Model quantization techniques#
2025-05-08
10 min read time
Quantization reduces the model size compared to its native full-precision version, making it easier to fit large models onto accelerators or GPUs with limited memory usage. This section explains how to perform LLM quantization using AMD Quark, GPTQ and bitsandbytes on AMD Instinct hardware.
AMD Quark#
AMD Quark offers the leading efficient and scalable quantization solution tailored to AMD Instinct GPUs. It supports FP8
and INT8
quantization for activations, weights, and KV cache,
including FP8
attention. For very large models, it employs a two-level INT4-FP8
scheme—storing weights in INT4
while computing with FP8
—for nearly 4× compression without sacrificing accuracy.
Quark scales efficiently across multiple GPUs, efficiently handling ultra-large models like Llama-3.1-405B. Quantized FP8
models like Llama, Mixtral, and Grok-1 are available under the AMD organization on Hugging Face, and can be deployed directly via vLLM.
Installing Quark#
The latest release of Quark can be installed with pip
pip install amd-quark
For detailed installation instructions, refer to the Quark documentation.
Using Quark for quantization#
First, load the pre-trained model and its corresponding tokenizer using the Hugging Face
transformers
library.from transformers import AutoTokenizer, AutoModelForCausalLM MODEL_ID = "meta-llama/Llama-2-70b-chat-hf" MAX_SEQ_LEN = 512 model = AutoModelForCausalLM.from_pretrained( MODEL_ID, device_map="auto", torch_dtype="auto", ) model.eval() tokenizer = AutoTokenizer.from_pretrained(MODEL_ID, model_max_length=MAX_SEQ_LEN) tokenizer.pad_token = tokenizer.eos_token
Prepare the calibration DataLoader (static quantization requires calibration data).
from datasets import load_dataset from torch.utils.data import DataLoader BATCH_SIZE = 1 NUM_CALIBRATION_DATA = 512 dataset = load_dataset("mit-han-lab/pile-val-backup", split="validation") text_data = dataset["text"][:NUM_CALIBRATION_DATA] tokenized_outputs = tokenizer( text_data, return_tensors="pt", padding=True, truncation=True, max_length=MAX_SEQ_LEN ) calib_dataloader = DataLoader( tokenized_outputs['input_ids'], batch_size=BATCH_SIZE, drop_last=True )
Define the quantization configuration. See the comments in the following code snippet for descriptions of each configuration option.
from quark.torch.quantization import (Config, QuantizationConfig, FP8E4M3PerTensorSpec) # Define fp8/per-tensor/static spec. FP8_PER_TENSOR_SPEC = FP8E4M3PerTensorSpec(observer_method="min_max", is_dynamic=False).to_quantization_spec() # Define global quantization config, input tensors and weight apply FP8_PER_TENSOR_SPEC. global_quant_config = QuantizationConfig(input_tensors=FP8_PER_TENSOR_SPEC, weight=FP8_PER_TENSOR_SPEC) # Define quantization config for kv-cache layers, output tensors apply FP8_PER_TENSOR_SPEC. KV_CACHE_SPEC = FP8_PER_TENSOR_SPEC kv_cache_layer_names_for_llama = ["*k_proj", "*v_proj"] kv_cache_quant_config = {name : QuantizationConfig(input_tensors=global_quant_config.input_tensors, weight=global_quant_config.weight, output_tensors=KV_CACHE_SPEC) for name in kv_cache_layer_names_for_llama} layer_quant_config = kv_cache_quant_config.copy() EXCLUDE_LAYERS = ["lm_head"] quant_config = Config( global_quant_config=global_quant_config, layer_quant_config=layer_quant_config, kv_cache_quant_config=kv_cache_quant_config, exclude=EXCLUDE_LAYERS)
Quantize the model and export
import torch from quark.torch import ModelQuantizer, ModelExporter from quark.torch.export import ExporterConfig, JsonExporterConfig # Apply quantization. quantizer = ModelQuantizer(quant_config) quant_model = quantizer.quantize_model(model, calib_dataloader) # Freeze quantized model to export. freezed_model = quantizer.freeze(model) # Define export config. LLAMA_KV_CACHE_GROUP = ["*k_proj", "*v_proj"] export_config = ExporterConfig(json_export_config=JsonExporterConfig()) export_config.json_export_config.kv_cache_group = LLAMA_KV_CACHE_GROUP EXPORT_DIR = MODEL_ID.split("/")[1] + "-w-fp8-a-fp8-kvcache-fp8-pertensor" exporter = ModelExporter(config=export_config, export_dir=EXPORT_DIR) with torch.no_grad(): exporter.export_safetensors_model(freezed_model, quant_config=quant_config, tokenizer=tokenizer)
Evaluating the quantized model with vLLM#
The exported Quark-quantized model can be loaded directly by vLLM for inference. You need to specify the model path and inform vLLM about the quantization method (quantization='quark'
) and the KV cache data type (kv_cache_dtype='fp8'
).
Use the LLM
interface to load the model:
from vllm import LLM, SamplingParamsinterface
# Sample prompts.
prompts = [
"Hello, my name is",
"The president of the United States is",
"The capital of France is",
"The future of AI is",
]
# Create a sampling params object.
sampling_params = SamplingParams(temperature=0.8, top_p=0.95)
# Create an LLM.
llm = LLM(model="Llama-2-70b-chat-hf-w-fp8-a-fp8-kvcache-fp8-pertensor",
kv_cache_dtype='fp8',quantization='quark')
# Generate texts from the prompts. The output is a list of RequestOutput objects
# that contain the prompt, generated text, and other information.
outputs = llm.generate(prompts, sampling_params)
# Print the outputs.
print("\nGenerated Outputs:\n" + "-" * 60)
for output in outputs:
prompt = output.prompt
generated_text = output.outputs[0].text
print(f"Prompt: {prompt!r}")
print(f"Output: {generated_text!r}")
print("-" * 60)
You can also evaluate the quantized model’s accuracy on standard benchmarks using the lm-evaluation-harness. Pass the necessary vLLM arguments to lm_eval
via --model_args
.
lm_eval --model vllm \
--model_args pretrained=Llama-2-70b-chat-hf-w-fp8-a-fp8-kvcache-fp8-pertensor,kv_cache_dtype='fp8',quantization='quark' \
--tasks gsm8k
This provides a standardized way to measure the performance impact of quantization. .. _fine-tune-llms-gptq:
GPTQ#
GPTQ is a post-training quantization technique where each row of the weight matrix is quantized independently to find a
version of the weights that minimizes error. These weights are quantized to int4
but are restored to fp16
on the
fly during inference. This can save your memory usage by a factor of four. A speedup in inference is expected because
inference of GPTQ models uses a lower bit width, which takes less time to communicate.
Before setting up the GPTQ configuration in Transformers, ensure the AutoGPTQ library is installed.
Installing AutoGPTQ#
The AutoGPTQ library implements the GPTQ algorithm.
Use the following command to install the latest stable release of AutoGPTQ from pip.
# This will install pre-built wheel for a specific ROCm version. pip install auto-gptq --no-build-isolation --extra-index-url https://huggingface.github.io/autogptq-index/whl/rocm573/
Or, install AutoGPTQ from source for the appropriate ROCm version (for example, ROCm 6.1).
# Clone the source code. git clone https://github.com/AutoGPTQ/AutoGPTQ.git cd AutoGPTQ # Speed up the compilation by specifying PYTORCH_ROCM_ARCH to target device. PYTORCH_ROCM_ARCH=gfx942 ROCM_VERSION=6.1 pip install . # Show the package after the installation
Run
pip show auto-gptq
to print information for the installedauto-gptq
package. Its output should look like this:Name: auto-gptq Version: 0.8.0.dev0+rocm6.1 ...
Using GPTQ with AutoGPTQ#
Run the following code snippet.
from transformers import AutoTokenizer, TextGenerationPipeline from auto_gptq import AutoGPTQForCausalLM, BaseQuantizeConfig base_model_name = "NousResearch/Llama-2-7b-hf" quantized_model_name = "llama-2-7b-hf-gptq" tokenizer = AutoTokenizer.from_pretrained(base_model_name, use_fast=True) examples = [ tokenizer( "auto-gptq is an easy-to-use model quantization library with user-friendly apis, based on GPTQ algorithm." ) ] print(examples)
The resulting examples should be a list of dictionaries whose keys are
input_ids
andattention_mask
.Set up the quantization configuration using the following snippet.
quantize_config = BaseQuantizeConfig( bits=4, # quantize model to 4-bit group_size=128, # it is recommended to set the value to 128 desc_act=False, )
Load the non-quantized model using the AutoGPTQ class and run the quantization.
