memory, of size batchSize, with verticalTensor[i] = 0/1)
    [in]roiTensorPtrSrcROI data in HOST memory, for each image in source tensor (2D tensor of size batchSize * 4, in either format - XYWH(xy.x, xy.y, roiWidth, roiHeight) or LTRB(lt.x, lt.y, rb.x, rb.y))
    [in]roiTypeROI type used (RpptRoiType::XYWH or RpptRoiType::LTRB)
    [in]rppHandleRPP HOST handle created with rppCreate()
    Returns
    A RppStatus enumeration.
    Return values
    RPP_SUCCESSSuccessful completion.
    RPP_ERROR*Unsuccessful completion.

◆ rppt_flip_voxel_gpu()

RppStatus rppt_flip_voxel_gpu ( RppPtr_t  srcPtr,
RpptGenericDescPtr  srcGenericDescPtr,
RppPtr_t  dstPtr,
RpptGenericDescPtr  dstGenericDescPtr,
Rpp32u horizontalTensor,
Rpp32u verticalTensor,
Rpp32u depthTensor,
RpptROI3DPtr  roiGenericPtrSrc,
RpptRoi3DType  roiType,
rppHandle_t  rppHandle 
)

Flip voxel augmentation GPU.

The flip voxel augmentation performs a mask-controlled horizontal/vertical/depth flip on a generic 4D tensor.
Support added for f32 -> f32 and u8 -> u8 dataypes.

Sample Input
Sample Output
Parameters
[in]srcPtrsource tensor in HIP memory
[in]srcGenericDescPtrsource tensor descriptor (Restrictions - numDims = 5, offsetInBytes >= 0, dataType = U8/F32, layout = NCDHW/NDHWC, c = 1/3)
[out]dstPtrdestination tensor in HIP memory
[in]dstGenericDescPtrdestination tensor descriptor (Restrictions - numDims = 5, offsetInBytes >= 0, dataType = U8/F32, layout = NCDHW/NDHWC, c = 1/3)
[in]horizontalTensorhorizontal flag values to set horizontal flip on/off (1D tensor in pinned/HOST memory, of size batchSize, with horizontalTensor[i] = 0/1)
[in]verticalTensorvertical flag values to set vertical flip on/off (1D tensor in pinned/HOST memory, of size batchSize, with verticalTensor[i] = 0/1)
[in]depthTensordepth flag values to set depth flip on/off (1D tensor in pinned/HOST memory, of size batchSize, with depthTensor[i] = 0/1)
[in]roiGenericPtrSrcROI data for each image in source tensor (tensor of batchSize RpptRoiGeneric values)
[in]roiTypeROI type used (RpptRoi3DType::XYZWHD or RpptRoi3DType::LTFRBB)
[in]rppHandleRPP HIP handle created with rppCreate()
Returns
A RppStatus enumeration.
Return values
RPP_SUCCESSSuccessful completion.
RPP_ERROR*Unsuccessful completion.

◆ rppt_flip_voxel_host()

RppStatus rppt_flip_voxel_host ( RppPtr_t  srcPtr,
RpptGenericDescPtr  srcGenericDescPtr,
RppPtr_t  dstPtr,
RpptGenericDescPtr  dstGenericDescPtr,
Rpp32u horizontalTensor,
Rpp32u verticalTensor,
Rpp32u depthTensor,
RpptROI3DPtr  roiGenericPtrSrc,
RpptRoi3DType  roiType,
rppHandle_t  rppHandle 
)

Flip voxel augmentation HOST.

The flip voxel augmentation performs a mask-controlled horizontal/vertical/depth flip on a generic 4D tensor.
Support added for f32 -> f32 and u8 -> u8 dataypes.

Sample Input
Sample Output
Parameters
[in]srcPtrsource tensor in HOST memory
[in]srcGenericDescPtrsource tensor descriptor (Restrictions - numDims = 5, offsetInBytes >= 0, dataType = U8/F32, layout = NCDHW/NDHWC, c = 1/3)
[out]dstPtrdestination tensor in HOST memory
[in]dstGenericDescPtrdestination tensor descriptor (Restrictions - numDims = 5, offsetInBytes >= 0, dataType = U8/F32, layout = NCDHW/NDHWC, c = 1/3)
[in]horizontalTensorhorizontal flag values to set horizontal flip on/off (1D tensor in HOST memory, of size batchSize, with horizontalTensor[i] = 0/1)
[in]verticalTensorvertical flag values to set vertical flip on/off (1D tensor in HOST memory, of size batchSize, with verticalTensor[i] = 0/1)
[in]depthTensordepth flag values to set depth flip on/off (1D tensor in HOST memory, of size batchSize, with depthTensor[i] = 0/1)
[in]roiGenericPtrSrcROI data for each image in source tensor (tensor of batchSize RpptRoiGeneric values)
[in]roiTypeROI type used (RpptRoi3DType::XYZWHD or RpptRoi3DType::LTFRBB)
[in]rppHandleRPP HOST handle created with rppCreate()
Returns
A RppStatus enumeration.
Return values
RPP_SUCCESSSuccessful completion.
RPP_ERROR*Unsuccessful completion.

◆ rppt_jpeg_compression_distortion_gpu()

RppStatus rppt_jpeg_compression_distortion_gpu ( RppPtr_t  srcPtr,
RpptDescPtr  srcDescPtr,
RppPtr_t  dstPtr,
RpptDescPtr  dstDescPtr,
RpptROIPtr  roiTensorPtrSrc,
RpptRoiType  roiType,
rppHandle_t  rppHandle 
)

JPEG Compression Distortion on HIP backend.

This function simulates JPEG compression distortion on an image tensor in hip memory. It introduces artifacts seen in lossy JPEG compression by converting the image to the frequency domain using the Discrete Cosine Transform (DCT), applying quantization, and then reconstructing the image using the inverse DCT (IDCT). This process introduces compression-related distortions similar to those in JPEG images.

Sample Input
Sample Output
Parameters
[in]srcPtrsource tensor in HIP memory
[in]srcGenericDescPtrsource tensor descriptor
[out]dstPtrdestination tensor in HIP memory
[in]dstGenericDescPtrdestination tensor descriptor
[in]qualityTensorJPEG quality factor that controls the amount of distortion (0 < quality < 100).
[in]roiTensorPtrSrcROI data in HIP memory, for each image in source tensor (2D tensor of size batchSize * 4, in either format - XYWH(xy.x, xy.y, roiWidth, roiHeight) or LTRB(lt.x, lt.y, rb.x, rb.y))
[in]roiTypeROI type used (RpptRoiType::XYWH or RpptRoiType::LTRB)
[in]rppHandleRPP HIP handle created with rppCreate()
Returns
A RppStatus enumeration.
Return values
RPP_SUCCESSSuccessful completion.
RPP_ERROR*Unsuccessful completion.

◆ rppt_jpeg_compression_distortion_host()

RppStatus rppt_jpeg_compression_distortion_host ( RppPtr_t  srcPtr,
RpptDescPtr  srcDescPtr,
RppPtr_t  dstPtr,
RpptDescPtr  dstDescPtr,
Rpp32s qualityTensor,
RpptROIPtr  roiTensorPtrSrc,
RpptRoiType  roiType,
rppHandle_t  rppHandle 
)

JPEG Compression Distortion on HOST backend.

This function simulates JPEG compression distortion on an image tensor in host memory. It introduces artifacts seen in lossy JPEG compression by converting the image to the frequency domain using the Discrete Cosine Transform (DCT), applying quantization, and then reconstructing the image using the inverse DCT (IDCT). This process introduces compression-related distortions similar to those in JPEG images.

Sample Input
Sample Output
Parameters
[in]srcPtrsource tensor in HOST memory
[in]srcGenericDescPtrsource tensor descriptor
[out]dstPtrdestination tensor in HOST memory
[in]dstGenericDescPtrdestination tensor descriptor
[in]qualityTensorJPEG quality factor controlling the level of compression. Valid range is 1 to 99 (inclusive).
[in]roiTensorPtrSrcROI data in HOST memory, for each image in source tensor (2D tensor of size batchSize * 4, in either format - XYWH(xy.x, xy.y, roiWidth, roiHeight) or LTRB(lt.x, lt.y, rb.x, rb.y))
[in]roiTypeROI type used (RpptRoiType::XYWH or RpptRoiType::LTRB)
[in]rppHandleRPP HOST handle created with rppCreate()
Returns
A RppStatus enumeration.
Return values
RPP_SUCCESSSuccessful completion.
RPP_ERROR*Unsuccessful completion.

◆ rppt_lens_correction_gpu()

RppStatus rppt_lens_correction_gpu ( RppPtr_t  srcPtr,
RpptDescPtr  srcDescPtr,
RppPtr_t  dstPtr,
RpptDescPtr  dstDescPtr,
Rpp32f rowRemapTable,
Rpp32f colRemapTable,
RpptDescPtr  tableDescPtr,
Rpp32f cameraMatrixTensor,
Rpp32f distortionCoeffsTensor,
RpptROIPtr  roiTensorPtrSrc,
RpptRoiType  roiType,
rppHandle_t  rppHandle 
)

Lens correction transformation on HIP backend for a NCHW/NHWC layout tensor.

Performs lens correction transforms on an image to compensate barrel lens distortion of RGB(3 channel) / greyscale(1 channel) images with an NHWC/NCHW tensor layout.

  • srcPtr depth ranges - Rpp8u (0 to 255), Rpp16f (0 to 1), Rpp32f (0 to 1), Rpp8s (-128 to 127).
  • dstPtr depth ranges - Will be same depth as srcPtr. Note: Returns a black image if the passed camera matrix has a 0 determinant
    Sample Input
    Sample Output
    Parameters
    [in]srcPtrsource tensor in HIP memory
    [in]srcDescPtrsource tensor descriptor (Restrictions - numDims = 4, offsetInBytes >= 0, dataType = U8/F16/F32/I8, layout = NCHW/NHWC, c = 1/3)
    [out]dstPtrdestination tensor in HIP memory
    [in]dstDescPtrdestination tensor descriptor (Restrictions - numDims = 4, offsetInBytes >= 0, dataType = U8/F16/F32/I8, layout = NCHW/NHWC, c = same as that of srcDescPtr)
    [in]rowRemapTableRpp32f row numbers in HIP memory for every pixel in the input batch of images (1D tensor of size width * height * batchSize)
    [in]colRemapTableRpp32f column numbers in HIP memory for every pixel in the input batch of images (1D tensor of size width * height * batchSize)
    [in]tableDescPtrtable tensor descriptor (Restrictions - numDims = 4, offsetInBytes >= 0, dataType = F32, layout = NHWC, c = 1)
    [in]cameraMatrixTensorcontains camera intrinsic parameters required to compute lens corrected image. (1D tensor of size 9 * batchSize)
    [in]distortionCoeffsTensorcontains distortion coefficients required to compute lens corrected image. (1D tensor of size 8 * batchSize)
    [in]roiTensorPtrSrcROI data in HIP memory, for each image in source tensor (2D tensor of size batchSize * 4, in either format - XYWH(xy.x, xy.y, roiWidth, roiHeight) or LTRB(lt.x, lt.y, rb.x, rb.y))
    [in]roiTypeROI type used (RpptRoiType::XYWH or RpptRoiType::LTRB)
    [in]rppHandleRPP HIP handle created with rppCreate()
    Returns
    A RppStatus enumeration.
    Return values
    RPP_SUCCESSSuccessful completion.
    RPP_ERROR*Unsuccessful completion.

◆ rppt_lens_correction_host()

RppStatus rppt_lens_correction_host ( RppPtr_t  srcPtr,
RpptDescPtr  srcDescPtr,
RppPtr_t  dstPtr,
RpptDescPtr  dstDescPtr,
Rpp32f rowRemapTable,
Rpp32f colRemapTable,
RpptDescPtr  tableDescPtr,
Rpp32f cameraMatrixTensor,
Rpp32f distortionCoeffsTensor,
RpptROIPtr  roiTensorPtrSrc,
RpptRoiType  roiType,
rppHandle_t  rppHandle 
)

Lens correction transformation on HOST backend for a NCHW/NHWC layout tensor.

Performs lens correction transforms on an image to compensate barrel lens distortion of RGB(3 channel) / greyscale(1 channel) images with an NHWC/NCHW tensor layout.

  • srcPtr depth ranges - Rpp8u (0 to 255), Rpp16f (0 to 1), Rpp32f (0 to 1), Rpp8s (-128 to 127).
  • dstPtr depth ranges - Will be same depth as srcPtr. Note: Returns a black image if the passed camera matrix has a 0 determinant
    Sample Input
    Sample Output
    Parameters
    [in]srcPtrsource tensor in HOST memory
    [in]srcDescPtrsource tensor descriptor (Restrictions - numDims = 4, offsetInBytes >= 0, dataType = U8/F16/F32/I8, layout = NCHW/NHWC, c = 1/3)
    [out]dstPtrdestination tensor in HOST memory
    [in]dstDescPtrdestination tensor descriptor (Restrictions - numDims = 4, offsetInBytes >= 0, dataType = U8/F16/F32/I8, layout = NCHW/NHWC, c = same as that of srcDescPtr)
    [in]rowRemapTableRpp32f row numbers in HOST memory for every pixel in the input batch of images (1D tensor of size width * height * batchSize)
    [in]colRemapTableRpp32f column numbers in HOST memory for every pixel in the input batch of images (1D tensor of size width * height * batchSize)
    [in]tableDescPtrtable tensor descriptor (Restrictions - numDims = 4, offsetInBytes >= 0, dataType = F32, layout = NHWC, c = 1)
    [in]cameraMatrixTensorcontains camera intrinsic parameters required to compute lens corrected image. (1D tensor of size 9 * batchSize)
    [in]distortionCoeffsTensorcontains distortion coefficients required to compute lens corrected image. (1D tensor of size 8 * batchSize)
    [in]roiTensorPtrSrcROI data in HOST memory, for each image in source tensor (2D tensor of size batchSize * 4, in either format - XYWH(xy.x, xy.y, roiWidth, roiHeight) or LTRB(lt.x, lt.y, rb.x, rb.y))
    [in]roiTypeROI type used (RpptRoiType::XYWH or RpptRoiType::LTRB)
    [in]rppHandleRPP HOST handle created with rppCreate()
    Returns
    A RppStatus enumeration.
    Return values
    RPP_SUCCESSSuccessful completion.
    RPP_ERROR*Unsuccessful completion.

◆ rppt_phase_gpu()

RppStatus rppt_phase_gpu ( RppPtr_t  srcPtr1,
RppPtr_t  srcPtr2,
RpptDescPtr  srcDescPtr,
RppPtr_t  dstPtr,
RpptDescPtr  dstDescPtr,
RpptROIPtr  roiTensorPtrSrc,
RpptRoiType  roiType,
rppHandle_t  rppHandle 
)

Phase augmentation on HIP backend for a NCHW/NHWC layout tensor.

The phase augmentation computes phase of corresponding pixels for a batch of RGB(3 channel) / greyscale(1 channel) images with an NHWC/NCHW tensor layout.

  • srcPtr depth ranges - Rpp8u (0 to 255), Rpp16f (0 to 1), Rpp32f (0 to 1), Rpp8s (-128 to 127).
  • dstPtr depth ranges - Will be same depth as srcPtr.
    Sample Input1
    Sample Input2
    Sample Output
    Parameters
    [in]srcPtr1source1 tensor in HIP memory
    [in]srcPtr2source2 tensor in HIP memory
    [in]srcDescPtrsource tensor descriptor (Restrictions - numDims = 4, offsetInBytes >= 0, dataType = U8/F16/F32/I8, layout = NCHW/NHWC, c = 1/3)
    [out]dstPtrdestination tensor in HIP memory
    [in]dstDescPtrdestination tensor descriptor (Restrictions - numDims = 4, offsetInBytes >= 0, dataType = U8/F16/F32/I8, layout = NCHW/NHWC, c = same as that of srcDescPtr)
    [in]roiTensorPtrSrcROI data in HIP memory, for each image in source tensor (2D tensor of size batchSize * 4, in either format - XYWH(xy.x, xy.y, roiWidth, roiHeight) or LTRB(lt.x, lt.y, rb.x, rb.y))
    [in]roiTypeROI type used (RpptRoiType::XYWH or RpptRoiType::LTRB)
    [in]rppHandleRPP HIP handle created with rppCreate()
    Returns
    A RppStatus enumeration.
    Return values
    RPP_SUCCESSSuccessful completion.
    RPP_ERROR*Unsuccessful completion.

◆ rppt_phase_host()

RppStatus rppt_phase_host ( RppPtr_t  srcPtr1,
RppPtr_t  srcPtr2,
RpptDescPtr  srcDescPtr,
RppPtr_t  dstPtr,
RpptDescPtr  dstDescPtr,
RpptROIPtr  roiTensorPtrSrc,
RpptRoiType  roiType,
rppHandle_t  rppHandle 
)

Phase augmentation on HOST backend for a NCHW/NHWC layout tensor.

The phase augmentation computes phase of corresponding pixels for a batch of RGB(3 channel) / greyscale(1 channel) images with an NHWC/NCHW tensor layout.

  • srcPtr depth ranges - Rpp8u (0 to 255), Rpp16f (0 to 1), Rpp32f (0 to 1), Rpp8s (-128 to 127).
  • dstPtr depth ranges - Will be same depth as srcPtr.
    Sample Input1
    Sample Input2
    Sample Output
    Parameters
    [in]srcPtr1source1 tensor in HOST memory
    [in]srcPtr2source2 tensor in HOST memory
    [in]srcDescPtrsource tensor descriptor (Restrictions - numDims = 4, offsetInBytes >= 0, dataType = U8/F16/F32/I8, layout = NCHW/NHWC, c = 1/3)
    [out]dstPtrdestination tensor in HOST memory
    [in]dstDescPtrdestination tensor descriptor (Restrictions - numDims = 4, offsetInBytes >= 0, dataType = U8/F16/F32/I8, layout = NCHW/NHWC, c = same as that of srcDescPtr)
    [in]roiTensorPtrSrcROI data in HOST memory, for each image in source tensor (2D tensor of size batchSize * 4, in either format - XYWH(xy.x, xy.y, roiWidth, roiHeight) or LTRB(lt.x, lt.y, rb.x, rb.y))
    [in]roiTypeROI type used (RpptRoiType::XYWH or RpptRoiType::LTRB)
    [in]rppHandleRPP HOST handle created with rppCreate()
    Returns
    A RppStatus enumeration.
    Return values
    RPP_SUCCESSSuccessful completion.
    RPP_ERROR*Unsuccessful completion.

◆ rppt_remap_gpu()

RppStatus rppt_remap_gpu ( RppPtr_t  srcPtr,
RpptDescPtr  srcDescPtr,
RppPtr_t  dstPtr,
RpptDescPtr  dstDescPtr,
Rpp32f rowRemapTable,
Rpp32f colRemapTable,
RpptDescPtr  tableDescPtr,
RpptInterpolationType  interpolationType,
RpptROIPtr  roiTensorPtrSrc,
RpptRoiType  roiType,
rppHandle_t  rppHandle 
)

Remap augmentation on HIP backend for a NCHW/NHWC layout tensor.

Performs a remap operation using user specified remap tables for a batch of RGB(3 channel) / greyscale(1 channel) images with an NHWC/NCHW tensor layout. For each image, the output(x,y) = input(mapx(x, y), mapy(x, y)) for every (x,y) in the destination image.

  • srcPtr depth ranges - Rpp8u (0 to 255), Rpp16f (0 to 1), Rpp32f (0 to 1), Rpp8s (-128 to 127).
  • dstPtr depth ranges - Will be same depth as srcPtr.
    Sample Input
    Sample Output
    Parameters
    [in]srcPtrsource tensor in HIP memory
    [in]srcDescPtrsource tensor descriptor (Restrictions - numDims = 4, offsetInBytes >= 0, dataType = U8/F16/F32/I8, layout = NCHW/NHWC, c = 1/3)
    [out]dstPtrdestination tensor in HIP memory
    [in]dstDescPtrdestination tensor descriptor (Restrictions - numDims = 4, offsetInBytes >= 0, dataType = U8/F16/F32/I8, layout = NCHW/NHWC, c = same as that of srcDescPtr)
    [in]rowRemapTableRpp32f row numbers in HIP memory for every pixel in the input batch of images (Restrictions - rois in the rowRemapTable data for each image in batch must match roiTensorPtrSrc)
    [in]colRemapTableRpp32f column numbers in HIP memory for every pixel in the input batch of images (Restrictions - rois in the colRemapTable data for each image in batch must match roiTensorPtrSrc)
    [in]tableDescPtrrowRemapTable and colRemapTable common tensor descriptor (Restrictions - numDims = 4, offsetInBytes >= 0, dataType = F32, layout = NHWC, c = 1)
    [in]interpolationTypeInterpolation type used in RpptInterpolationType (Restrictions - Supports only NEAREST_NEIGHBOR and BILINEAR)
    [in]roiTensorPtrSrcROI data in HIP memory, for each image in source tensor (2D tensor of size batchSize * 4, in either format - XYWH(xy.x, xy.y, roiWidth, roiHeight) or LTRB(lt.x, lt.y, rb.x, rb.y))
    [in]roiTypeROI type used (RpptRoiType::XYWH or RpptRoiType::LTRB)
    [in]rppHandleRPP HIP handle created with rppCreate()
    Returns
    A RppStatus enumeration.
    Return values
    RPP_SUCCESSSuccessful completion.
    RPP_ERROR*Unsuccessful completion.

◆ rppt_remap_host()

RppStatus rppt_remap_host ( RppPtr_t  srcPtr,
RpptDescPtr  srcDescPtr,
RppPtr_t  dstPtr,
RpptDescPtr  dstDescPtr,
Rpp32f rowRemapTable,
Rpp32f colRemapTable,
RpptDescPtr  tableDescPtr,
RpptInterpolationType  interpolationType,
RpptROIPtr  roiTensorPtrSrc,
RpptRoiType  roiType,
rppHandle_t  rppHandle 
)

Remap augmentation on HOST backend for a NCHW/NHWC layout tensor.

Performs a remap operation using user specified remap tables for a batch of RGB(3 channel) / greyscale(1 channel) images with an NHWC/NCHW tensor layout. For each image, the output(x,y) = input(mapx(x, y), mapy(x, y)) for every (x,y) in the destination image.

  • srcPtr depth ranges - Rpp8u (0 to 255), Rpp16f (0 to 1), Rpp32f (0 to 1), Rpp8s (-128 to 127).
  • dstPtr depth ranges - Will be same depth as srcPtr.
    Sample Input
    Sample Output
    Parameters
    [in]srcPtrsource tensor in HOST memory
    [in]srcDescPtrsource tensor descriptor (Restrictions - numDims = 4, offsetInBytes >= 0, dataType = U8/F16/F32/I8, layout = NCHW/NHWC, c = 1/3)
    [out]dstPtrdestination tensor in HOST memory
    [in]dstDescPtrdestination tensor descriptor (Restrictions - numDims = 4, offsetInBytes >= 0, dataType = U8/F16/F32/I8, layout = NCHW/NHWC, c = same as that of srcDescPtr)
    [in]rowRemapTableRpp32f row numbers in HOST memory for every pixel in the input batch of images (Restrictions - rois in the rowRemapTable data for each image in batch must match roiTensorPtrSrc)
    [in]colRemapTableRpp32f column numbers in HOST memory for every pixel in the input batch of images (Restrictions - rois in the colRemapTable data for each image in batch must match roiTensorPtrSrc)
    [in]tableDescPtrrowRemapTable and colRemapTable common tensor descriptor (Restrictions - numDims = 4, offsetInBytes >= 0, dataType = F32, layout = NHWC, c = 1)
    [in]interpolationTypeInterpolation type used in RpptInterpolationType (Restrictions - Supports only NEAREST_NEIGHBOR and BILINEAR)
    [in]roiTensorPtrSrcROI data in HOST memory, for each image in source tensor (2D tensor of size batchSize * 4, in either format - XYWH(xy.x, xy.y, roiWidth, roiHeight) or LTRB(lt.x, lt.y, rb.x, rb.y))
    [in]roiTypeROI type used (RpptRoiType::XYWH or RpptRoiType::LTRB)
    [in]rppHandleRPP HOST handle created with rppCreate()
    Returns
    A RppStatus enumeration.
    Return values
    RPP_SUCCESSSuccessful completion.
    RPP_ERROR*Unsuccessful completion.

◆ rppt_resize_crop_mirror_gpu()

RppStatus rppt_resize_crop_mirror_gpu ( RppPtr_t  srcPtr,
RpptDescPtr  srcDescPtr,
RppPtr_t  dstPtr,
RpptDescPtr  dstDescPtr,
RpptImagePatchPtr  dstImgSizes,
RpptInterpolationType  interpolationType,
Rpp32u mirrorTensor,
RpptROIPtr  roiTensorPtrSrc,
RpptRoiType  roiType,
rppHandle_t  rppHandle 
)

Resize crop mirror augmentation on HIP backend for a NCHW/NHWC layout tensor.

The resize crop mirror augmentation performs an image resized crop, with an optional mirror, for a batch of RGB(3 channel) / greyscale(1 channel) images with an NHWC/NCHW tensor layout.

  • srcPtr depth ranges - Rpp8u (0 to 255), Rpp16f (0 to 1), Rpp32f (0 to 1), Rpp8s (-128 to 127).
  • dstPtr depth ranges - Will be same depth as srcPtr.
    Sample Input
    Sample Output
    Parameters
    [in]srcPtrsource tensor in HIP memory
    [in]srcDescPtrsource tensor descriptor (Restrictions - numDims = 4, offsetInBytes >= 0, dataType = U8/F16/F32/I8, layout = NCHW/NHWC, c = 1/3)
    [out]dstPtrdestination tensor in HIP memory
    [in]dstDescPtrdestination tensor descriptor (Restrictions - numDims = 4, offsetInBytes >= 0, dataType = U8/F16/F32/I8, layout = NCHW/NHWC, c = same as that of srcDescPtr)
    [in]dstImgSizesdestination image sizes ( RpptImagePatchPtr type pointer to array, in pinned/HOST memory, of size batchSize)
    [in]interpolationTypeInterpolation type used in RpptInterpolationType
    [in]mirrorTensormirror flag value to set mirroring on/off (1D tensor in pinned/HOST memory, of size batchSize, with mirrorTensor[n] = 0/1)
    [in]roiTensorPtrSrcROI data in HIP memory, for each image in source tensor (2D tensor of size batchSize * 4, in either format - XYWH(xy.x, xy.y, roiWidth, roiHeight) or LTRB(lt.x, lt.y, rb.x, rb.y))
    [in]roiTypeROI type used (RpptRoiType::XYWH or RpptRoiType::LTRB)
    [in]rppHandleRPP HIP handle created with rppCreate()
    Returns
    A RppStatus enumeration.
    Return values
    RPP_SUCCESSSuccessful completion.
    RPP_ERROR*Unsuccessful completion.

◆ rppt_resize_crop_mirror_host()

RppStatus rppt_resize_crop_mirror_host ( RppPtr_t  srcPtr,
RpptDescPtr  srcDescPtr,
RppPtr_t  dstPtr,
RpptDescPtr  dstDescPtr,
RpptImagePatchPtr  dstImgSizes,
RpptInterpolationType  interpolationType,
Rpp32u mirrorTensor,
RpptROIPtr  roiTensorPtrSrc,
RpptRoiType  roiType,
rppHandle_t  rppHandle 
)

Resize crop mirror augmentation on HOST backend for a NCHW/NHWC layout tensor.

The resize crop mirror augmentation performs an image resized crop, with an optional mirror, for a batch of RGB(3 channel) / greyscale(1 channel) images with an NHWC/NCHW tensor layout.

  • srcPtr depth ranges - Rpp8u (0 to 255), Rpp16f (0 to 1), Rpp32f (0 to 1), Rpp8s (-128 to 127).
  • dstPtr depth ranges - Will be same depth as srcPtr.
    Sample Input
    Sample Output
    Parameters
    [in]srcPtrsource tensor in HOST memory
    [in]srcDescPtrsource tensor descriptor (Restrictions - numDims = 4, offsetInBytes >= 0, dataType = U8/F16/F32/I8, layout = NCHW/NHWC, c = 1/3)
    [out]dstPtrdestination tensor in HOST memory
    [in]dstDescPtrdestination tensor descriptor (Restrictions - numDims = 4, offsetInBytes >= 0, dataType = U8/F16/F32/I8, layout = NCHW/NHWC, c = same as that of srcDescPtr)
    [in]dstImgSizesdestination image sizes ( RpptImagePatchPtr type pointer to array, in HOST memory, of size batchSize)
    [in]interpolationTypeInterpolation type used in RpptInterpolationType
    [in]mirrorTensormirror flag value to set mirroring on/off (1D tensor in HOST memory, of size batchSize, with mirrorTensor[n] = 0/1)
    [in]roiTensorPtrSrcROI data in HOST memory, for each image in source tensor (2D tensor of size batchSize * 4, in either format - XYWH(xy.x, xy.y, roiWidth, roiHeight) or LTRB(lt.x, lt.y, rb.x, rb.y))
    [in]roiTypeROI type used (RpptRoiType::XYWH or RpptRoiType::LTRB)
    [in]rppHandleRPP HOST handle created with rppCreate()
    Returns
    A RppStatus enumeration.
    Return values
    RPP_SUCCESSSuccessful completion.
    RPP_ERROR*Unsuccessful completion.

◆ rppt_resize_gpu()

RppStatus rppt_resize_gpu ( RppPtr_t  srcPtr,
RpptDescPtr  srcDescPtr,
RppPtr_t  dstPtr,
RpptDescPtr  dstDescPtr,
RpptImagePatchPtr  dstImgSizes,
RpptInterpolationType  interpolationType,
RpptROIPtr  roiTensorPtrSrc,
RpptRoiType  roiType,
rppHandle_t  rppHandle 
)

Resize augmentation on HIP backend for a NCHW/NHWC layout tensor.

The resize augmentation performs an image resize for a batch of RGB(3 channel) / greyscale(1 channel) images with an NHWC/NCHW tensor layout.

  • srcPtr depth ranges - Rpp8u (0 to 255), Rpp16f (0 to 1), Rpp32f (0 to 1), Rpp8s (-128 to 127).
  • dstPtr depth ranges - Will be same depth as srcPtr.
    Sample Input
    Sample Output
    Parameters
    [in]srcPtrsource tensor in HIP memory
    [in]srcDescPtrsource tensor descriptor (Restrictions - numDims = 4, offsetInBytes >= 0, dataType = U8/F16/F32/I8, layout = NCHW/NHWC, c = 1/3)
    [out]dstPtrdestination tensor in HIP memory
    [in]dstDescPtrdestination tensor descriptor (Restrictions - numDims = 4, offsetInBytes >= 0, dataType = U8/F16/F32/I8, layout = NCHW/NHWC, c = same as that of srcDescPtr)
    [in]dstImgSizesdestination image sizes ( RpptImagePatchPtr type pointer to array, in pinned/HOST memory, of size batchSize)
    [in]interpolationTypeInterpolation type used in RpptInterpolationType
    [in]roiTensorPtrSrcROI data in HIP memory, for each image in source tensor (2D tensor of size batchSize * 4, in either format - XYWH(xy.x, xy.y, roiWidth, roiHeight) or LTRB(lt.x, lt.y, rb.x, rb.y))
    [in]roiTypeROI type used (RpptRoiType::XYWH or RpptRoiType::LTRB)
    [in]rppHandleRPP HIP handle created with rppCreate()
    Returns
    A RppStatus enumeration.
    Return values
    RPP_SUCCESSSuccessful completion.
    RPP_ERROR*Unsuccessful completion.

◆ rppt_resize_host()

RppStatus rppt_resize_host ( RppPtr_t  srcPtr,
RpptDescPtr  srcDescPtr,
RppPtr_t  dstPtr,
RpptDescPtr  dstDescPtr,
RpptImagePatchPtr  dstImgSizes,
RpptInterpolationType  interpolationType,
RpptROIPtr  roiTensorPtrSrc,
RpptRoiType  roiType,
rppHandle_t  rppHandle 
)

Resize augmentation on HOST backend for a NCHW/NHWC layout tensor.

The resize augmentation performs an image resize for a batch of RGB(3 channel) / greyscale(1 channel) images with an NHWC/NCHW tensor layout.

  • srcPtr depth ranges - Rpp8u (0 to 255), Rpp16f (0 to 1), Rpp32f (0 to 1), Rpp8s (-128 to 127).
  • dstPtr depth ranges - Will be same depth as srcPtr.
    Sample Input
    Sample Output
    Parameters
    [in]srcPtrsource tensor in HOST memory
    [in]srcDescPtrsource tensor descriptor (Restrictions - numDims = 4, offsetInBytes >= 0, dataType = U8/F16/F32/I8, layout = NCHW/NHWC, c = 1/3)
    [out]dstPtrdestination tensor in HOST memory
    [in]dstDescPtrdestination tensor descriptor (Restrictions - numDims = 4, offsetInBytes >= 0, dataType = U8/F16/F32/I8, layout = NCHW/NHWC, c = same as that of srcDescPtr)
    [in]dstImgSizesdestination image sizes ( RpptImagePatchPtr type pointer to array, in HOST memory, of size batchSize)
    [in]interpolationTypeInterpolation type used in RpptInterpolationType
    [in]roiTensorPtrSrcROI data in HOST memory, for each image in source tensor (2D tensor of size batchSize * 4, in either format - XYWH(xy.x, xy.y, roiWidth, roiHeight) or LTRB(lt.x, lt.y, rb.x, rb.y))
    [in]roiTypeROI type used (RpptRoiType::XYWH or RpptRoiType::LTRB)
    [in]rppHandleRPP HOST handle created with rppCreate()
    Returns
    A RppStatus enumeration.
    Return values
    RPP_SUCCESSSuccessful completion.
    RPP_ERROR*Unsuccessful completion.

◆ rppt_resize_mirror_normalize_gpu()

RppStatus rppt_resize_mirror_normalize_gpu ( RppPtr_t  srcPtr,
RpptDescPtr  srcDescPtr,
RppPtr_t  dstPtr,
RpptDescPtr  dstDescPtr,
RpptImagePatchPtr  dstImgSizes,
RpptInterpolationType  interpolationType,
Rpp32f meanTensor,
Rpp32f stdDevTensor,
Rpp32u mirrorTensor,
RpptROIPtr  roiTensorPtrSrc,
RpptRoiType  roiType,
rppHandle_t  rppHandle 
)

Resize mirror normalize augmentation on HIP backend for a NCHW/NHWC layout tensor.

The resize mirror normalize augmentation performs an image resize, an optional mirror and/or normalize, for a batch of RGB(3 channel) / greyscale(1 channel) images with an NHWC/NCHW tensor layout.

  • srcPtr depth ranges - Rpp8u (0 to 255), Rpp16f (0 to 1), Rpp32f (0 to 1), Rpp8s (-128 to 127).
  • dstPtr depth ranges - Will be same depth as srcPtr.
    Sample Input
    Sample Output
    Parameters
    [in]srcPtrsource tensor in HIP memory
    [in]srcDescPtrsource tensor descriptor (Restrictions - numDims = 4, offsetInBytes >= 0, dataType = U8/F16/F32/I8, layout = NCHW/NHWC, c = 1/3)
    [out]dstPtrdestination tensor in HIP memory
    [in]dstDescPtrdestination tensor descriptor (Restrictions - numDims = 4, offsetInBytes >= 0, dataType = U8/F16/F32/I8, layout = NCHW/NHWC, c = same as that of srcDescPtr)
    [in]dstImgSizesdestination image sizes ( RpptImagePatchPtr type pointer to array, in HIP memory, of size batchSize)
    [in]interpolationTypeInterpolation type used in RpptInterpolationType
    [in]meanTensormean value for each image in the batch (meanTensor[n] >= 0, 1D tensor in pinned/HOST memory, of size = batchSize for greyscale images, size = batchSize * 3 for RGB images))
    [in]stdDevTensorstandard deviation value for each image in the batch (stdDevTensor[n] >= 0, 1D tensor in pinned/HOST memory, of size = batchSize for greyscale images, size = batchSize * 3 for RGB images)
    [in]mirrorTensormirror flag value to set mirroring on/off (1D tensor in pinned/HOST memory, of size batchSize, with mirrorTensor[n] = 0/1)
    [in]roiTensorPtrSrcROI data in HIP memory, for each image in source tensor (2D tensor of size batchSize * 4, in either format - XYWH(xy.x, xy.y, roiWidth, roiHeight) or LTRB(lt.x, lt.y, rb.x, rb.y))
    [in]roiTypeROI type used (RpptRoiType::XYWH or RpptRoiType::LTRB)
    [in]rppHandleRPP HIP handle created with rppCreate()
    Returns
    A RppStatus enumeration.
    Return values
    RPP_SUCCESSSuccessful completion.
    RPP_ERROR*Unsuccessful completion.

