rocSPARSE precision support#

This section provides an overview of the numerical precision types supported by the rocSPARSE library for sparse matrix operations.

Supported precision types#

rocSPARSE supports the following precision types across its functions:

Type prefix

C++ type

Description

s

float

Single-precision real (32-bit)

d

double

Double-precision real (64-bit)

c

rocsparse_float_complex

Single-precision complex (32-bit real, 32-bit imaginary)

z

rocsparse_double_complex

Double-precision complex (64-bit real, 64-bit imaginary)

Function naming convention#

rocSPARSE follows a naming convention where the precision type is included in the function name:

  • Functions containing _s operate on single-precision real data.

  • Functions containing _d operate on double-precision real data.

  • Functions containing _c operate on single-precision complex data.

  • Functions containing _z operate on double-precision complex data.

For example, the dense matrix sparse vector multiplication function is implemented as:

  • rocsparse_sgemvi - For single-precision real sparse matrices.

  • rocsparse_dgemvi - For double-precision real sparse matrices.

  • rocsparse_cgemvi - For single-precision complex sparse matrices.

  • rocsparse_zgemvi - For double-precision complex sparse matrices.

In the documentation, these are often represented generically as rocsparse_Xgemvi(), where X is a placeholder for the precision type character.

Understanding precision in function signatures#

In the function signatures throughout the documentation, precision information is indicated directly in the parameter types. For example:

rocsparse_status rocsparse_sgemvi(rocsparse_handle handle,
                                  rocsparse_operation trans,
                                  rocsparse_int m,
                                  rocsparse_int n,
                                  const float *alpha,
                                  const float *A,
                                  rocsparse_int lda,
                                  rocsparse_int nnz,
                                  const float *x_val,
                                  const rocsparse_int *x_ind,
                                  const float *beta,
                                  float *y,
                                  rocsparse_index_base idx_base,
                                  void *temp_buffer)

The parameter types (float, double, rocsparse_float_complex, or rocsparse_double_complex) correspond to the function precision type character and indicate the precision used by that specific function variant.

Generic functions and mixed precision#

rocSPARSE provides generic functions that allow for mixed-precision operations. These functions use data type enumerations to specify precision when creating matrix/vector descriptors and during computation.

For example, when creating a sparse matrix descriptor:

// Create CSR matrix with single-precision values
rocsparse_create_csr_descr(&matA, m, n, nnz,
                           dcsr_row_ptr, dcsr_col_ind, dcsr_val,
                           rocsparse_indextype_i32, rocsparse_indextype_i32,
                           rocsparse_index_base_zero, rocsparse_datatype_f32_r);

Or when creating a dense vector:

// Create dense vector with double-precision values
rocsparse_create_dnvec_descr(&vecX, n, dx, rocsparse_datatype_f64_r);

Functions like rocsparse_spmv use a separate parameter for computation precision:

// Matrix-vector multiplication with computation in single precision
rocsparse_spmv(handle, trans, &alpha, matA, vecX, &beta, vecY,
               rocsparse_datatype_f32_r, rocsparse_spmv_alg_csr_adaptive,
               rocsparse_spmv_stage_compute, &buffer_size, temp_buffer);

This approach enables:

  • Using different precision types for matrices and vectors.

  • Specifying computation precision independently of storage precision.

  • Supporting mixed-precision workflows with a unified API.

The advantage of using different data types is to save on memory bandwidth and storage when a user application allows while performing the actual computation in a higher precision.

Real versus complex precision#

Most sparse matrix operations in rocSPARSE support both real and complex precisions, however certain algorithms or optimizations might be specific to real or complex data:

  • Some functions might have different performance characteristics for complex data compared to real data.

  • Certain conversion routines might operate differently depending on whether the data is real or complex.

Core precision types#

The four core precision types (s, d, c, z) are supported across most functions in rocSPARSE. Some specialized functions might only support a subset of these types. See the specific function documentation to confirm which precision types are supported for a particular operation.