# Import auto_gptq class. from auto_gptq import AutoGPTQForCausalLM # Load non-quantized model. base_model = AutoGPTQForCausalLM.from_pretrained(base_model_name, quantize_config, device_map = "auto") base_model.quantize(examples) # Save quantized model. base_model.save_quantized(quantized_model_name)
Using GPTQ with Hugging Face Transformers#
To perform a GPTQ quantization using Hugging Face Transformers, you need to create a
GPTQConfig
instance and set the number of bits to quantize to, and a dataset to calibrate the weights.from transformers import AutoModelForCausalLM, AutoTokenizer, GPTQConfig base_model_name = " NousResearch/Llama-2-7b-hf" tokenizer = AutoTokenizer.from_pretrained(base_model_name) gptq_config = GPTQConfig(bits=4, dataset="c4", tokenizer=tokenizer)
Load a model to quantize using
AutoModelForCausalLM
and pass thegptq_config
to itsfrom_pretained
method. Setdevice_map=”auto”
to automatically offload the model to available GPU resources.quantized_model = AutoModelForCausalLM.from_pretrained( base_model_name, device_map="auto", quantization_config=gptq_config)
Once the model is quantized, you can push the model and tokenizer to Hugging Face Hub for easy share and access.
quantized_model.push_to_hub("llama-2-7b-hf-gptq") tokenizer.push_to_hub("llama-2-7b-hf-gptq")
Or, you can save the model locally using the following snippet.
quantized_model.save_pretrained("llama-2-7b-gptq") tokenizer.save_pretrained("llama-2-7b-gptq")
ExLlama-v2 support#
ExLlama is a Python/C++/CUDA implementation of the Llama model that is
designed for faster inference with 4-bit GPTQ weights. The ExLlama
kernel is activated by default when users create a GPTQConfig
object. To
boost inference speed even further on Instinct accelerators, use the ExLlama-v2
kernels by configuring the exllama_config
parameter as the following.
from transformers import AutoModelForCausalLM, GPTQConfig
#pretrained_model_dir = "meta-llama/Llama-2-7b"
base_model_name = "NousResearch/Llama-2-7b-hf"
gptq_config = GPTQConfig(bits=4, dataset="c4", exllama_config={"version":2})
quantized_model = AutoModelForCausalLM.from_pretrained(
base_model_name,
device_map="auto",
quantization_config=gptq_config)
bitsandbytes#
The ROCm-aware bitsandbytes library is
a lightweight Python wrapper around CUDA custom functions, in particular 8-bit optimizer, matrix multiplication, and
8-bit and 4-bit quantization functions. The library includes quantization primitives for 8-bit and 4-bit operations
through bitsandbytes.nn.Linear8bitLt
and bitsandbytes.nn.Linear4bit
and 8-bit optimizers through the
bitsandbytes.optim
module. These modules are supported on AMD Instinct accelerators.
Installing bitsandbytes#
To install bitsandbytes for ROCm 6.0 (and later), use the following commands.
# Clone the github repo git clone --recurse https://github.com/ROCm/bitsandbytes.git cd bitsandbytes git checkout rocm_enabled_multi_backend # Install dependencies pip install -r requirements-dev.txt # Use -DBNB_ROCM_ARCH to specify target GPU arch cmake -DBNB_ROCM_ARCH="gfx942" -DCOMPUTE_BACKEND=hip -S . # Compile the project make # Install python setup.py install
Run
pip show bitsandbytes
to show the information about the installed bitsandbytes package. Its output should look like the following.Name: bitsandbytes Version: 0.44.0.dev0 ...
Using bitsandbytes primitives#
To get started with bitsandbytes primitives, use the following code as reference.
import bitsandbytes as bnb
# Use Int8 Matrix Multiplication
bnb.matmul(..., threshold=6.0)
# Use bitsandbytes 8-bit Optimizers
adam = bnb.optim.Adam8bit(model.parameters(), lr=0.001, betas=(0.9, 0.995))
Using bitsandbytes with Hugging Face Transformers#
To load a Transformers model in 4-bit, set load_in_4bit=true
in BitsAndBytesConfig
.
from transformers import AutoModelForCausalLM, BitsAndBytesConfig
base_model_name = "NousResearch/Llama-2-7b-hf"
quantization_config = BitsAndBytesConfig(load_in_4bit=True)
bnb_model_4bit = AutoModelForCausalLM.from_pretrained(
base_model_name,
device_map="auto",
quantization_config=quantization_config)
# Check the memory footprint with get_memory_footprint method
print(bnb_model_4bit.get_memory_footprint())
To load a model in 8-bit for inference, use the load_in_8bit
option.
from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig
base_model_name = "NousResearch/Llama-2-7b-hf"
tokenizer = AutoTokenizer.from_pretrained(base_model_name)
quantization_config = BitsAndBytesConfig(load_in_8bit=True)
tokenizer = AutoTokenizer.from_pretrained(base_model_name)
bnb_model_8bit = AutoModelForCausalLM.from_pretrained(
base_model_name,
device_map="auto",
quantization_config=quantization_config)
prompt = "What is a large language model?"
inputs = tokenizer(prompt, return_tensors="pt").to("cuda")
generated_ids = model.generate(**inputs)
outputs = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)