◆ rppt_resize_mirror_normalize_host()

RppStatus rppt_resize_mirror_normalize_host ( RppPtr_t  srcPtr,
RpptDescPtr  srcDescPtr,
RppPtr_t  dstPtr,
RpptDescPtr  dstDescPtr,
RpptImagePatchPtr  dstImgSizes,
RpptInterpolationType  interpolationType,
Rpp32f meanTensor,
Rpp32f stdDevTensor,
Rpp32u mirrorTensor,
RpptROIPtr  roiTensorPtrSrc,
RpptRoiType  roiType,
rppHandle_t  rppHandle 
)

Resize mirror normalize augmentation on HOST backend for a NCHW/NHWC layout tensor.

The resize mirror normalize augmentation performs an image resize, an optional mirror and/or normalize, for a batch of RGB(3 channel) / greyscale(1 channel) images with an NHWC/NCHW tensor layout.

  • srcPtr depth ranges - Rpp8u (0 to 255), Rpp16f (0 to 1), Rpp32f (0 to 1), Rpp8s (-128 to 127).
  • dstPtr depth ranges - Will be same depth as srcPtr.
    Sample Input
    Sample Output
    Parameters
    [in]srcPtrsource tensor in HOST memory
    [in]srcDescPtrsource tensor descriptor (Restrictions - numDims = 4, offsetInBytes >= 0, dataType = U8/F16/F32/I8, layout = NCHW/NHWC, c = 1/3)
    [out]dstPtrdestination tensor in HOST memory
    [in]dstDescPtrdestination tensor descriptor (Restrictions - numDims = 4, offsetInBytes >= 0, dataType = U8/F16/F32/I8, layout = NCHW/NHWC, c = same as that of srcDescPtr)
    [in]dstImgSizesdestination image sizes ( RpptImagePatchPtr type pointer to array, in HOST memory, of size batchSize)
    [in]interpolationTypeInterpolation type used in RpptInterpolationType
    [in]meanTensormean value for each image in the batch (meanTensor[n] >= 0, 1D tensor in HOST memory, of size = batchSize for greyscale images, size = batchSize * 3 for RGB images))
    [in]stdDevTensorstandard deviation value for each image in the batch (stdDevTensor[n] >= 0, 1D tensor in HOST memory, of size = batchSize for greyscale images, size = batchSize * 3 for RGB images)
    [in]mirrorTensormirror flag value to set mirroring on/off (1D tensor in HOST memory, of size batchSize, with mirrorTensor[n] = 0/1)
    [in]roiTensorPtrSrcROI data in HOST memory, for each image in source tensor (2D tensor of size batchSize * 4, in either format - XYWH(xy.x, xy.y, roiWidth, roiHeight) or LTRB(lt.x, lt.y, rb.x, rb.y))
    [in]roiTypeROI type used (RpptRoiType::XYWH or RpptRoiType::LTRB)
    [in]rppHandleRPP HOST handle created with rppCreate()
    Returns
    A RppStatus enumeration.
    Return values
    RPP_SUCCESSSuccessful completion.
    RPP_ERROR*Unsuccessful completion.

◆ rppt_rotate_gpu()

RppStatus rppt_rotate_gpu ( RppPtr_t  srcPtr,
RpptDescPtr  srcDescPtr,
RppPtr_t  dstPtr,
RpptDescPtr  dstDescPtr,
Rpp32f angle,
RpptInterpolationType  interpolationType,
RpptROIPtr  roiTensorPtrSrc,
RpptRoiType  roiType,
rppHandle_t  rppHandle 
)

Rotate augmentation on HIP backend for a NCHW/NHWC layout tensor.

The rotate augmentation performs a rotate transformations for a batch of RGB(3 channel) / greyscale(1 channel) images with an NHWC/NCHW tensor layout.

  • srcPtr depth ranges - Rpp8u (0 to 255), Rpp16f (0 to 1), Rpp32f (0 to 1), Rpp8s (-128 to 127).
  • dstPtr depth ranges - Will be same depth as srcPtr.
    Sample Input
    Sample Output
    Parameters
    [in]srcPtrsource tensor in HIP memory
    [in]srcDescPtrsource tensor descriptor (Restrictions - numDims = 4, offsetInBytes >= 0, dataType = U8/F16/F32/I8, layout = NCHW/NHWC, c = 1/3)
    [out]dstPtrdestination tensor in HIP memory
    [in]dstDescPtrdestination tensor descriptor (Restrictions - numDims = 4, offsetInBytes >= 0, dataType = U8/F16/F32/I8, layout = NCHW/NHWC, c = same as that of srcDescPtr)
    [in]angleimage rotation angle in degrees - positive deg-anticlockwise/negative deg-clockwise (1D tensor in pinned/HOST memory, of size batchSize)
    [in]interpolationTypeInterpolation type used (RpptInterpolationType::XYWH or RpptRoiType::LTRB)
    [in]roiTensorPtrSrcROI data in HIP memory, for each image in source tensor (2D tensor of size batchSize * 4, in either format - XYWH(xy.x, xy.y, roiWidth, roiHeight) or LTRB(lt.x, lt.y, rb.x, rb.y))
    [in]roiTypeROI type used (RpptRoiType::XYWH or RpptRoiType::LTRB)
    [in]rppHandleRPP HIP handle created with rppCreate()
    Returns
    A RppStatus enumeration.
    Return values
    RPP_SUCCESSSuccessful completion.
    RPP_ERROR*Unsuccessful completion.

◆ rppt_rotate_host()

RppStatus rppt_rotate_host ( RppPtr_t  srcPtr,
RpptDescPtr  srcDescPtr,
RppPtr_t  dstPtr,
RpptDescPtr  dstDescPtr,
Rpp32f angle,
RpptInterpolationType  interpolationType,
RpptROIPtr  roiTensorPtrSrc,
RpptRoiType  roiType,
rppHandle_t  rppHandle 
)

Rotate augmentation on HOST backend for a NCHW/NHWC layout tensor.

The rotate augmentation performs a rotate transformations for a batch of RGB(3 channel) / greyscale(1 channel) images with an NHWC/NCHW tensor layout.

  • srcPtr depth ranges - Rpp8u (0 to 255), Rpp16f (0 to 1), Rpp32f (0 to 1), Rpp8s (-128 to 127).
  • dstPtr depth ranges - Will be same depth as srcPtr.
    Sample Input
    Sample Output
    Parameters
    [in]srcPtrsource tensor in HOST memory
    [in]srcDescPtrsource tensor descriptor (Restrictions - numDims = 4, offsetInBytes >= 0, dataType = U8/F16/F32/I8, layout = NCHW/NHWC, c = 1/3)
    [out]dstPtrdestination tensor in HOST memory
    [in]dstDescPtrdestination tensor descriptor (Restrictions - numDims = 4, offsetInBytes >= 0, dataType = U8/F16/F32/I8, layout = NCHW/NHWC, c = same as that of srcDescPtr)
    [in]angleimage rotation angle in degrees - positive deg-anticlockwise/negative deg-clockwise (1D tensor in HOST memory, of size batchSize)
    [in]interpolationTypeInterpolation type used (RpptInterpolationType::XYWH or RpptRoiType::LTRB)
    [in]roiTensorPtrSrcROI data in HOST memory, for each image in source tensor (2D tensor of size batchSize * 4, in either format - XYWH(xy.x, xy.y, roiWidth, roiHeight) or LTRB(lt.x, lt.y, rb.x, rb.y))
    [in]roiTypeROI type used (RpptRoiType::XYWH or RpptRoiType::LTRB)
    [in]rppHandleRPP HOST handle created with rppCreate()
    Returns
    A RppStatus enumeration.
    Return values
    RPP_SUCCESSSuccessful completion.
    RPP_ERROR*Unsuccessful completion.

◆ rppt_slice_gpu()

RppStatus rppt_slice_gpu ( RppPtr_t  srcPtr,
RpptGenericDescPtr  srcGenericDescPtr,
RppPtr_t  dstPtr,
RpptGenericDescPtr  dstGenericDescPtr,
Rpp32s anchorTensor,
Rpp32s shapeTensor,
RppPtr_t  fillValue,
bool  enablePadding,
Rpp32u roiTensor,
rppHandle_t  rppHandle 
)

Slice augmentation GPU.

This function performs slice augmentation on a generic 4D tensor. Slice augmentation involves selecting a region of interest (ROI) from the source tensor and copying it to the destination tensor. Support added for f32 -> f32 and u8 -> u8 dataypes.

Parameters
[in]srcPtrsource tensor memory in HIP memory
[in]srcGenericDescPtrsource tensor descriptor
[out]dstPtrdestination tensor memory in HIP memory
[in]dstGenericDescPtrdestination tensor descriptor
[in]anchorTensorstarting index of the slice for each dimension in input (1D tensor in pinned/HOST memory of size = batchSize * numberOfDimensions)
[in]shapeTensorlength of the slice for each dimension in input (1D tensor in pinned/HOST memory of size = batchSize * numberOfDimensions)
[in]fillValuefill value that is used to fill output if enablePadding is set to true
[in]enablePaddingboolean flag to specify if padding is enabled or not
[in]roiTensorroi data in pinned/HOST memory (1D tensor of size = batchSize * numberOfDimensions * 2)
[in]rppHandleRPP HIP handle created with rppCreate()
Returns
A RppStatus enumeration.
Return values
RPP_SUCCESSSuccessful completion.
RPP_ERROR*Unsuccessful completion.

◆ rppt_slice_host()

RppStatus rppt_slice_host ( RppPtr_t  srcPtr,
RpptGenericDescPtr  srcGenericDescPtr,
RppPtr_t  dstPtr,
RpptGenericDescPtr  dstGenericDescPtr,
Rpp32s anchorTensor,
Rpp32s shapeTensor,
RppPtr_t  fillValue,
bool  enablePadding,
Rpp32u roiTensor,
rppHandle_t  rppHandle 
)

Slice augmentation HOST.

This function performs slice augmentation on a generic 4D tensor. Slice augmentation involves selecting a region of interest (ROI) from the source tensor and copying it to the destination tensor. Support added for f32 -> f32 and u8 -> u8 dataypes.

Parameters
[in]srcPtrsource tensor memory in HOST memory
[in]srcGenericDescPtrsource tensor descriptor
[out]dstPtrdestination tensor memory in HOST memory
[in]dstGenericDescPtrdestination tensor descriptor
[in]anchorTensorstarting index of the slice for each dimension in input (1D tensor of size = batchSize * numberOfDimensions)
[in]shapeTensorlength of the slice for each dimension in input (1D tensor of size = batchSize * numberOfDimensions)
[in]fillValuefill value that is used to fill output if enablePadding is set to true
[in]enablePaddingboolean flag to specify if padding is enabled or not
[in]roiTensorroi data in HOST memory (1D tensor of size = batchSize * numberOfDimensions * 2)
[in]rppHandleRPP HOST handle created with rppCreate()
Returns
A RppStatus enumeration.
Return values
RPP_SUCCESSSuccessful completion.
RPP_ERROR*Unsuccessful completion.

◆ rppt_transpose_gpu()

RppStatus rppt_transpose_gpu ( RppPtr_t  srcPtr,
RpptGenericDescPtr  srcGenericDescPtr,
RppPtr_t  dstPtr,
RpptGenericDescPtr  dstGenericDescPtr,
Rpp32u permTensor,
Rpp32u roiTensor,
rppHandle_t  rppHandle 
)

Transpose Generic augmentation on HIP backend.

The transpose augmentation performs an input-permutation based transpose on a generic ND Tensor.

Parameters
[in]srcPtrsource tensor in HIP memory
[in]srcGenericDescPtrsource tensor descriptor
[out]dstPtrsource tensor in HIP memory
[in]dstGenericDescPtrdestination tensor descriptor
[in]permTensorpermutation tensor for transpose operation in pinned memory
[in]roiTensorROI data for each element in source tensor (tensor of batchSize * number of dimensions * 2 values)
[in]rppHandleRPP HIP handle created with rppCreate()
Returns
A RppStatus enumeration.
Return values
RPP_SUCCESSSuccessful completion.
RPP_ERROR*Unsuccessful completion.

◆ rppt_transpose_host()

RppStatus rppt_transpose_host ( RppPtr_t  srcPtr,
RpptGenericDescPtr  srcGenericDescPtr,
RppPtr_t  dstPtr,
RpptGenericDescPtr  dstGenericDescPtr,
Rpp32u permTensor,
Rpp32u roiTensor,
rppHandle_t  rppHandle 
)

Transpose Generic augmentation on HOST backend.

The transpose augmentation performs an input-permutation based transpose on a generic ND Tensor.

Parameters
[in]srcPtrsource tensor in HOST memory
[in]srcGenericDescPtrsource tensor descriptor
[out]dstPtrsource tensor in HOST memory
[in]dstGenericDescPtrdestination tensor descriptor
[in]permTensorpermutation tensor for transpose operation
[in]roiTensorROI data for each element in source tensor (tensor of batchSize * number of dimensions * 2 values)
[in]rppHandleRPP HOST handle created with rppCreate()
Returns
A RppStatus enumeration.
Return values
RPP_SUCCESSSuccessful completion.
RPP_ERROR*Unsuccessful completion.

◆ rppt_warp_affine_gpu()

RppStatus rppt_warp_affine_gpu ( RppPtr_t  srcPtr,
RpptDescPtr  srcDescPtr,
RppPtr_t  dstPtr,
RpptDescPtr  dstDescPtr,
Rpp32f affineTensor,
RpptInterpolationType  interpolationType,
RpptROIPtr  roiTensorPtrSrc,
RpptRoiType  roiType,
rppHandle_t  rppHandle 
)

Warp affine augmentation on HIP backend for a NCHW/NHWC layout tensor.

The warp affine augmentation performs affine transformations for a batch of RGB(3 channel) / greyscale(1 channel) images with an NHWC/NCHW tensor layout.

  • srcPtr depth ranges - Rpp8u (0 to 255), Rpp16f (0 to 1), Rpp32f (0 to 1), Rpp8s (-128 to 127).
  • dstPtr depth ranges - Will be same depth as srcPtr.
    Sample Input
    Sample Output
    Parameters
    [in]srcPtrsource tensor in HIP memory
    [in]srcDescPtrsource tensor descriptor (Restrictions - numDims = 4, offsetInBytes >= 0, dataType = U8/F16/F32/I8, layout = NCHW/NHWC, c = 1/3)
    [out]dstPtrdestination tensor in HIP memory
    [in]dstDescPtrdestination tensor descriptor (Restrictions - numDims = 4, offsetInBytes >= 0, dataType = U8/F16/F32/I8, layout = NCHW/NHWC, c = same as that of srcDescPtr)
    [in]affineTensoraffine matrix values for transformation calculation (2D tensor in pinned/HOST memory, of size batchSize * 6 for each image in batch)
    [in]interpolationTypeInterpolation type used (RpptInterpolationType::XYWH or RpptRoiType::LTRB)
    [in]roiTensorPtrSrcROI data in HIP memory, for each image in source tensor (2D tensor of size batchSize * 4, in either format - XYWH(xy.x, xy.y, roiWidth, roiHeight) or LTRB(lt.x, lt.y, rb.x, rb.y))
    [in]roiTypeROI type used (RpptRoiType::XYWH or RpptRoiType::LTRB)
    [in]rppHandleRPP HIP handle created with rppCreate()
    Returns
    A RppStatus enumeration.
    Return values
    RPP_SUCCESSSuccessful completion.
    RPP_ERROR*Unsuccessful completion.

◆ rppt_warp_affine_host()

RppStatus rppt_warp_affine_host ( RppPtr_t  srcPtr,
RpptDescPtr  srcDescPtr,
RppPtr_t  dstPtr,
RpptDescPtr  dstDescPtr,
Rpp32f affineTensor,
RpptInterpolationType  interpolationType,
RpptROIPtr  roiTensorPtrSrc,
RpptRoiType  roiType,
rppHandle_t  rppHandle 
)

Warp affine augmentation on HOST backend for a NCHW/NHWC layout tensor.

The warp affine augmentation performs affine transformations for a batch of RGB(3 channel) / greyscale(1 channel) images with an NHWC/NCHW tensor layout.

  • srcPtr depth ranges - Rpp8u (0 to 255), Rpp16f (0 to 1), Rpp32f (0 to 1), Rpp8s (-128 to 127).
  • dstPtr depth ranges - Will be same depth as srcPtr.
    Sample Input
    Sample Output
    Parameters
    [in]srcPtrsource tensor in HOST memory
    [in]srcDescPtrsource tensor descriptor (Restrictions - numDims = 4, offsetInBytes >= 0, dataType = U8/F16/F32/I8, layout = NCHW/NHWC, c = 1/3)
    [out]dstPtrdestination tensor in HOST memory
    [in]dstDescPtrdestination tensor descriptor (Restrictions - numDims = 4, offsetInBytes >= 0, dataType = U8/F16/F32/I8, layout = NCHW/NHWC, c = same as that of srcDescPtr)
    [in]affineTensoraffine matrix values for transformation calculation (2D tensor in HOST memory, of size batchSize * 6 for each image in batch)
    [in]interpolationTypeInterpolation type used (RpptInterpolationType::XYWH or RpptRoiType::LTRB)
    [in]roiTensorPtrSrcROI data in HOST memory, for each image in source tensor (2D tensor of size batchSize * 4, in either format - XYWH(xy.x, xy.y, roiWidth, roiHeight) or LTRB(lt.x, lt.y, rb.x, rb.y))
    [in]roiTypeROI type used (RpptRoiType::XYWH or RpptRoiType::LTRB)
    [in]rppHandleRPP HOST handle created with rppCreate()
    Returns
    A RppStatus enumeration.
    Return values
    RPP_SUCCESSSuccessful completion.
    RPP_ERROR*Unsuccessful completion.

◆ rppt_warp_perspective_gpu()

RppStatus rppt_warp_perspective_gpu ( RppPtr_t  srcPtr,
RpptDescPtr  srcDescPtr,
RppPtr_t  dstPtr,
RpptDescPtr  dstDescPtr,
Rpp32f perspectiveTensor,
RpptInterpolationType  interpolationType,
RpptROIPtr  roiTensorPtrSrc,
RpptRoiType  roiType,
rppHandle_t  rppHandle 
)

Warp perspective augmentation on HIP backend for a NCHW/NHWC layout tensor.

The warp perspective augmentation performs perspective transformations for a batch of RGB(3 channel) / greyscale(1 channel) images with an NHWC/NCHW tensor layout.

  • srcPtr depth ranges - Rpp8u (0 to 255), Rpp16f (0 to 1), Rpp32f (0 to 1), Rpp8s (-128 to 127).
  • dstPtr depth ranges - Will be same depth as srcPtr.
    Sample Input
    Sample Output
    Parameters
    [in]srcPtrsource tensor in HIP memory
    [in]srcDescPtrsource tensor descriptor (Restrictions - numDims = 4, offsetInBytes >= 0, dataType = U8/F16/F32/I8, layout = NCHW/NHWC, c = 1/3)
    [out]dstPtrdestination tensor in HIP memory
    [in]dstDescPtrdestination tensor descriptor (Restrictions - numDims = 4, offsetInBytes >= 0, dataType = U8/F16/F32/I8, layout = NCHW/NHWC, c = same as that of srcDescPtr)
    [in]perspectiveTensorperspective matrix values for transformation calculation (2D tensor in pinned/HIP memory, of size batchSize * 9 for each image in batch)
    [in]interpolationTypeInterpolation type used (RpptInterpolationType::BILINEAR or RpptRoiType::NEAREST_NEIGHBOR)
    [in]roiTensorPtrSrcROI data in HIP memory, for each image in source tensor (2D tensor of size batchSize * 4, in either format - XYWH(xy.x, xy.y, roiWidth, roiHeight) or LTRB(lt.x, lt.y, rb.x, rb.y))
    [in]roiTypeROI type used (RpptRoiType::XYWH or RpptRoiType::LTRB)
    [in]rppHandleRPP HIP handle created with rppCreate()
    Returns
    A RppStatus enumeration.
    Return values
    RPP_SUCCESSSuccessful completion.
    RPP_ERROR*Unsuccessful completion.

◆ rppt_warp_perspective_host()

RppStatus rppt_warp_perspective_host ( RppPtr_t  srcPtr,
RpptDescPtr  srcDescPtr,
RppPtr_t  dstPtr,
RpptDescPtr  dstDescPtr,
Rpp32f perspectiveTensor,
RpptInterpolationType  interpolationType,
RpptROIPtr  roiTensorPtrSrc,
RpptRoiType  roiType,
rppHandle_t  rppHandle 
)

Warp perspective augmentation on HOST backend for a NCHW/NHWC layout tensor.

The warp perspective performs perspective transformations for a batch of RGB(3 channel) / greyscale(1 channel) images with an NHWC/NCHW tensor layout.

  • srcPtr depth ranges - Rpp8u (0 to 255), Rpp16f (0 to 1), Rpp32f (0 to 1), Rpp8s (-128 to 127).
  • dstPtr depth ranges - Will be same depth as srcPtr.
    Sample Input
    Sample Output
    Parameters
    [in]srcPtrsource tensor in HOST memory
    [in]srcDescPtrsource tensor descriptor (Restrictions - numDims = 4, offsetInBytes >= 0, dataType = U8/F16/F32/I8, layout = NCHW/NHWC, c = 1/3)
    [out]dstPtrdestination tensor in HOST memory
    [in]dstDescPtrdestination tensor descriptor (Restrictions - numDims = 4, offsetInBytes >= 0, dataType = U8/F16/F32/I8, layout = NCHW/NHWC, c = same as that of srcDescPtr)
    [in]perspectiveTensorperspective matrix values for transformation calculation (2D tensor in HOST memory, of size batchSize * 9 for each image in batch)
    [in]interpolationTypeInterpolation type used (RpptInterpolationType::BILINEAR or RpptRoiType::NEAREST_NEIGHBOR)
    [in]roiTensorPtrSrcROI data in HOST memory, for each image in source tensor (2D tensor of size batchSize * 4, in either format - XYWH(xy.x, xy.y, roiWidth, roiHeight) or LTRB(lt.x, lt.y, rb.x, rb.y))
    [in]roiTypeROI type used (RpptRoiType::XYWH or RpptRoiType::LTRB)
    [in]rppHandleRPP HOST handle created with rppCreate()
    Returns
    A RppStatus enumeration.
    Return values
    RPP_SUCCESSSuccessful completion.
    RPP_ERROR*Unsuccessful completion.