rocsolver_chegvd Interface Reference

rocsolver_chegvd Interface Reference#

HIPFORT API Reference: hipfort_rocsolver::rocsolver_chegvd Interface Reference
hipfort_rocsolver::rocsolver_chegvd Interface Reference

HEGVD computes the eigenvalues and (optionally) eigenvectors of a complex generalized hermitian-definite eigenproblem. More...

Public Member Functions

integer(kind(rocblas_status_success)) function rocsolver_chegvd_ (handle, itype, evect, uplo, n, A, lda, B, ldb, D, E, myInfo)
 
integer(kind(rocblas_status_success)) function rocsolver_chegvd_full_rank (handle, itype, evect, uplo, n, A, lda, B, ldb, D, E, myInfo)
 
integer(kind(rocblas_status_success)) function rocsolver_chegvd_rank_0 (handle, itype, evect, uplo, n, A, lda, B, ldb, D, E, myInfo)
 
integer(kind(rocblas_status_success)) function rocsolver_chegvd_rank_1 (handle, itype, evect, uplo, n, A, lda, B, ldb, D, E, myInfo)
 

Detailed Description

HEGVD computes the eigenvalues and (optionally) eigenvectors of a complex generalized hermitian-definite eigenproblem.

The problem solved by this function is either of the form

\[ \begin{array}{cl} A X = \lambda B X & \: \text{1st form,}\newline A B X = \lambda X & \: \text{2nd form, or}\newline B A X = \lambda X & \: \text{3rd form,} \end{array} \]

depending on the value of itype. The eigenvectors are computed using a divide-and-conquer algorithm, depending on the value of evect.

When computed, the matrix Z of eigenvectors is normalized as follows:

\[ \begin{array}{cl} Z^H B Z=I & \: \text{if 1st or 2nd form, or}\newline Z^H B^{-1} Z=I & \: \text{if 3rd form.} \end{array} \]

Parameters
[in]handlerocblas_handle.
[in]ityperocblas_eform.
Specifies the form of the generalized eigenproblem.
[in]evectrocblas_evect.
Specifies whether the eigenvectors are to be computed. If evect is rocblas_evect_original, then the eigenvectors are computed. rocblas_evect_tridiagonal is not supported.
[in]uplorocblas_fill.
Specifies whether the upper or lower parts of the matrices A and B are stored. If uplo indicates lower (or upper), then the upper (or lower) parts of A and B are not used.
[in]nrocblas_int. n >= 0.
The matrix dimensions.
[in,out]Apointer to type. Array on the GPU of dimension lda*n.
On entry, the hermitian matrix A. On exit, if evect is original, the normalized matrix Z of eigenvectors. If evect is none, then the upper or lower triangular part of the matrix A (including the diagonal) is destroyed, depending on the value of uplo.
[in]ldarocblas_int. lda >= n.
Specifies the leading dimension of A.
[out]Bpointer to type. Array on the GPU of dimension ldb*n.
On entry, the hermitian positive definite matrix B. On exit, the triangular factor of B as returned by POTRF.
[in]ldbrocblas_int. ldb >= n.
Specifies the leading dimension of B.
[out]Dpointer to real type. Array on the GPU of dimension n.
On exit, the eigenvalues in increasing order.
[out]Epointer to real type. Array on the GPU of dimension n.
This array is used to work internally with the tridiagonal matrix T associated with the reduced eigenvalue problem. On exit, if 0 < info <= n, it contains the unconverged off-diagonal elements of T (or properly speaking, a tridiagonal matrix equivalent to T). The diagonal elements of this matrix are in D; those that converged correspond to a subset of the eigenvalues (not necessarily ordered).
[out]infopointer to a rocblas_int on the GPU.
If info = 0, successful exit. If info = j <= n and evect is rocblas_evect_none, j off-diagonal elements of an intermediate tridiagonal form did not converge to zero. If info = j <= n and evect is rocblas_evect_original, the algorithm failed to compute an eigenvalue in the submatrix from [j/(n+1), j/(n+1)] to [j%(n+1), j%(n+1)]. If info = n + j, the leading minor of order j of B is not positive definite.

Member Function/Subroutine Documentation

◆ rocsolver_chegvd_()

integer(kind(rocblas_status_success)) function hipfort_rocsolver::rocsolver_chegvd::rocsolver_chegvd_ ( type(c_ptr), value  handle,
integer(kind(rocblas_eform_ax)), value  itype,
integer(kind(rocblas_evect_original)), value  evect,
integer(kind(rocblas_fill_upper)), value  uplo,
integer(c_int), value  n,
type(c_ptr), value  A,
integer(c_int), value  lda,
type(c_ptr), value  B,
integer(c_int), value  ldb,
type(c_ptr), value  D,
type(c_ptr), value  E,
integer(c_int)  myInfo 
)

◆ rocsolver_chegvd_full_rank()

integer(kind(rocblas_status_success)) function hipfort_rocsolver::rocsolver_chegvd::rocsolver_chegvd_full_rank ( type(c_ptr)  handle,
integer(kind(rocblas_eform_ax))  itype,
integer(kind(rocblas_evect_original))  evect,
integer(kind(rocblas_fill_upper))  uplo,
integer(c_int)  n,
complex(c_float_complex), dimension(:,:), target  A,
integer(c_int)  lda,
complex(c_float_complex), dimension(:,:), target  B,
integer(c_int)  ldb,
real(c_float), dimension(:), target  D,
real(c_float), dimension(:), target  E,
integer(c_int)  myInfo 
)

◆ rocsolver_chegvd_rank_0()

integer(kind(rocblas_status_success)) function hipfort_rocsolver::rocsolver_chegvd::rocsolver_chegvd_rank_0 ( type(c_ptr)  handle,
integer(kind(rocblas_eform_ax))  itype,
integer(kind(rocblas_evect_original))  evect,
integer(kind(rocblas_fill_upper))  uplo,
integer(c_int)  n,
complex(c_float_complex), target  A,
integer(c_int)  lda,
complex(c_float_complex), target  B,
integer(c_int)  ldb,
real(c_float), target  D,
real(c_float), target  E,
integer(c_int)  myInfo 
)

◆ rocsolver_chegvd_rank_1()

integer(kind(rocblas_status_success)) function hipfort_rocsolver::rocsolver_chegvd::rocsolver_chegvd_rank_1 ( type(c_ptr)  handle,
integer(kind(rocblas_eform_ax))  itype,
integer(kind(rocblas_evect_original))  evect,
integer(kind(rocblas_fill_upper))  uplo,
integer(c_int)  n,
complex(c_float_complex), dimension(:), target  A,
integer(c_int)  lda,
complex(c_float_complex), dimension(:), target  B,
integer(c_int)  ldb,
real(c_float), dimension(:), target  D,
real(c_float), dimension(:), target  E,
integer(c_int)  myInfo 
)

The documentation for this interface was generated from the following file: