Inference Generator#
caffe2openvx: Convert a pre-trained CAFFE model into a C library for use by applications.
Extract neural network model from
deploy.prototxt
generate C code that instantiates OpenVX kernels from vx_nn module
generate build scripts that package C code into a library
the generated C code or library can be easily integrated into an application for running inference
Extract weights and biases from
weights.caffemodel
into separates folders for use by the C library during initializationAlso generate a GDF for quick prototyping and kernel debugging
The generated C code will have two functions in annmodule.h
:
void annGetTensorDimensions(
vx_size dimInput[4], // input tensor dimensions
vx_size dimOutput[4] // output tensor dimensions
);
vx_graph annCreateGraph(
vx_context context, // OpenVX context
vx_tensor input, // input tensor
vx_tensor output, // output tensor
const char * dataFolder // folder with weights and biases
);
or
vx_graph annCreateGraphWithInputImage(
vx_context context, // OpenVX context
vx_image input, // input image (RGB or U8)
vx_tensor output, // output tensor
const char * dataFolder // folder with weights and biases
);
or
vx_graph annCreateGraphWithInputImageWithArgmaxTensor(
vx_context context, // OpenVX context
vx_image input, // input image (RGB or U8)
vx_tensor output, // output tensor
const char * dataFolder // folder with weights and biases
);
or
vx_graph annCreateGraphWithInputImageWithArgmaxImage(
vx_context context, // OpenVX context
vx_image input, // input image (RGB or U8)
vx_image output, // output image (U8)
const char * dataFolder // folder with weights and biases
);
or
vx_graph annCreateGraphWithInputImageWithArgmaxImageWithLut(
vx_context context, // OpenVX context
vx_image input, // input image (RGB or U8)
vx_image output, // output image (RGB)
const char * dataFolder // folder with weights and biases
);
annGetTensorDimensions
: allows an application to query dimensions of input and output tensorsannCreateGraph
(or another variant above): creates and initializes a graph with trained neural network for inference
Command-line Usage#
% caffe2openvx
[options]
<net.prototxt|net.caffemodel>
[n c H W [type fixed-point-position [convert-policy round-policy]]]
option |
description |
---|---|
–(no-)error-messages |
do/don’t enable error messages (default: ON) |
–(no-)virtual-buffers |
do/don’t use virtual buffers (default: ON) |
–(no-)generate-gdf |
do/don’t generate RunVX GDF with weight/bias initialization (default: ON) |
–(no-)generate-vx-code |
do/don’t generate OpenVX C Code with weight/bias initialization (default: ON) |
–output-dir |
specify output folder for weights/biases, GDF, and OpenVX C Code (default: current) |
convert input from RGB image into tensor using (a*x+b) conversion: rev=(BGR?1:0) |
|
convert input from U8 image into tensor using (a*x+b) conversion |
|
–argmax-tensor u8/u16 k |
return argmax output with specified tensor type and top_k |
–argmax-image u8/u16 |
return argmax output with specified image type |
–argmax-lut <rgbLut.txt> |
argmax color table: one R G B entry per label |
–flags |
specify custom flags (default: 0) |
Example#
Make sure that all executables and libraries are in PATH
and LD_LIBRARY_PATH
environment variables.
% export PATH=$PATH:/opt/rocm/mivisionx/bin
% export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/opt/rocm/mivisionx/lib
Below log outlines a simple use-case with inference generator.
% caffe2openvx weights.caffemodel 1 3 32 32
% caffe2openvx deploy.prototxt 1 3 32 32
% ls
CMakeLists.txt annmodule.txt cmake weights
annmodule.cpp anntest.cpp deploy.prototxt weights.caffemodel
annmodule.h bias net.gdf
% mkdir build
% cd build
% cmake ..
% make
% cd ..
% ls build
CMakeCache.txt Makefile cmake_install.cmake
CMakeFiles anntest libannmodule.so
% ./build/anntest
OK: annGetTensorDimensions() => [input 32x32x3x32] [output 1x1x10x32]
The anntest.cpp
is a simple program to initialize and run neural network using the annmodule
library.