PyTorch via PIP installation#
AMD recommends the PIP install method to create a PyTorch environment when working with ROCm™ for machine learning development.
Note
To install the following wheels, Python 3.12 must be installed.
Prerequisites#
For the 7.1.1 PyTorch on Windows release, the 25.20.01.17 graphics driver must be installed.
Install PyTorch via PIP#
Enter the commands to set up ROCm environment.
pip install --no-cache-dir https://repo.radeon.com/rocm/windows/rocm-rel-7.1.1/rocm_sdk_core-0.1.dev0-py3-none-win_amd64.whl pip install --no-cache-dir https://repo.radeon.com/rocm/windows/rocm-rel-7.1.1/rocm_sdk_devel-0.1.dev0-py3-none-win_amd64.whl pip install --no-cache-dir https://repo.radeon.com/rocm/windows/rocm-rel-7.1.1/rocm_sdk_libraries_custom-0.1.dev0-py3-none-win_amd64.whl pip install --no-cache-dir https://repo.radeon.com/rocm/windows/rocm-rel-7.1.1/rocm-0.1.dev0.tar.gz
Enter the commands to install torch, torchvision and torchaudio for ROCm AMD GPU support.
Note
This may take several minutes. See Compatibility matrices for support information.pip install --no-cache-dir https://repo.radeon.com/rocm/windows/rocm-rel-7.1.1/torch-2.9.0+rocmsdk20251116-cp312-cp312-win_amd64.whl pip install --no-cache-dir https://repo.radeon.com/rocm/windows/rocm-rel-7.1.1/torchaudio-2.9.0+rocmsdk20251116-cp312-cp312-win_amd64.whl pip install --no-cache-dir https://repo.radeon.com/rocm/windows/rocm-rel-7.1.1/torchvision-0.24.0+rocmsdk20251116-cp312-cp312-win_amd64.whl
Verify PyTorch installation#
Confirm if PyTorch is correctly installed.
Verify if Pytorch is installed and detecting the GPU compute device.
python -c "import torch" 2>nul && echo Success || echo Failure
Expected result:
SuccessEnter command to test if the GPU is available.
python -c "import torch; print(torch.cuda.is_available())"
Expected result:
TrueEnter command to display installed GPU device name.
python -c "import torch; print(f'device name [0]:', torch.cuda.get_device_name(0))"
Example result: device name [0]: AMD Radeon Graphics
device name [0]: <Supported AMD GPU>
Enter command to display component information within the current PyTorch environment.
python -m torch.utils.collect_env
Example result:
PyTorch version: 2.9.0+rocmsdk20251107 Is debug build: False CUDA used to build PyTorch: N/A ROCM used to build PyTorch: 7.1.52802-561cc400e1 OS: Microsoft Windows 11 Pro (10.0.26200 64-bit) GCC version: Could not collect Clang version: Could not collect CMake version: Could not collect Libc version: N/A Python version: 3.12.10 (tags/v3.12.10:0cc8128, Apr 8 2025, 12:21:36) [MSC v.1943 64 bit (AMD64)] (64-bit runtime) Python platform: Windows-11-10.0.26200-SP0 Is CUDA available: True CUDA runtime version: Could not collect CUDA_MODULE_LOADING set to: GPU models and configuration: AMD Radeon(TM) 8060S Graphics (gfx1151) Nvidia driver version: Could not collect cuDNN version: Could not collect Is XPU available: False HIP runtime version: 7.1.52802 MIOpen runtime version: 3.5.1 Is XNNPACK available: Tru
Environment set-up is complete, and the system is ready for use with PyTorch to work with machine learning models, and algorithms.
See also: Limitations and recommended settings.