LLM inference with PyTorch + Huggingface transformers#
Follow these steps to install Huggingface transformers.
Prerequisites#
ROCm is installed. For instructions, refer to Install Ryzen Software for Linux with ROCm.
Installation#
Follow these steps to install Transformers.
Install the Python
venv
package for the applicable Python version.Python 3.12/Ubuntu 24.04
sudo apt install python3.12-venv
Create a Python virtual environment.
python3 -m venv llm-venv source llm-venv/bin/activate
Install the latest PyTorch ROCm wheels in the environment created.
Note
Refer to Install Pytorch for Ryzen APUs for more comprehensive install instructions. Proceed to install within the environment if the wheels are already downloaded to the system. Example command:pip3 install <torch wheel> <torchaudio wheel> <torchvision wheel> <triton wheel>
Install transformers and required packages.
pip install transformers pip install accelerate
(Optional) Install HuggingFaceHub, which is the Python client to download, and upload models to Hugging Face.
pip install huggingface-hub hf auth login
LLM inference#
import torch
from transformers import pipeline
model_id = "deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B"
pipe = pipeline(
"text-generation",
model=model_id,
torch_dtype=torch.float16,
device_map="auto",
)
messages = [
{"role": "system", "content": "You are a helpful technology enthusiast."},
{"role": "user", "content": "What is AMD Radeon?"},
]
outputs = pipe(
messages,
max_new_tokens=256,
)
print(outputs[0]["generated_text"][-1])
Model support matrix#
Model |
Link |
Supported |
---|---|---|
Llama-3.2-1B-Instruct |
https://huggingface.co/meta-llama/Llama-3.2-1B-Instruct |
Yes |
Llama-3.2-3B-Instruct |
https://huggingface.co/meta-llama/Llama-3.2-1B-Instruct |
Yes |
DeepSeek-R1-Distill-Qwen-1.5B |
https://huggingface.co/deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B |
Yes |
Note
Proprietary Meta access is required for Llama models.
Alternatively, open-source versions can be found here: