docs-6.1.2/amd_openvx/openvx/include/VX/vx_nodes.h File Reference#
The "Simple" API interface for OpenVX. These APIs are just wrappers around the more verbose functions defined in vx_api.h
.
More...
Go to the source code of this file.
Functions | |
VX_API_ENTRY vx_node VX_API_CALL | vxColorConvertNode (vx_graph graph, vx_image input, vx_image output) |
[Graph] Creates a color conversion node. More... | |
VX_API_ENTRY vx_node VX_API_CALL | vxChannelExtractNode (vx_graph graph, vx_image input, vx_enum channel, vx_image output) |
[Graph] Creates a channel extract node. More... | |
VX_API_ENTRY vx_node VX_API_CALL | vxChannelCombineNode (vx_graph graph, vx_image plane0, vx_image plane1, vx_image plane2, vx_image plane3, vx_image output) |
[Graph] Creates a channel combine node. More... | |
VX_API_ENTRY vx_node VX_API_CALL | vxPhaseNode (vx_graph graph, vx_image grad_x, vx_image grad_y, vx_image orientation) |
[Graph] Creates a Phase node. More... | |
VX_API_ENTRY vx_node VX_API_CALL | vxSobel3x3Node (vx_graph graph, vx_image input, vx_image output_x, vx_image output_y) |
[Graph] Creates a Sobel3x3 node. More... | |
VX_API_ENTRY vx_node VX_API_CALL | vxMagnitudeNode (vx_graph graph, vx_image grad_x, vx_image grad_y, vx_image mag) |
[Graph] Create a Magnitude node. More... | |
VX_API_ENTRY vx_node VX_API_CALL | vxScaleImageNode (vx_graph graph, vx_image src, vx_image dst, vx_enum type) |
[Graph] Creates a Scale Image Node. More... | |
VX_API_ENTRY vx_node VX_API_CALL | vxTableLookupNode (vx_graph graph, vx_image input, vx_lut lut, vx_image output) |
[Graph] Creates a Table Lookup node. If a value from the input image is not present in the lookup table, the result is undefined. More... | |
VX_API_ENTRY vx_node VX_API_CALL | vxHistogramNode (vx_graph graph, vx_image input, vx_distribution distribution) |
[Graph] Creates a Histogram node. More... | |
VX_API_ENTRY vx_node VX_API_CALL | vxEqualizeHistNode (vx_graph graph, vx_image input, vx_image output) |
[Graph] Creates a Histogram Equalization node. More... | |
VX_API_ENTRY vx_node VX_API_CALL | vxAbsDiffNode (vx_graph graph, vx_image in1, vx_image in2, vx_image out) |
[Graph] Creates an AbsDiff node. More... | |
VX_API_ENTRY vx_node VX_API_CALL | vxMeanStdDevNode (vx_graph graph, vx_image input, vx_scalar mean, vx_scalar stddev) |
[Graph] Creates a mean value and optionally, a standard deviation node. More... | |
VX_API_ENTRY vx_node VX_API_CALL | vxThresholdNode (vx_graph graph, vx_image input, vx_threshold thresh, vx_image output) |
[Graph] Creates a Threshold node and returns a reference to it. More... | |
VX_API_ENTRY vx_node VX_API_CALL | vxNonMaxSuppressionNode (vx_graph graph, vx_image input, vx_image mask, vx_int32 win_size, vx_image output) |
[Graph] Creates a Non-Maxima Suppression node. More... | |
VX_API_ENTRY vx_node VX_API_CALL | vxIntegralImageNode (vx_graph graph, vx_image input, vx_image output) |
[Graph] Creates an Integral Image Node. More... | |
VX_API_ENTRY vx_node VX_API_CALL | vxErode3x3Node (vx_graph graph, vx_image input, vx_image output) |
[Graph] Creates an Erosion Image Node. More... | |
VX_API_ENTRY vx_node VX_API_CALL | vxDilate3x3Node (vx_graph graph, vx_image input, vx_image output) |
[Graph] Creates a Dilation Image Node. More... | |
VX_API_ENTRY vx_node VX_API_CALL | vxMedian3x3Node (vx_graph graph, vx_image input, vx_image output) |
[Graph] Creates a Median Image Node. More... | |
VX_API_ENTRY vx_node VX_API_CALL | vxBox3x3Node (vx_graph graph, vx_image input, vx_image output) |
[Graph] Creates a Box Filter Node. More... | |
VX_API_ENTRY vx_node VX_API_CALL | vxGaussian3x3Node (vx_graph graph, vx_image input, vx_image output) |
[Graph] Creates a Gaussian Filter Node. More... | |
VX_API_ENTRY vx_node VX_API_CALL | vxNonLinearFilterNode (vx_graph graph, vx_enum function, vx_image input, vx_matrix mask, vx_image output) |
[Graph] Creates a Non-linear Filter Node. More... | |
VX_API_ENTRY vx_node VX_API_CALL | vxConvolveNode (vx_graph graph, vx_image input, vx_convolution conv, vx_image output) |
[Graph] Creates a custom convolution node. More... | |
VX_API_ENTRY vx_node VX_API_CALL | vxGaussianPyramidNode (vx_graph graph, vx_image input, vx_pyramid gaussian) |
[Graph] Creates a node for a Gaussian Image Pyramid. More... | |
VX_API_ENTRY vx_node VX_API_CALL | vxLaplacianPyramidNode (vx_graph graph, vx_image input, vx_pyramid laplacian, vx_image output) |
[Graph] Creates a node for a Laplacian Image Pyramid. More... | |
VX_API_ENTRY vx_node VX_API_CALL | vxLaplacianReconstructNode (vx_graph graph, vx_pyramid laplacian, vx_image input, vx_image output) |
[Graph] Reconstructs an image from a Laplacian Image pyramid. More... | |
VX_API_ENTRY vx_node VX_API_CALL | vxWeightedAverageNode (vx_graph graph, vx_image img1, vx_scalar alpha, vx_image img2, vx_image output) |
[Graph] Creates a image weighted average node. More... | |
VX_API_ENTRY vx_node VX_API_CALL | vxMinMaxLocNode (vx_graph graph, vx_image input, vx_scalar minVal, vx_scalar maxVal, vx_array minLoc, vx_array maxLoc, vx_scalar minCount, vx_scalar maxCount) |
[Graph] Creates a min,max,loc node. More... | |
VX_API_ENTRY vx_node VX_API_CALL | vxMinNode (vx_graph graph, vx_image in1, vx_image in2, vx_image out) |
[Graph] Creates a pixel-wise minimum kernel. More... | |
VX_API_ENTRY vx_node VX_API_CALL | vxMaxNode (vx_graph graph, vx_image in1, vx_image in2, vx_image out) |
[Graph] Creates a pixel-wise maximum kernel. More... | |
VX_API_ENTRY vx_node VX_API_CALL | vxAndNode (vx_graph graph, vx_image in1, vx_image in2, vx_image out) |
[Graph] Creates a bitwise AND node. More... | |
VX_API_ENTRY vx_node VX_API_CALL | vxOrNode (vx_graph graph, vx_image in1, vx_image in2, vx_image out) |
[Graph] Creates a bitwise INCLUSIVE OR node. More... | |
VX_API_ENTRY vx_node VX_API_CALL | vxXorNode (vx_graph graph, vx_image in1, vx_image in2, vx_image out) |
[Graph] Creates a bitwise EXCLUSIVE OR node. More... | |
VX_API_ENTRY vx_node VX_API_CALL | vxNotNode (vx_graph graph, vx_image input, vx_image output) |
[Graph] Creates a bitwise NOT node. More... | |
VX_API_ENTRY vx_node VX_API_CALL | vxScalarOperationNode (vx_graph graph, vx_enum scalar_operation, vx_scalar a, vx_scalar b, vx_scalar output) |
[Graph] Creates a scalar operation node. More... | |
VX_API_ENTRY vx_node VX_API_CALL | vxSelectNode (vx_graph graph, vx_scalar condition, vx_reference true_value, vx_reference false_value, vx_reference output) |
[Graph] Selects one of two data objects depending on the the value of a condition (boolean scalar), and copies its data into another data object. More... | |
VX_API_ENTRY vx_node VX_API_CALL | vxMultiplyNode (vx_graph graph, vx_image in1, vx_image in2, vx_scalar scale, vx_enum overflow_policy, vx_enum rounding_policy, vx_image out) |
[Graph] Creates an pixelwise-multiplication node. More... | |
VX_API_ENTRY vx_node VX_API_CALL | vxAddNode (vx_graph graph, vx_image in1, vx_image in2, vx_enum policy, vx_image out) |
[Graph] Creates an arithmetic addition node. More... | |
VX_API_ENTRY vx_node VX_API_CALL | vxSubtractNode (vx_graph graph, vx_image in1, vx_image in2, vx_enum policy, vx_image out) |
[Graph] Creates an arithmetic subtraction node. More... | |
VX_API_ENTRY vx_node VX_API_CALL | vxConvertDepthNode (vx_graph graph, vx_image input, vx_image output, vx_enum policy, vx_scalar shift) |
[Graph] Creates a bit-depth conversion node. More... | |
VX_API_ENTRY vx_node VX_API_CALL | vxCannyEdgeDetectorNode (vx_graph graph, vx_image input, vx_threshold hyst, vx_int32 gradient_size, vx_enum norm_type, vx_image output) |
[Graph] Creates a Canny Edge Detection Node. More... | |
VX_API_ENTRY vx_node VX_API_CALL | vxWarpAffineNode (vx_graph graph, vx_image input, vx_matrix matrix, vx_enum type, vx_image output) |
[Graph] Creates an Affine Warp Node. More... | |
VX_API_ENTRY vx_node VX_API_CALL | vxWarpPerspectiveNode (vx_graph graph, vx_image input, vx_matrix matrix, vx_enum type, vx_image output) |
[Graph] Creates a Perspective Warp Node. More... | |
VX_API_ENTRY vx_node VX_API_CALL | vxHarrisCornersNode (vx_graph graph, vx_image input, vx_scalar strength_thresh, vx_scalar min_distance, vx_scalar sensitivity, vx_int32 gradient_size, vx_int32 block_size, vx_array corners, vx_scalar num_corners) |
[Graph] Creates a Harris Corners Node. More... | |
VX_API_ENTRY vx_node VX_API_CALL | vxFastCornersNode (vx_graph graph, vx_image input, vx_scalar strength_thresh, vx_bool nonmax_suppression, vx_array corners, vx_scalar num_corners) |
[Graph] Creates a FAST Corners Node. More... | |
VX_API_ENTRY vx_node VX_API_CALL | vxOpticalFlowPyrLKNode (vx_graph graph, vx_pyramid old_images, vx_pyramid new_images, vx_array old_points, vx_array new_points_estimates, vx_array new_points, vx_enum termination, vx_scalar epsilon, vx_scalar num_iterations, vx_scalar use_initial_estimate, vx_size window_dimension) |
[Graph] Creates a Lucas Kanade Tracking Node. More... | |
VX_API_ENTRY vx_node VX_API_CALL | vxRemapNode (vx_graph graph, vx_image input, vx_remap table, vx_enum policy, vx_image output) |
[Graph] Creates a Remap Node. More... | |
VX_API_ENTRY vx_node VX_API_CALL | vxHalfScaleGaussianNode (vx_graph graph, vx_image input, vx_image output, vx_int32 kernel_size) |
[Graph] Performs a Gaussian Blur on an image then half-scales it. The interpolation mode used is nearest-neighbor. More... | |
VX_API_ENTRY vx_node VX_API_CALL | vxMatchTemplateNode (vx_graph graph, vx_image src, vx_image templateImage, vx_enum matchingMethod, vx_image output) |
[Graph] The Node Compares an image template against overlapped image regions. More... | |
VX_API_ENTRY vx_node VX_API_CALL | vxLBPNode (vx_graph graph, vx_image in, vx_enum format, vx_int8 kernel_size, vx_image out) |
[Graph] Creates a node that extracts LBP image from an input image More... | |
VX_API_ENTRY vx_node VX_API_CALL | vxHOGCellsNode (vx_graph graph, vx_image input, vx_int32 cell_width, vx_int32 cell_height, vx_int32 num_bins, vx_tensor magnitudes, vx_tensor bins) |
[Graph] Performs cell calculations for the average gradient magnitude and gradient orientation histograms. More... | |
VX_API_ENTRY vx_node VX_API_CALL | vxHOGFeaturesNode (vx_graph graph, vx_image input, vx_tensor magnitudes, vx_tensor bins, const vx_hog_t *params, vx_size hog_param_size, vx_tensor features) |
[Graph] The node produces HOG features for the W1xW2 window in a sliding window fashion over the whole input image. Each position produces a HOG feature vector. More... | |
VX_API_ENTRY vx_node VX_API_CALL | vxHoughLinesPNode (vx_graph graph, vx_image input, const vx_hough_lines_p_t *params, vx_array lines_array, vx_scalar num_lines) |
[Graph] Finds the Probabilistic Hough Lines detected in the input binary image, each line is stored in the output array as a set of points (x1, y1, x2, y2) . More... | |
VX_API_ENTRY vx_node VX_API_CALL | vxBilateralFilterNode (vx_graph graph, vx_tensor src, vx_int32 diameter, vx_float32 sigmaSpace, vx_float32 sigmaValues, vx_tensor dst) |
[Graph] The function applies bilateral filtering to the input tensor. More... | |
VX_API_ENTRY vx_node VX_API_CALL | vxTensorMultiplyNode (vx_graph graph, vx_tensor input1, vx_tensor input2, vx_scalar scale, vx_enum overflow_policy, vx_enum rounding_policy, vx_tensor output) |
[Graph] Performs element wise multiplications on element values in the input tensor data with a scale. More... | |
VX_API_ENTRY vx_node VX_API_CALL | vxTensorAddNode (vx_graph graph, vx_tensor input1, vx_tensor input2, vx_enum policy, vx_tensor output) |
[Graph] Performs arithmetic addition on element values in the input tensor data. More... | |
VX_API_ENTRY vx_node VX_API_CALL | vxTensorSubtractNode (vx_graph graph, vx_tensor input1, vx_tensor input2, vx_enum policy, vx_tensor output) |
[Graph] Performs arithmetic subtraction on element values in the input tensor data. More... | |
VX_API_ENTRY vx_node VX_API_CALL | vxTensorTableLookupNode (vx_graph graph, vx_tensor input1, vx_lut lut, vx_tensor output) |
[Graph] Performs LUT on element values in the input tensor data. More... | |
VX_API_ENTRY vx_node VX_API_CALL | vxTensorTransposeNode (vx_graph graph, vx_tensor input, vx_tensor output, vx_size dimension1, vx_size dimension2) |
[Graph] Performs transpose on the input tensor. The node transpose the tensor according to a specified 2 indexes in the tensor (0-based indexing) More... | |
VX_API_ENTRY vx_node VX_API_CALL | vxTensorConvertDepthNode (vx_graph graph, vx_tensor input, vx_enum policy, vx_scalar norm, vx_scalar offset, vx_tensor output) |
[Graph] Creates a bit-depth conversion node. More... | |
VX_API_ENTRY vx_node VX_API_CALL | vxTensorMatrixMultiplyNode (vx_graph graph, vx_tensor input1, vx_tensor input2, vx_tensor input3, const vx_tensor_matrix_multiply_params_t *matrix_multiply_params, vx_tensor output) |
[Graph] Creates a generalized matrix multiplication node. More... | |
VX_API_ENTRY vx_node VX_API_CALL | vxCopyNode (vx_graph graph, vx_reference input, vx_reference output) |
Copy data from one object to another. More... | |
Detailed Description
The "Simple" API interface for OpenVX. These APIs are just wrappers around the more verbose functions defined in vx_api.h
.
Function Documentation
◆ vxAbsDiffNode()
VX_API_ENTRY vx_node VX_API_CALL vxAbsDiffNode | ( | vx_graph | graph, |
vx_image | in1, | ||
vx_image | in2, | ||
vx_image | out | ||
) |
[Graph] Creates an AbsDiff node.
- Parameters
-
[in] graph The reference to the graph. [in] in1 An input image in VX_DF_IMAGE_U8
orVX_DF_IMAGE_S16
format.[in] in2 An input image in VX_DF_IMAGE_U8
orVX_DF_IMAGE_S16
format.[out] out The output image in VX_DF_IMAGE_U8
orVX_DF_IMAGE_S16
format, which must have the same dimensions as the input image.
- Return values
-
vx_node A node reference. Any possible errors preventing a successful creation should be checked using vxGetStatus
◆ vxAddNode()
VX_API_ENTRY vx_node VX_API_CALL vxAddNode | ( | vx_graph | graph, |
vx_image | in1, | ||
vx_image | in2, | ||
vx_enum | policy, | ||
vx_image | out | ||
) |
[Graph] Creates an arithmetic addition node.
- Parameters
-
[in] graph The reference to the graph. [in] in1 An input image, VX_DF_IMAGE_U8
orVX_DF_IMAGE_S16
.[in] in2 An input image, VX_DF_IMAGE_U8
orVX_DF_IMAGE_S16
.[in] policy A VX_TYPE_ENUM
of the vx_convert_policy_e enumeration.[out] out The output image, a VX_DF_IMAGE_U8
orVX_DF_IMAGE_S16
image, which must have the same dimensions as the input images.
- Returns
vx_node
.
- Return values
-
vx_node A node reference. Any possible errors preventing a successful creation should be checked using vxGetStatus
◆ vxAndNode()
VX_API_ENTRY vx_node VX_API_CALL vxAndNode | ( | vx_graph | graph, |
vx_image | in1, | ||
vx_image | in2, | ||
vx_image | out | ||
) |
[Graph] Creates a bitwise AND node.
- Parameters
-
[in] graph The reference to the graph. [in] in1 A VX_DF_IMAGE_U8
orVX_DF_IMAGE_U1
input image.[in] in2 A VX_DF_IMAGE_U8
orVX_DF_IMAGE_U1
input image.[out] out The VX_DF_IMAGE_U8
orVX_DF_IMAGE_U1
output image, which must have the same dimensions and type as the input images.
- Returns
vx_node
.
- Return values
-
vx_node A node reference. Any possible errors preventing a successful creation should be checked using vxGetStatus
◆ vxBilateralFilterNode()
VX_API_ENTRY vx_node VX_API_CALL vxBilateralFilterNode | ( | vx_graph | graph, |
vx_tensor | src, | ||
vx_int32 | diameter, | ||
vx_float32 | sigmaSpace, | ||
vx_float32 | sigmaValues, | ||
vx_tensor | dst | ||
) |
[Graph] The function applies bilateral filtering to the input tensor.
- Parameters
-
[in] graph The reference to the graph. [in] src The input data a vx_tensor
. maximum 3 dimension and minimum 2. The tensor is of typeVX_TYPE_UINT8
orVX_TYPE_INT16
. dimensions are [radiometric ,width,height] or [width,height].SeevxCreateTensor
andvxCreateVirtualTensor
.[in] diameter of each pixel neighbourhood that is used during filtering. Values of diameter must be odd. Bigger then 3 and smaller then 10. [in] sigmaValues Filter sigma in the radiometric space. Supported values are bigger then 0 and smaller or equal 20. [in] sigmaSpace Filter sigma in the spatial space. Supported values are bigger then 0 and smaller or equal 20. [out] dst The output data a vx_tensor
,Of typeVX_TYPE_UINT8
orVX_TYPE_INT16
. And must be the same type and size of the input.
- Note
- The border modes
VX_NODE_BORDER
valueVX_BORDER_REPLICATE
andVX_BORDER_CONSTANT
are supported.
- Returns
vx_node
.
- Return values
-
vx_node A node reference. Any possible errors preventing a successful creation should be checked using vxGetStatus
◆ vxBox3x3Node()
VX_API_ENTRY vx_node VX_API_CALL vxBox3x3Node | ( | vx_graph | graph, |
vx_image | input, | ||
vx_image | output | ||
) |
[Graph] Creates a Box Filter Node.
- Parameters
-
[in] graph The reference to the graph. [in] input The input image in VX_DF_IMAGE_U8
format.[out] output The output image in VX_DF_IMAGE_U8
format, which must have the same dimensions as the input image.
- Returns
vx_node
.
- Return values
-
vx_node A node reference. Any possible errors preventing a successful creation should be checked using vxGetStatus
◆ vxCannyEdgeDetectorNode()
VX_API_ENTRY vx_node VX_API_CALL vxCannyEdgeDetectorNode | ( | vx_graph | graph, |
vx_image | input, | ||
vx_threshold | hyst, | ||
vx_int32 | gradient_size, | ||
vx_enum | norm_type, | ||
vx_image | output | ||
) |
[Graph] Creates a Canny Edge Detection Node.
- Parameters
-
[in] graph The reference to the graph. [in] input The input VX_DF_IMAGE_U8
image.[in] hyst The double threshold for hysteresis. The VX_THRESHOLD_INPUT_FORMAT
shall be eitherVX_DF_IMAGE_U8
orVX_DF_IMAGE_S16
. TheVX_THRESHOLD_OUTPUT_FORMAT
is ignored.[in] gradient_size The size of the Sobel filter window, must support at least 3, 5, and 7. [in] norm_type A flag indicating the norm used to compute the gradient, VX_NORM_L1
orVX_NORM_L2
.[out] output The binary output image in VX_DF_IMAGE_U1
orVX_DF_IMAGE_U8
format with values either 0 and 1 (VX_DF_IMAGE_U1
), or 0 and 255 (VX_DF_IMAGE_U8
).
- Returns
vx_node
.
- Return values
-
vx_node A node reference. Any possible errors preventing a successful creation should be checked using vxGetStatus
◆ vxChannelCombineNode()
VX_API_ENTRY vx_node VX_API_CALL vxChannelCombineNode | ( | vx_graph | graph, |
vx_image | plane0, | ||
vx_image | plane1, | ||
vx_image | plane2, | ||
vx_image | plane3, | ||
vx_image | output | ||
) |
[Graph] Creates a channel combine node.
- Parameters
-
[in] graph The graph reference. [in] plane0 The plane that forms channel 0. Must be VX_DF_IMAGE_U8
.[in] plane1 The plane that forms channel 1. Must be VX_DF_IMAGE_U8
.[in] plane2 [optional] The plane that forms channel 2. Must be VX_DF_IMAGE_U8
.[in] plane3 [optional] The plane that forms channel 3. Must be VX_DF_IMAGE_U8
.[out] output The output image. The format of the image must be defined, even if the image is virtual. Must have the same dimensions as the input images
- See also
VX_KERNEL_CHANNEL_COMBINE
- Returns
vx_node
.
- Return values
-
vx_node A node reference. Any possible errors preventing a successful creation should be checked using vxGetStatus
◆ vxChannelExtractNode()
VX_API_ENTRY vx_node VX_API_CALL vxChannelExtractNode | ( | vx_graph | graph, |
vx_image | input, | ||
vx_enum | channel, | ||
vx_image | output | ||
) |
[Graph] Creates a channel extract node.
- Parameters
-
[in] graph The reference to the graph. [in] input The input image. Must be one of the defined vx_df_image_e multi-channel formats. [in] channel The vx_channel_e
channel to extract.[out] output The output image. Must be VX_DF_IMAGE_U8
, and must have the same dimensions as the input image.
- See also
VX_KERNEL_CHANNEL_EXTRACT
- Returns
vx_node
.
- Return values
-
vx_node A node reference. Any possible errors preventing a successful creation should be checked using vxGetStatus
◆ vxColorConvertNode()
VX_API_ENTRY vx_node VX_API_CALL vxColorConvertNode | ( | vx_graph | graph, |
vx_image | input, | ||
vx_image | output | ||
) |
[Graph] Creates a color conversion node.
- Parameters
-
[in] graph The reference to the graph. [in] input The input image from which to convert. [out] output The output image to which to convert, which must have the same dimensions as the input image.
- See also
VX_KERNEL_COLOR_CONVERT
- Returns
vx_node
.
- Return values
-
vx_node A node reference. Any possible errors preventing a successful creation should be checked using vxGetStatus
◆ vxConvertDepthNode()
VX_API_ENTRY vx_node VX_API_CALL vxConvertDepthNode | ( | vx_graph | graph, |
vx_image | input, | ||
vx_image | output, | ||
vx_enum | policy, | ||
vx_scalar | shift | ||
) |
[Graph] Creates a bit-depth conversion node.
- Parameters
-
[in] graph The reference to the graph. [in] input The input image. [out] output The output image with the same dimensions of the input image. [in] policy A VX_TYPE_ENUM
of thevx_convert_policy_e
enumeration.[in] shift A scalar containing a VX_TYPE_INT32
of the shift value.
- Returns
vx_node
.
- Return values
-
vx_node A node reference. Any possible errors preventing a successful creation should be checked using vxGetStatus
◆ vxConvolveNode()
VX_API_ENTRY vx_node VX_API_CALL vxConvolveNode | ( | vx_graph | graph, |
vx_image | input, | ||
vx_convolution | conv, | ||
vx_image | output | ||
) |
[Graph] Creates a custom convolution node.
- Parameters
-
[in] graph The reference to the graph. [in] input The input image in VX_DF_IMAGE_U8
format.[in] conv The vx_int16
convolution matrix.[out] output The output image in VX_DF_IMAGE_U8
orVX_DF_IMAGE_S16
format, which must have the same dimensions as the input image.
- Returns
vx_node
.
- Return values
-
vx_node A node reference. Any possible errors preventing a successful creation should be checked using vxGetStatus
◆ vxCopyNode()
VX_API_ENTRY vx_node VX_API_CALL vxCopyNode | ( | vx_graph | graph, |
vx_reference | input, | ||
vx_reference | output | ||
) |
Copy data from one object to another.
- Note
- An implementation may optimize away the copy when virtual data objects are used.
- Parameters
-
[in] graph The reference to the graph. [in] input The input data object. [out] output The output data object with meta-data identical to the input data object.
- Returns
vx_node
.
- Return values
-
vx_node A node reference. Any possible errors preventing a successful creation should be checked using vxGetStatus
◆ vxDilate3x3Node()
VX_API_ENTRY vx_node VX_API_CALL vxDilate3x3Node | ( | vx_graph | graph, |
vx_image | input, | ||
vx_image | output | ||
) |
[Graph] Creates a Dilation Image Node.
- Parameters
-
[in] graph The reference to the graph. [in] input The input image in VX_DF_IMAGE_U8
orVX_DF_IMAGE_U1
format.[out] output The output image in VX_DF_IMAGE_U8
orVX_DF_IMAGE_U1
format, which must have the same dimensions and type as the input image.
- Returns
vx_node
.
- Return values
-
vx_node A node reference. Any possible errors preventing a successful creation should be checked using vxGetStatus
◆ vxEqualizeHistNode()
VX_API_ENTRY vx_node VX_API_CALL vxEqualizeHistNode | ( | vx_graph | graph, |
vx_image | input, | ||
vx_image | output | ||
) |
[Graph] Creates a Histogram Equalization node.
- Parameters
-
[in] graph The reference to the graph. [in] input The grayscale input image in VX_DF_IMAGE_U8
.[out] output The grayscale output image of type VX_DF_IMAGE_U8
with equalized brightness and contrast and same size as the input image.
- Returns
vx_node
.
- Return values
-
vx_node A node reference. Any possible errors preventing a successful creation should be checked using vxGetStatus
◆ vxErode3x3Node()
VX_API_ENTRY vx_node VX_API_CALL vxErode3x3Node | ( | vx_graph | graph, |
vx_image | input, | ||
vx_image | output | ||
) |
[Graph] Creates an Erosion Image Node.
- Parameters
-
[in] graph The reference to the graph. [in] input The input image in VX_DF_IMAGE_U8
orVX_DF_IMAGE_U1
format.[out] output The output image in VX_DF_IMAGE_U8
orVX_DF_IMAGE_U1
format, which must have the same dimensions and type as the input image.
- Returns
vx_node
.
- Return values
-
vx_node A node reference. Any possible errors preventing a successful creation should be checked using vxGetStatus
◆ vxFastCornersNode()
VX_API_ENTRY vx_node VX_API_CALL vxFastCornersNode | ( | vx_graph | graph, |
vx_image | input, | ||
vx_scalar | strength_thresh, | ||
vx_bool | nonmax_suppression, | ||
vx_array | corners, | ||
vx_scalar | num_corners | ||
) |
[Graph] Creates a FAST Corners Node.
- Parameters
-
[in] graph The reference to the graph. [in] input The input VX_DF_IMAGE_U8
image.[in] strength_thresh Threshold on difference between intensity of the central pixel and pixels on Bresenham's circle of radius 3 ( VX_TYPE_FLOAT32
scalar), with a value in the range of 0.0 \(\le\) strength_thresh < 256.0. Any fractional value will be truncated to an integer.[in] nonmax_suppression If true, non-maximum suppression is applied to detected corners before being placed in the vx_array
ofVX_TYPE_KEYPOINT
objects.[out] corners Output corner vx_array
ofVX_TYPE_KEYPOINT
. The order of the keypoints in this array is implementation dependent.[out] num_corners [optional] The total number of detected corners in image. Use a VX_TYPE_SIZE scalar.
- Returns
vx_node
.
- Return values
-
vx_node A node reference. Any possible errors preventing a successful creation should be checked using vxGetStatus
◆ vxGaussian3x3Node()
VX_API_ENTRY vx_node VX_API_CALL vxGaussian3x3Node | ( | vx_graph | graph, |
vx_image | input, | ||
vx_image | output | ||
) |
[Graph] Creates a Gaussian Filter Node.
- Parameters
-
[in] graph The reference to the graph. [in] input The input image in VX_DF_IMAGE_U8
format.[out] output The output image in VX_DF_IMAGE_U8
format, which must have the same dimensions as the input image.
- Returns
vx_node
.
- Return values
-
vx_node A node reference. Any possible errors preventing a successful creation should be checked using vxGetStatus
◆ vxGaussianPyramidNode()
VX_API_ENTRY vx_node VX_API_CALL vxGaussianPyramidNode | ( | vx_graph | graph, |
vx_image | input, | ||
vx_pyramid | gaussian | ||
) |
[Graph] Creates a node for a Gaussian Image Pyramid.
- Parameters
-
[in] graph The reference to the graph. [in] input The input image in VX_DF_IMAGE_U8
format.[out] gaussian The Gaussian pyramid with VX_DF_IMAGE_U8
to construct.
- See also
- group_pyramid
- Returns
vx_node
.
- Return values
-
vx_node A node reference. Any possible errors preventing a successful creation should be checked using vxGetStatus
◆ vxHalfScaleGaussianNode()
VX_API_ENTRY vx_node VX_API_CALL vxHalfScaleGaussianNode | ( | vx_graph | graph, |
vx_image | input, | ||
vx_image | output, | ||
vx_int32 | kernel_size | ||
) |
[Graph] Performs a Gaussian Blur on an image then half-scales it. The interpolation mode used is nearest-neighbor.
The output image size is determined by:
\[ W_{output} = \frac{W_{input} + 1}{2} \\ , H_{output} = \frac{H_{input} + 1}{2} \]
- Parameters
-
[in] graph The reference to the graph. [in] input The input VX_DF_IMAGE_U8
image.[out] output The output VX_DF_IMAGE_U8
image.[in] kernel_size The input size of the Gaussian filter. Supported values are 1, 3 and 5.
- Returns
vx_node
.
- Return values
-
vx_node A node reference. Any possible errors preventing a successful creation should be checked using vxGetStatus
◆ vxHarrisCornersNode()
VX_API_ENTRY vx_node VX_API_CALL vxHarrisCornersNode | ( | vx_graph | graph, |
vx_image | input, | ||
vx_scalar | strength_thresh, | ||
vx_scalar | min_distance, | ||
vx_scalar | sensitivity, | ||
vx_int32 | gradient_size, | ||
vx_int32 | block_size, | ||
vx_array | corners, | ||
vx_scalar | num_corners | ||
) |
[Graph] Creates a Harris Corners Node.
- Parameters
-
[in] graph The reference to the graph. [in] input The input VX_DF_IMAGE_U8
image.[in] strength_thresh The VX_TYPE_FLOAT32
minimum threshold with which to eliminate Harris Corner scores (computed using the normalized Sobel kernel).[in] min_distance The VX_TYPE_FLOAT32
radial Euclidean distance for non-maximum suppression.[in] sensitivity The VX_TYPE_FLOAT32
scalar sensitivity threshold \( k \) from the Harris-Stephens equation.[in] gradient_size The gradient window size to use on the input. The implementation must support at least 3, 5, and 7. [in] block_size The block window size used to compute the Harris Corner score. The implementation must support at least 3, 5, and 7. [out] corners The array of VX_TYPE_KEYPOINT
objects. The order of the keypoints in this array is implementation dependent.[out] num_corners [optional] The total number of detected corners in image. Use a VX_TYPE_SIZE scalar.
- Returns
vx_node
.
- Return values
-
vx_node A node reference. Any possible errors preventing a successful creation should be checked using vxGetStatus
◆ vxHistogramNode()
VX_API_ENTRY vx_node VX_API_CALL vxHistogramNode | ( | vx_graph | graph, |
vx_image | input, | ||
vx_distribution | distribution | ||
) |
[Graph] Creates a Histogram node.
- Parameters
-
[in] graph The reference to the graph. [in] input The input image in VX_DF_IMAGE_U8
.[out] distribution The output distribution.
- Returns
vx_node
.
- Return values
-
vx_node A node reference. Any possible errors preventing a successful creation should be checked using vxGetStatus
◆ vxHOGCellsNode()
VX_API_ENTRY vx_node VX_API_CALL vxHOGCellsNode | ( | vx_graph | graph, |
vx_image | input, | ||
vx_int32 | cell_width, | ||
vx_int32 | cell_height, | ||
vx_int32 | num_bins, | ||
vx_tensor | magnitudes, | ||
vx_tensor | bins | ||
) |
[Graph] Performs cell calculations for the average gradient magnitude and gradient orientation histograms.
Firstly, the gradient magnitude and gradient orientation are computed for each pixel in the input image. Two 1-D centred, point discrete derivative masks are applied to the input image in the horizontal and vertical directions.
\[ M_h = [-1, 0, 1] \]
and
\[ M_v = [-1, 0, 1]^T \]
\(G_v\) is the result of applying mask \(M_v\) to the input image, and \(G_h\) is the result of applying mask \(M_h\) to the input image. The border mode used for the gradient calculation is implementation dependent. Its behavior should be similar to VX_BORDER_UNDEFINED
. The gradient magnitudes and gradient orientations for each pixel are then calculated in the following manner.
\[ G(x,y) = \sqrt{G_v(x,y)^2 + G_h(x,y)^2} \]
\[ \theta(x,y) = arctan(G_v(x,y), G_h(x,y)) \]
where \(arctan(v, h)\) is \( tan^{-1}(v/h)\) when \(h!=0\),
\( -pi/2 \) if \(v<0\) and \(h==0\),
\( pi/2 \) if \(v>0\) and \(h==0\)
and \( 0 \) if \(v==0\) and \(h==0\)
Secondly, the gradient magnitudes and orientations are used to compute the bins output tensor and optional magnitudes output tensor. These tensors are computed on a cell level where the cells are rectangular in shape. The magnitudes tensor contains the average gradient magnitude for each cell.
\[magnitudes(c) = \frac{1}{(cell\_width * cell\_height)}\sum\limits_{w=0}^{cell\_width} \sum\limits_{h=0}^{cell\_height} G_c(w,h)\]
where \(G_c\) is the gradient magnitudes related to cell \(c\). The bins tensor contains histograms of gradient orientations for each cell. The gradient orientations at each pixel range from 0 to 360 degrees. These are quantised into a set of histogram bins based on the num_bins parameter. Each pixel votes for a specific cell histogram bin based on its gradient orientation. The vote itself is the pixel's gradient magnitude.
\[bins(c, n) = \sum\limits_{w=0}^{cell\_width} \sum\limits_{h=0}^{cell\_height} G_c(w,h) * 1[B_c(w, h, num\_bins) == n]\]
where \(B_c\) produces the histogram bin number based on the gradient orientation of the pixel at location ( \(w\), \(h\)) in cell \(c\) based on the \(num\_bins\) and
\[1[B_c(w, h, num\_bins) == n]\]
is a delta-function with value 1 when \(B_c(w, h, num\_bins) == n\) or 0 otherwise.
- Parameters
-
[in] graph The reference to the graph. [in] input The input image of type VX_DF_IMAGE_U8
.[in] cell_width The histogram cell width of type VX_TYPE_INT32
.[in] cell_height The histogram cell height of type VX_TYPE_INT32
.[in] num_bins The histogram size of type VX_TYPE_INT32
.[out] magnitudes (Optional) The output average gradient magnitudes per cell of vx_tensor
of typeVX_TYPE_INT16
of size \( [floor(image_{width}/cell_{width}) ,floor(image_{height}/cell_{height}) ] \).[out] bins The output gradient orientation histograms per cell of vx_tensor
of typeVX_TYPE_INT16
of size \( [floor(image_{width}/cell_{width}) ,floor(image_{height}/cell_{height}), num_{bins}] \).
- Returns
vx_node
.
- Return values
-
0 Node could not be created. * Node handle.
◆ vxHOGFeaturesNode()
VX_API_ENTRY vx_node VX_API_CALL vxHOGFeaturesNode | ( | vx_graph | graph, |
vx_image | input, | ||
vx_tensor | magnitudes, | ||
vx_tensor | bins, | ||
const vx_hog_t * | params, | ||
vx_size | hog_param_size, | ||
vx_tensor | features | ||
) |
[Graph] The node produces HOG features for the W1xW2 window in a sliding window fashion over the whole input image. Each position produces a HOG feature vector.
Firstly if a magnitudes tensor is provided the cell histograms in the bins tensor are normalised by the average cell gradient magnitudes.
\[bins(c,n) = \frac{bins(c,n)}{magnitudes(c)}\]
To account for changes in illumination and contrast the cell histograms must be locally normalized which requires grouping the cell histograms together into larger spatially connected blocks. Blocks are rectangular grids represented by three parameters: the number of cells per block, the number of pixels per cell, and the number of bins per cell histogram. These blocks typically overlap, meaning that each cell histogram contributes more than once to the final descriptor. To normalize a block its cell histograms \(h\) are grouped together to form a vector \(v = [h_1, h_2, h_3, ... , h_n]\). This vector is normalised using L2-Hys which means performing L2-norm on this vector; clipping the result (by limiting the maximum values of v to be threshold) and renormalizing again. If the threshold is equal to zero then L2-Hys normalization is not performed.
\[L2norm(v) = \frac{v}{\sqrt{\|v\|_2^2 + \epsilon^2}}\]
where \( \|v\|_k \) be its k-norm for k=1, 2, and \( \epsilon \) be a small constant. For a specific window its HOG descriptor is then the concatenated vector of the components of the normalized cell histograms from all of the block regions contained in the window. The W1xW2 window starting position is at coordinates 0x0. If the input image has dimensions that are not an integer multiple of W1xW2 blocks with the specified stride, then the last positions that contain only a partial W1xW2 window will be calculated with the remaining part of the W1xW2 window padded with zeroes. The Window W1xW2 must also have a size so that it contains an integer number of cells, otherwise the node is not well-defined. The final output tensor will contain HOG descriptors equal to the number of windows in the input image. The output features tensor has 3 dimensions, given by:
\[[ (floor((image_{width}-window_{width})/window_{stride}) + 1),\]
\[ (floor((image_{height}-window_{height})/window_{stride}) + 1),\]
\[ floor((window_{width} - block_{width})/block_{stride} + 1) * floor((window_{height} - block_{height})/block_{stride} + 1) *\]
\[ (((block_{width} * block_{height}) / (cell_{width} * cell_{height})) * num_{bins})] \]
See vxCreateTensor
and vxCreateVirtualTensor
. We recommend the output tensors always be virtual objects, with this node connected directly to the classifier. The output tensor will be very large, and using non-virtual tensors will result in a poorly optimized implementation. Merging of this node with a classifier node such as that described in the classifier extension will result in better performance. Notice that this node creation function has more parameters than the corresponding kernel. Numbering of kernel parameters (required if you create this node using the generic interface) is explicitly specified here.
- Parameters
-
[in] graph The reference to the graph. [in] input The input image of type VX_DF_IMAGE_U8
. (Kernel parameter #0)[in] magnitudes (Optional) The gradient magnitudes per cell of vx_tensor
of typeVX_TYPE_INT16
. It is the output ofvxHOGCellsNode
. (Kernel parameter #1)[in] bins The gradient orientation histograms per cell of vx_tensor
of typeVX_TYPE_INT16
. It is the output ofvxHOGCellsNode
. (Kernel parameter #2)[in] params The parameters of type vx_hog_t
. (Kernel parameter #3)[in] hog_param_size Size of vx_hog_t
in bytes. Note that this parameter is not counted as one of the kernel parameters.[out] features The output HOG features of vx_tensor
of typeVX_TYPE_INT16
. (Kernel parameter #4)
- Returns
vx_node
.
- Return values
-
0 Node could not be created. * Node handle.
◆ vxHoughLinesPNode()
VX_API_ENTRY vx_node VX_API_CALL vxHoughLinesPNode | ( | vx_graph | graph, |
vx_image | input, | ||
const vx_hough_lines_p_t * | params, | ||
vx_array | lines_array, | ||
vx_scalar | num_lines | ||
) |
[Graph] Finds the Probabilistic Hough Lines detected in the input binary image, each line is stored in the output array as a set of points (x1, y1, x2, y2) .
Some implementations of the algorithm may have a random or non-deterministic element. If the target application is in a safety-critical environment this should be borne in mind and steps taken in the implementation, the application or both to achieve the level of determinism required by the system design.
- Parameters
-
[in] graph graph handle [in] input A single channel binary source image of type VX_DF_IMAGE_U8
orVX_DF_IMAGE_U1
.[in] params parameters of the struct vx_hough_lines_p_t
[out] lines_array lines_array contains array of lines, see vx_line2d_t
The order of lines in implementation dependent[out] num_lines [optional] The total number of detected lines in image. Use a VX_TYPE_SIZE scalar
- Returns
vx_node
.
- Return values
-
vx_node A node reference. Any possible errors preventing a successful creation should be checked using vxGetStatus
◆ vxIntegralImageNode()
VX_API_ENTRY vx_node VX_API_CALL vxIntegralImageNode | ( | vx_graph | graph, |
vx_image | input, | ||
vx_image | output | ||
) |
[Graph] Creates an Integral Image Node.
- Parameters
-
[in] graph The reference to the graph. [in] input The input image in VX_DF_IMAGE_U8
format.[out] output The output image in VX_DF_IMAGE_U32
format, which must have the same dimensions as the input image.
- Returns
vx_node
.
- Return values
-
vx_node A node reference. Any possible errors preventing a successful creation should be checked using vxGetStatus
◆ vxLaplacianPyramidNode()
VX_API_ENTRY vx_node VX_API_CALL vxLaplacianPyramidNode | ( | vx_graph | graph, |
vx_image | input, | ||
vx_pyramid | laplacian, | ||
vx_image | output | ||
) |
[Graph] Creates a node for a Laplacian Image Pyramid.
- Parameters
-
[in] graph The reference to the graph. [in] input The input image in VX_DF_IMAGE_U8
orVX_DF_IMAGE_S16
format.[out] laplacian The Laplacian pyramid with VX_DF_IMAGE_S16
to construct.[out] output The lowest resolution image in VX_DF_IMAGE_U8
orVX_DF_IMAGE_S16
format necessary to reconstruct the input image from the pyramid. The output image format should be same as input image format.
- See also
- group_pyramid
- Returns
vx_node
.
- Return values
-
vx_node A node reference. Any possible errors preventing a successful creation should be checked using vxGetStatus
◆ vxLaplacianReconstructNode()
VX_API_ENTRY vx_node VX_API_CALL vxLaplacianReconstructNode | ( | vx_graph | graph, |
vx_pyramid | laplacian, | ||
vx_image | input, | ||
vx_image | output | ||
) |
[Graph] Reconstructs an image from a Laplacian Image pyramid.
- Parameters
-
[in] graph The reference to the graph. [in] laplacian The Laplacian pyramid with VX_DF_IMAGE_S16
format.[in] input The lowest resolution image in VX_DF_IMAGE_U8
orVX_DF_IMAGE_S16
format for the Laplacian pyramid.[out] output The output image in VX_DF_IMAGE_U8
orVX_DF_IMAGE_S16
format with the highest possible resolution reconstructed from the Laplacian pyramid. The output image format should be same as input image format.
- See also
- group_pyramid
- Returns
vx_node
.
- Return values
-
0 Node could not be created. * Node handle.
◆ vxLBPNode()
VX_API_ENTRY vx_node VX_API_CALL vxLBPNode | ( | vx_graph | graph, |
vx_image | in, | ||
vx_enum | format, | ||
vx_int8 | kernel_size, | ||
vx_image | out | ||
) |
[Graph] Creates a node that extracts LBP image from an input image
- Parameters
-
[in] graph The reference to the graph. [in] in An input image in vx_image
. Or \( SrcImg\) in the equations. the image is of typeVX_DF_IMAGE_U8
[in] format A variation of LBP like original LBP and mLBP. see vx_lbp_format_e
[in] kernel_size Kernel size. Only size of 3 and 5 are supported [out] out An output image in vx_image
.Or \( DstImg\) in the equations. the image is of typeVX_DF_IMAGE_U8
with the same dimensions as the input image.
- Returns
vx_node
.
- Return values
-
vx_node A node reference. Any possible errors preventing a successful creation should be checked using vxGetStatus
◆ vxMagnitudeNode()
VX_API_ENTRY vx_node VX_API_CALL vxMagnitudeNode | ( | vx_graph | graph, |
vx_image | grad_x, | ||
vx_image | grad_y, | ||
vx_image | mag | ||
) |
[Graph] Create a Magnitude node.
- Parameters
-
[in] graph The reference to the graph. [in] grad_x The input x image. This must be in VX_DF_IMAGE_S16
format.[in] grad_y The input y image. This must be in VX_DF_IMAGE_S16
format.[out] mag The magnitude image. This is in VX_DF_IMAGE_S16
format. Must have the same dimensions as the input image.
- See also
VX_KERNEL_MAGNITUDE
- Returns
vx_node
.
- Return values
-
vx_node A node reference. Any possible errors preventing a successful creation should be checked using vxGetStatus
◆ vxMatchTemplateNode()
VX_API_ENTRY vx_node VX_API_CALL vxMatchTemplateNode | ( | vx_graph | graph, |
vx_image | src, | ||
vx_image | templateImage, | ||
vx_enum | matchingMethod, | ||
vx_image | output | ||
) |
[Graph] The Node Compares an image template against overlapped image regions.
The detailed equation to the matching can be found in vx_comp_metric_e
. The output of the template matching node is a comparison map as described in vx_comp_metric_e
. The Node have a limitation on the template image size (width*height). It should not be larger then 65535. If the valid region of the template image is smaller than the entire template image, the result in the destination image is implementation-dependent.
- Parameters
-
[in] graph The reference to the graph. [in] src The input image of type VX_DF_IMAGE_U8
.[in] templateImage Searched template of type VX_DF_IMAGE_U8
.[in] matchingMethod attribute specifying the comparison method vx_comp_metric_e
. This function support onlyVX_COMPARE_CCORR_NORM
andVX_COMPARE_L2
.[out] output Map of comparison results. The output is an image of type VX_DF_IMAGE_S16
- Returns
vx_node
.
- Return values
-
vx_node A node reference. Any possible errors preventing a successful creation should be checked using vxGetStatus
◆ vxMaxNode()
VX_API_ENTRY vx_node VX_API_CALL vxMaxNode | ( | vx_graph | graph, |
vx_image | in1, | ||
vx_image | in2, | ||
vx_image | out | ||
) |
[Graph] Creates a pixel-wise maximum kernel.
- Parameters
-
[in] graph The reference to the graph where to create the node. [in] in1 The first input image. Must be of type VX_DF_IMAGE_U8
orVX_DF_IMAGE_S16
.[in] in2 The second input image. Must be of type VX_DF_IMAGE_U8
orVX_DF_IMAGE_S16
.[out] out The output image which will hold the result of max and will have the same type and dimensions of the imput images.
- Returns
vx_node
.
- Return values
-
vx_node A node reference. Any possible errors preventing a successful creation should be checked using vxGetStatus
◆ vxMeanStdDevNode()
VX_API_ENTRY vx_node VX_API_CALL vxMeanStdDevNode | ( | vx_graph | graph, |
vx_image | input, | ||
vx_scalar | mean, | ||
vx_scalar | stddev | ||
) |
[Graph] Creates a mean value and optionally, a standard deviation node.
- Parameters
-
[in] graph The reference to the graph. [in] input The input image. VX_DF_IMAGE_U8
andVX_DF_IMAGE_U1
are supported.[out] mean The VX_TYPE_FLOAT32
average pixel value.[out] stddev [optional] The VX_TYPE_FLOAT32
standard deviation of the pixel values.
- Returns
vx_node
.
- Return values
-
vx_node A node reference. Any possible errors preventing a successful creation should be checked using vxGetStatus
◆ vxMedian3x3Node()
VX_API_ENTRY vx_node VX_API_CALL vxMedian3x3Node | ( | vx_graph | graph, |
vx_image | input, | ||
vx_image | output | ||
) |
[Graph] Creates a Median Image Node.
- Parameters
-
[in] graph The reference to the graph. [in] input The input image in VX_DF_IMAGE_U8
orVX_DF_IMAGE_U1
format.[out] output The output image in VX_DF_IMAGE_U8
orVX_DF_IMAGE_U1
format, which must have the same dimensions and type as the input image.
- Returns
vx_node
.
- Return values
-
vx_node A node reference. Any possible errors preventing a successful creation should be checked using vxGetStatus
◆ vxMinMaxLocNode()
VX_API_ENTRY vx_node VX_API_CALL vxMinMaxLocNode | ( | vx_graph | graph, |
vx_image | input, | ||
vx_scalar | minVal, | ||
vx_scalar | maxVal, | ||
vx_array | minLoc, | ||
vx_array | maxLoc, | ||
vx_scalar | minCount, | ||
vx_scalar | maxCount | ||
) |
[Graph] Creates a min,max,loc node.
- Parameters
-
[in] graph The reference to create the graph. [in] input The input image in VX_DF_IMAGE_U8
orVX_DF_IMAGE_S16
format.[out] minVal The minimum value in the image, which corresponds to the type of the input. [out] maxVal The maximum value in the image, which corresponds to the type of the input. [out] minLoc [optional] The minimum VX_TYPE_COORDINATES2D
locations. If the input image has several minimums, the kernel will return up to the capacity of the array.[out] maxLoc [optional] The maximum VX_TYPE_COORDINATES2D
locations. If the input image has several maximums, the kernel will return up to the capacity of the array.[out] minCount [optional] The total number of detected minimums in image. Use a VX_TYPE_SIZE
scalar.[out] maxCount [optional] The total number of detected maximums in image. Use a VX_TYPE_SIZE
scalar.
- Returns
vx_node
.
- Return values
-
vx_node A node reference. Any possible errors preventing a successful creation should be checked using vxGetStatus
◆ vxMinNode()
VX_API_ENTRY vx_node VX_API_CALL vxMinNode | ( | vx_graph | graph, |
vx_image | in1, | ||
vx_image | in2, | ||
vx_image | out | ||
) |
[Graph] Creates a pixel-wise minimum kernel.
- Parameters
-
[in] graph The reference to the graph where to create the node. [in] in1 The first input image. Must be of type VX_DF_IMAGE_U8
orVX_DF_IMAGE_S16
.[in] in2 The second input image. Must be of type VX_DF_IMAGE_U8
orVX_DF_IMAGE_S16
.[out] out The output image which will hold the result of min and will have the same type and dimensions of the imput images.
- Returns
vx_node
.
- Return values
-
vx_node A node reference. Any possible errors preventing a successful creation should be checked using vxGetStatus
◆ vxMultiplyNode()
VX_API_ENTRY vx_node VX_API_CALL vxMultiplyNode | ( | vx_graph | graph, |
vx_image | in1, | ||
vx_image | in2, | ||
vx_scalar | scale, | ||
vx_enum | overflow_policy, | ||
vx_enum | rounding_policy, | ||
vx_image | out | ||
) |
[Graph] Creates an pixelwise-multiplication node.
- Parameters
-
[in] graph The reference to the graph. [in] in1 An input image, VX_DF_IMAGE_U8
orVX_DF_IMAGE_S16
.[in] in2 An input image, VX_DF_IMAGE_U8
orVX_DF_IMAGE_S16
.[in] scale A non-negative VX_TYPE_FLOAT32
multiplied to each product before overflow handling.[in] overflow_policy A VX_TYPE_ENUM
of thevx_convert_policy_e
enumeration.[in] rounding_policy A VX_TYPE_ENUM
of thevx_round_policy_e
enumeration.[out] out The output image, a VX_DF_IMAGE_U8
orVX_DF_IMAGE_S16
image. Must have the same type and dimensions of the imput images.
- Returns
vx_node
.
- Return values
-
vx_node A node reference. Any possible errors preventing a successful creation should be checked using vxGetStatus
◆ vxNonLinearFilterNode()
VX_API_ENTRY vx_node VX_API_CALL vxNonLinearFilterNode | ( | vx_graph | graph, |
vx_enum | function, | ||
vx_image | input, | ||
vx_matrix | mask, | ||
vx_image | output | ||
) |
[Graph] Creates a Non-linear Filter Node.
- Parameters
-
[in] graph The reference to the graph. [in] function The non-linear filter function. See vx_non_linear_filter_e
.[in] input The input image in VX_DF_IMAGE_U8
orVX_DF_IMAGE_U1
format.[in] mask The mask to be applied to the Non-linear function. VX_MATRIX_ORIGIN
attribute is used to place the mask appropriately when computing the resulting image. SeevxCreateMatrixFromPattern
.[out] output The output image in VX_DF_IMAGE_U8
orVX_DF_IMAGE_U1
format, which must have the same dimensions and type as the input image.
- Returns
vx_node
.
- Return values
-
vx_node A node reference. Any possible errors preventing a successful creation should be checked using vxGetStatus
◆ vxNonMaxSuppressionNode()
VX_API_ENTRY vx_node VX_API_CALL vxNonMaxSuppressionNode | ( | vx_graph | graph, |
vx_image | input, | ||
vx_image | mask, | ||
vx_int32 | win_size, | ||
vx_image | output | ||
) |
[Graph] Creates a Non-Maxima Suppression node.
- Parameters
-
[in] graph The reference to the graph. [in] input The input image in VX_DF_IMAGE_U8
orVX_DF_IMAGE_S16
format.[in] mask [optional] Constrict suppression to a ROI. The mask image is of type VX_DF_IMAGE_U8
orVX_DF_IMAGE_U1
and must have the same dimensions as the input image.[in] win_size The size of window over which to perform the localized non-maxima suppression. Must be odd, and less than or equal to the smallest dimension of the input image. [out] output The output image, of the same type and size as the input, that has been non-maxima suppressed.
- Returns
vx_node
.
- Return values
-
vx_node A node reference. Any possible errors preventing a successful creation should be checked using vxGetStatus
◆ vxNotNode()
VX_API_ENTRY vx_node VX_API_CALL vxNotNode | ( | vx_graph | graph, |
vx_image | input, | ||
vx_image | output | ||
) |
[Graph] Creates a bitwise NOT node.
- Parameters
-
[in] graph The reference to the graph. [in] input A VX_DF_IMAGE_U8
orVX_DF_IMAGE_U1
input image.[out] output The VX_DF_IMAGE_U8
orVX_DF_IMAGE_U1
output image, which must have the same dimensions and type as the input image.
- Returns
vx_node
.
- Return values
-
vx_node A node reference. Any possible errors preventing a successful creation should be checked using vxGetStatus
◆ vxOpticalFlowPyrLKNode()
VX_API_ENTRY vx_node VX_API_CALL vxOpticalFlowPyrLKNode | ( | vx_graph | graph, |
vx_pyramid | old_images, | ||
vx_pyramid | new_images, | ||
vx_array | old_points, | ||
vx_array | new_points_estimates, | ||
vx_array | new_points, | ||
vx_enum | termination, | ||
vx_scalar | epsilon, | ||
vx_scalar | num_iterations, | ||
vx_scalar | use_initial_estimate, | ||
vx_size | window_dimension | ||
) |
[Graph] Creates a Lucas Kanade Tracking Node.
- Parameters
-
[in] graph The reference to the graph. [in] old_images Input of first (old) image pyramid in VX_DF_IMAGE_U8
.[in] new_images Input of destination (new) image pyramid VX_DF_IMAGE_U8
.[in] old_points An array of key points in a vx_array
ofVX_TYPE_KEYPOINT
; those key points are defined at the old_images high resolution pyramid.[in] new_points_estimates An array of estimation on what is the output key points in a vx_array
ofVX_TYPE_KEYPOINT
; those keypoints are defined at the new_images high resolution pyramid.[out] new_points An output array of key points in a vx_array
ofVX_TYPE_KEYPOINT
; those key points are defined at the new_images high resolution pyramid.[in] termination The termination can be VX_TERM_CRITERIA_ITERATIONS
orVX_TERM_CRITERIA_EPSILON
orVX_TERM_CRITERIA_BOTH
.[in] epsilon The vx_float32
error for terminating the algorithm.[in] num_iterations The number of iterations. Use a VX_TYPE_UINT32
scalar.[in] use_initial_estimate Use a VX_TYPE_BOOL
scalar.[in] window_dimension The size of the window on which to perform the algorithm. See VX_CONTEXT_OPTICAL_FLOW_MAX_WINDOW_DIMENSION
- Returns
vx_node
.
- Return values
-
vx_node A node reference. Any possible errors preventing a successful creation should be checked using vxGetStatus
◆ vxOrNode()
VX_API_ENTRY vx_node VX_API_CALL vxOrNode | ( | vx_graph | graph, |
vx_image | in1, | ||
vx_image | in2, | ||
vx_image | out | ||
) |
[Graph] Creates a bitwise INCLUSIVE OR node.
- Parameters
-
[in] graph The reference to the graph. [in] in1 A VX_DF_IMAGE_U8
orVX_DF_IMAGE_U1
input image.[in] in2 A VX_DF_IMAGE_U8
orVX_DF_IMAGE_U1
input image.[out] out The VX_DF_IMAGE_U8
orVX_DF_IMAGE_U1
output image, which must have the same dimensions and type as the input images.
- Returns
vx_node
.
- Return values
-
vx_node A node reference. Any possible errors preventing a successful creation should be checked using vxGetStatus
◆ vxPhaseNode()
VX_API_ENTRY vx_node VX_API_CALL vxPhaseNode | ( | vx_graph | graph, |
vx_image | grad_x, | ||
vx_image | grad_y, | ||
vx_image | orientation | ||
) |
[Graph] Creates a Phase node.
- Parameters
-
[in] graph The reference to the graph. [in] grad_x The input x image. This must be in VX_DF_IMAGE_S16
format.[in] grad_y The input y image. This must be in VX_DF_IMAGE_S16
format.[out] orientation The phase image. This is in VX_DF_IMAGE_U8
format, and must have the same dimensions as the input images.
- See also
VX_KERNEL_PHASE
- Returns
vx_node
.
- Return values
-
vx_node A node reference. Any possible errors preventing a successful creation should be checked using vxGetStatus
◆ vxRemapNode()
VX_API_ENTRY vx_node VX_API_CALL vxRemapNode | ( | vx_graph | graph, |
vx_image | input, | ||
vx_remap | table, | ||
vx_enum | policy, | ||
vx_image | output | ||
) |
[Graph] Creates a Remap Node.
- Parameters
-
[in] graph The reference to the graph that will contain the node. [in] input The input VX_DF_IMAGE_U8
image.[in] table The remap table object. [in] policy An interpolation type from vx_interpolation_type_e
.VX_INTERPOLATION_AREA
is not supported.[out] output The output VX_DF_IMAGE_U8
image with the same dimensions as the input image.
- Note
- The border modes
VX_NODE_BORDER
valueVX_BORDER_UNDEFINED
andVX_BORDER_CONSTANT
are supported.
- Returns
- A
vx_node
.
- Return values
-
vx_node A node reference. Any possible errors preventing a successful creation should be checked using vxGetStatus
◆ vxScalarOperationNode()
VX_API_ENTRY vx_node VX_API_CALL vxScalarOperationNode | ( | vx_graph | graph, |
vx_enum | scalar_operation, | ||
vx_scalar | a, | ||
vx_scalar | b, | ||
vx_scalar | output | ||
) |
[Graph] Creates a scalar operation node.
- Parameters
-
[in] graph The reference to the graph. [in] scalar_operation A VX_TYPE_ENUM
of thevx_scalar_operation_e
enumeration.[in] a First scalar operand. [in] b Second scalar operand. [out] output Result of the scalar operation.
- Returns
vx_node
.
- Return values
-
vx_node A node reference. Any possible errors preventing a successful creation should be checked using vxGetStatus
◆ vxScaleImageNode()
VX_API_ENTRY vx_node VX_API_CALL vxScaleImageNode | ( | vx_graph | graph, |
vx_image | src, | ||
vx_image | dst, | ||
vx_enum | type | ||
) |
[Graph] Creates a Scale Image Node.
- Parameters
-
[in] graph The reference to the graph. [in] src The source image of type VX_DF_IMAGE_U8
orVX_DF_IMAGE_U1
.[out] dst The destination image of type VX_DF_IMAGE_U8
orVX_DF_IMAGE_U1
. The output type must be the same as that of the input image.[in] type The interpolation type to use.
- See also
- vx_interpolation_type_e.
- Note
- The destination image must have a defined size and format. The border modes
VX_NODE_BORDER
valueVX_BORDER_UNDEFINED
,VX_BORDER_REPLICATE
andVX_BORDER_CONSTANT
are supported.
- Returns
vx_node
.
- Return values
-
vx_node A node reference. Any possible errors preventing a successful creation should be checked using vxGetStatus
◆ vxSelectNode()
VX_API_ENTRY vx_node VX_API_CALL vxSelectNode | ( | vx_graph | graph, |
vx_scalar | condition, | ||
vx_reference | true_value, | ||
vx_reference | false_value, | ||
vx_reference | output | ||
) |
[Graph] Selects one of two data objects depending on the the value of a condition (boolean scalar), and copies its data into another data object.
This node supports predicated execution flow within a graph. All the data objects passed to this kernel shall have the same object type and meta data. It is important to note that an implementation may optimize away the select and copy when virtual data objects are used.
If there is a kernel node that contribute only into virtual data objects during the graph execution due to certain data path being eliminated by not taken argument of select node, then the OpenVX implementation guarantees that there will not be any side effects to graph execution and node state.
If the path to a select node contains non-virtual objects, user nodes, or nodes with completion callbacks, then that path may not be "optimized out" because the callback must be executed and the non-virtual objects must be modified.
- Parameters
-
[in] graph The reference to the graph. [in] condition VX_TYPE_BOOL
predicate variable.[in] true_value Data object for true. [in] false_value Data object for false. [out] output Output data object.
- Returns
vx_node
.
- Return values
-
vx_node A node reference. Any possible errors preventing a successful creation should be checked using vxGetStatus
◆ vxSobel3x3Node()
VX_API_ENTRY vx_node VX_API_CALL vxSobel3x3Node | ( | vx_graph | graph, |
vx_image | input, | ||
vx_image | output_x, | ||
vx_image | output_y | ||
) |
[Graph] Creates a Sobel3x3 node.
- Parameters
-
[in] graph The reference to the graph. [in] input The input image in VX_DF_IMAGE_U8
format.[out] output_x [optional] The output gradient in the x direction in VX_DF_IMAGE_S16
. Must have the same dimensions as the input image.[out] output_y [optional] The output gradient in the y direction in VX_DF_IMAGE_S16
. Must have the same dimensions as the input image.
- See also
VX_KERNEL_SOBEL_3x3
- Returns
vx_node
.
- Return values
-
vx_node A node reference. Any possible errors preventing a successful creation should be checked using vxGetStatus
◆ vxSubtractNode()
VX_API_ENTRY vx_node VX_API_CALL vxSubtractNode | ( | vx_graph | graph, |
vx_image | in1, | ||
vx_image | in2, | ||
vx_enum | policy, | ||
vx_image | out | ||
) |
[Graph] Creates an arithmetic subtraction node.
- Parameters
-
[in] graph The reference to the graph. [in] in1 An input image, VX_DF_IMAGE_U8
orVX_DF_IMAGE_S16
, the minuend.[in] in2 An input image, VX_DF_IMAGE_U8
orVX_DF_IMAGE_S16
, the subtrahend.[in] policy A VX_TYPE_ENUM
of the vx_convert_policy_e enumeration.[out] out The output image, a VX_DF_IMAGE_U8
orVX_DF_IMAGE_S16
image, which must have the same dimensions as the input images.
- Returns
vx_node
.
- Return values
-
vx_node A node reference. Any possible errors preventing a successful creation should be checked using vxGetStatus
◆ vxTableLookupNode()
VX_API_ENTRY vx_node VX_API_CALL vxTableLookupNode | ( | vx_graph | graph, |
vx_image | input, | ||
vx_lut | lut, | ||
vx_image | output | ||
) |
[Graph] Creates a Table Lookup node. If a value from the input image is not present in the lookup table, the result is undefined.
- Parameters
-
[in] graph The reference to the graph. [in] input The input image in VX_DF_IMAGE_U8
orVX_DF_IMAGE_S16
.[in] lut The LUT which is of type VX_TYPE_UINT8
if input image isVX_DF_IMAGE_U8
orVX_TYPE_INT16
if input image isVX_DF_IMAGE_S16
.[out] output The output image of the same size as the input image.
- Returns
vx_node
.
- Return values
-
vx_node A node reference. Any possible errors preventing a successful creation should be checked using vxGetStatus
.
◆ vxTensorAddNode()
VX_API_ENTRY vx_node VX_API_CALL vxTensorAddNode | ( | vx_graph | graph, |
vx_tensor | input1, | ||
vx_tensor | input2, | ||
vx_enum | policy, | ||
vx_tensor | output | ||
) |
[Graph] Performs arithmetic addition on element values in the input tensor data.
- Parameters
-
[in] graph The handle to the graph. [in] input1 Input tensor data. Implementations must support input tensor data type VX_TYPE_INT16
with fixed_point_position 8, and tensor data typesVX_TYPE_UINT8
andVX_TYPE_INT8
, with fixed_point_position 0.[in] input2 Input tensor data. The dimensions and sizes of input2 match those of input1, unless the vx_tensor of one or more dimensions in input2 is 1. In this case, those dimensions are treated as if this tensor was expanded to match the size of the corresponding dimension of input1, and data was duplicated on all terms in that dimension. After this expansion, the dimensions will be equal. The data type must match the data type of Input1. [in] policy A vx_convert_policy_e
enumeration.[out] output The output tensor data with the same dimensions as the input tensor data.
- Returns
vx_node
.-
A node reference
vx_node
. Any possible errors preventing a successful creation should be checked usingvxGetStatus
.
◆ vxTensorConvertDepthNode()
VX_API_ENTRY vx_node VX_API_CALL vxTensorConvertDepthNode | ( | vx_graph | graph, |
vx_tensor | input, | ||
vx_enum | policy, | ||
vx_scalar | norm, | ||
vx_scalar | offset, | ||
vx_tensor | output | ||
) |
[Graph] Creates a bit-depth conversion node.
- Parameters
-
[in] graph The reference to the graph. [in] input The input tensor. Implementations must support input tensor data type VX_TYPE_INT16
with fixed_point_position 8, and tensor data typesVX_TYPE_UINT8
andVX_TYPE_INT8
, with fixed_point_position 0.[in] policy A VX_TYPE_ENUM
of thevx_convert_policy_e
enumeration.[in] norm A scalar containing a VX_TYPE_FLOAT32
of the normalization value.[in] offset A scalar containing a VX_TYPE_FLOAT32
of the offset value subtracted before normalization.[out] output The output tensor. Implementations must support input tensor data type VX_TYPE_INT16
. with fixed_point_position 8. AndVX_TYPE_UINT8
with fixed_point_position 0.
- Returns
vx_node
.
- Return values
-
vx_node A node reference. Any possible errors preventing a successful creation should be checked using vxGetStatus
◆ vxTensorMatrixMultiplyNode()
VX_API_ENTRY vx_node VX_API_CALL vxTensorMatrixMultiplyNode | ( | vx_graph | graph, |
vx_tensor | input1, | ||
vx_tensor | input2, | ||
vx_tensor | input3, | ||
const vx_tensor_matrix_multiply_params_t * | matrix_multiply_params, | ||
vx_tensor | output | ||
) |
[Graph] Creates a generalized matrix multiplication node.
- Parameters
-
[in] graph The reference to the graph. [in] input1 The first input 2D tensor of type VX_TYPE_INT16
with fixed_point_pos 8, or tensor data typesVX_TYPE_UINT8
orVX_TYPE_INT8
, with fixed_point_pos 0.[in] input2 The second 2D tensor. Must be in the same data type as input1. [in] input3 The third 2D tensor. Must be in the same data type as input1. [optional]. [in] matrix_multiply_params Matrix multiply parameters, see vx_tensor_matrix_multiply_params_t
.[out] output The output 2D tensor. Must be in the same data type as input1. Output dimension must agree the formula in the description.
- Returns
vx_node
.-
A node reference
vx_node
. Any possible errors preventing a successful creation should be checked usingvxGetStatus
.
◆ vxTensorMultiplyNode()
VX_API_ENTRY vx_node VX_API_CALL vxTensorMultiplyNode | ( | vx_graph | graph, |
vx_tensor | input1, | ||
vx_tensor | input2, | ||
vx_scalar | scale, | ||
vx_enum | overflow_policy, | ||
vx_enum | rounding_policy, | ||
vx_tensor | output | ||
) |
[Graph] Performs element wise multiplications on element values in the input tensor data with a scale.
- Parameters
-
[in] graph The handle to the graph. [in] input1 Input tensor data. Implementations must support input tensor data type VX_TYPE_INT16
with fixed_point_position 8, and tensor data typesVX_TYPE_UINT8
andVX_TYPE_INT8
, with fixed_point_position 0.[in] input2 Input tensor data. The dimensions and sizes of input2 match those of input1, unless the vx_tensor of one or more dimensions in input2 is 1. In this case, those dimensions are treated as if this tensor was expanded to match the size of the corresponding dimension of input1, and data was duplicated on all terms in that dimension. After this expansion, the dimensions will be equal. The data type must match the data type of Input1. [in] scale A non-negative VX_TYPE_FLOAT32
multiplied to each product before overflow handling.[in] overflow_policy A vx_convert_policy_e
enumeration.[in] rounding_policy A vx_round_policy_e
enumeration.[out] output The output tensor data with the same dimensions as the input tensor data.
- Returns
vx_node
.-
A node reference
vx_node
. Any possible errors preventing a successful creation should be checked usingvxGetStatus
.
◆ vxTensorSubtractNode()
VX_API_ENTRY vx_node VX_API_CALL vxTensorSubtractNode | ( | vx_graph | graph, |
vx_tensor | input1, | ||
vx_tensor | input2, | ||
vx_enum | policy, | ||
vx_tensor | output | ||
) |
[Graph] Performs arithmetic subtraction on element values in the input tensor data.
- Parameters
-
[in] graph The handle to the graph. [in] input1 Input tensor data. Implementations must support input tensor data type VX_TYPE_INT16
with fixed_point_position 8, and tensor data typesVX_TYPE_UINT8
andVX_TYPE_INT8
, with fixed_point_position 0.[in] input2 Input tensor data. The dimensions and sizes of input2 match those of input1, unless the vx_tensor of one or more dimensions in input2 is 1. In this case, those dimensions are treated as if this tensor was expanded to match the size of the corresponding dimension of input1, and data was duplicated on all terms in that dimension. After this expansion, the dimensions will be equal. The data type must match the data type of Input1. [in] policy A vx_convert_policy_e
enumeration.[out] output The output tensor data with the same dimensions as the input tensor data.
- Returns
vx_node
.-
A node reference
vx_node
. Any possible errors preventing a successful creation should be checked usingvxGetStatus
.
◆ vxTensorTableLookupNode()
VX_API_ENTRY vx_node VX_API_CALL vxTensorTableLookupNode | ( | vx_graph | graph, |
vx_tensor | input1, | ||
vx_lut | lut, | ||
vx_tensor | output | ||
) |
[Graph] Performs LUT on element values in the input tensor data.
- Parameters
-
[in] graph The handle to the graph. [in] input1 Input tensor data. Implementations must support input tensor data type VX_TYPE_INT16
with fixed_point_position 8, and tensor data typesVX_TYPE_UINT8
, with fixed_point_position 0.[in] lut The look-up table to use, of type vx_lut
. The elements of input1 are treated as unsigned integers to determine an index into the look-up table. The data type of the items in the look-up table must match that of the output tensor.[out] output The output tensor data with the same dimensions as the input tensor data.
- Returns
vx_node
.-
A node reference
vx_node
. Any possible errors preventing a successful creation should be checked usingvxGetStatus
.
◆ vxTensorTransposeNode()
VX_API_ENTRY vx_node VX_API_CALL vxTensorTransposeNode | ( | vx_graph | graph, |
vx_tensor | input, | ||
vx_tensor | output, | ||
vx_size | dimension1, | ||
vx_size | dimension2 | ||
) |
[Graph] Performs transpose on the input tensor. The node transpose the tensor according to a specified 2 indexes in the tensor (0-based indexing)
- Parameters
-
[in] graph The handle to the graph. [in] input Input tensor data, Implementations must support input tensor data type VX_TYPE_INT16
with fixed_point_position 8, and tensor data typesVX_TYPE_UINT8
andVX_TYPE_INT8
, with fixed_point_position 0.[out] output output tensor data, [in] dimension1 Dimension index that is transposed with dim 2. [in] dimension2 Dimension index that is transposed with dim 1.
- Returns
vx_node
.-
A node reference
vx_node
. Any possible errors preventing a successful creation should be checked usingvxGetStatus
.
◆ vxThresholdNode()
VX_API_ENTRY vx_node VX_API_CALL vxThresholdNode | ( | vx_graph | graph, |
vx_image | input, | ||
vx_threshold | thresh, | ||
vx_image | output | ||
) |
[Graph] Creates a Threshold node and returns a reference to it.
- Parameters
-
[in] graph The reference to the graph in which the node is created. [in] input The input image. Only images with format VX_DF_IMAGE_U8
andVX_DF_IMAGE_S16
are supported.[in] thresh The thresholding object that defines the parameters of the operation. The VX_THRESHOLD_INPUT_FORMAT
must be the same as the input image format and theVX_THRESHOLD_OUTPUT_FORMAT
must be the same as the output image format.[out] output The output image, that will contain as pixel value true and false values defined by thresh
. Images with formatVX_DF_IMAGE_U8
orVX_DF_IMAGE_U1
are supported. The dimensions are the same as the input image.
- Returns
vx_node
.
- Return values
-
vx_node A node reference. Any possible errors preventing a successful creation should be checked using vxGetStatus
◆ vxWarpAffineNode()
VX_API_ENTRY vx_node VX_API_CALL vxWarpAffineNode | ( | vx_graph | graph, |
vx_image | input, | ||
vx_matrix | matrix, | ||
vx_enum | type, | ||
vx_image | output | ||
) |
[Graph] Creates an Affine Warp Node.
- Parameters
-
[in] graph The reference to the graph. [in] input The input VX_DF_IMAGE_U8
orVX_DF_IMAGE_U1
image.[in] matrix The affine matrix. Must be 2x3 of type VX_TYPE_FLOAT32. [in] type The interpolation type from vx_interpolation_type_e
.VX_INTERPOLATION_AREA
is not supported.[out] output The output VX_DF_IMAGE_U8
orVX_DF_IMAGE_U1
image with the same format as the input image.
- Note
- The border modes
VX_NODE_BORDER
valueVX_BORDER_UNDEFINED
andVX_BORDER_CONSTANT
are supported.
- Returns
vx_node
.
- Return values
-
vx_node A node reference. Any possible errors preventing a successful creation should be checked using vxGetStatus
◆ vxWarpPerspectiveNode()
VX_API_ENTRY vx_node VX_API_CALL vxWarpPerspectiveNode | ( | vx_graph | graph, |
vx_image | input, | ||
vx_matrix | matrix, | ||
vx_enum | type, | ||
vx_image | output | ||
) |
[Graph] Creates a Perspective Warp Node.
- Parameters
-
[in] graph The reference to the graph. [in] input The input VX_DF_IMAGE_U8
image.[in] matrix The perspective matrix. Must be 3x3 of type VX_TYPE_FLOAT32
.[in] type The interpolation type from vx_interpolation_type_e
.VX_INTERPOLATION_AREA
is not supported.[out] output The output VX_DF_IMAGE_U8
image.
- Note
- The border modes
VX_NODE_BORDER
valueVX_BORDER_UNDEFINED
andVX_BORDER_CONSTANT
are supported.
- Returns
vx_node
.
- Return values
-
vx_node A node reference. Any possible errors preventing a successful creation should be checked using vxGetStatus
◆ vxWeightedAverageNode()
VX_API_ENTRY vx_node VX_API_CALL vxWeightedAverageNode | ( | vx_graph | graph, |
vx_image | img1, | ||
vx_scalar | alpha, | ||
vx_image | img2, | ||
vx_image | output | ||
) |
[Graph] Creates a image weighted average node.
- Parameters
-
[in] graph The reference to the graph. [in] img1 The first input VX_DF_IMAGE_U8
image.[in] alpha The input VX_TYPE_FLOAT32
scalar value with a value in the range of \( 0.0 \le \alpha \le 1.0 \).[in] img2 The second VX_DF_IMAGE_U8
image, which must have the same dimensions as the img1.[out] output The output VX_DF_IMAGE_U8
image, which must have the same dimensions as the img1.
- Returns
vx_node
.
- Return values
-
vx_node A node reference. Any possible errors preventing a successful creation should be checked using vxGetStatus
◆ vxXorNode()
VX_API_ENTRY vx_node VX_API_CALL vxXorNode | ( | vx_graph | graph, |
vx_image | in1, | ||
vx_image | in2, | ||
vx_image | out | ||
) |
[Graph] Creates a bitwise EXCLUSIVE OR node.
- Parameters
-
[in] graph The reference to the graph. [in] in1 A VX_DF_IMAGE_U8
orVX_DF_IMAGE_U1
input image.[in] in2 A VX_DF_IMAGE_U8
orVX_DF_IMAGE_U1
input image.[out] out The VX_DF_IMAGE_U8
orVX_DF_IMAGE_U1
output image, which must have the same dimensions and type as the input images.
- Returns
vx_node
.
- Return values
-
vx_node A node reference. Any possible errors preventing a successful creation should be checked using vxGetStatus