hipblaszgetrfbatched Interface Reference

hipblaszgetrfbatched Interface Reference#

HIPFORT API Reference: hipfort_hipblas::hipblaszgetrfbatched Interface Reference
hipfort_hipblas::hipblaszgetrfbatched Interface Reference

SOLVER API. More...

Public Member Functions

integer(kind(hipblas_status_success)) function hipblaszgetrfbatched_ (handle, n, A, lda, ipiv, myInfo, batchCount)
 
integer(kind(hipblas_status_success)) function hipblaszgetrfbatched_full_rank (handle, n, A, lda, ipiv, myInfo, batchCount)
 
integer(kind(hipblas_status_success)) function hipblaszgetrfbatched_rank_0 (handle, n, A, lda, ipiv, myInfo, batchCount)
 
integer(kind(hipblas_status_success)) function hipblaszgetrfbatched_rank_1 (handle, n, A, lda, ipiv, myInfo, batchCount)
 

Detailed Description

SOLVER API.

getrfBatched computes the LU factorization of a batch of general n-by-n matrices using partial pivoting with row interchanges. The LU factorization can be done without pivoting if ipiv is passed as a nullptr.

In the case that ipiv is not null, the factorization of matrix \(A_i\) in the batch has the form:

\[ A_i = P_iL_iU_i \]

where \(P_i\) is a permutation matrix, \(L_i\) is lower triangular with unit diagonal elements, and \(U_i\) is upper triangular.

In the case that ipiv is null, the factorization is done without pivoting:

\[ A_i = L_iU_i \]

Parameters
[in]handlehipblasHandle_t.
[in]nint. n >= 0.
The number of columns and rows of all matrices A_i in the batch.
[in,out]Aarray of pointers to type. Each pointer points to an array on the GPU of dimension lda*n.
On entry, the n-by-n matrices A_i to be factored. On exit, the factors L_i and U_i from the factorizations. The unit diagonal elements of L_i are not stored.
[in]ldaint. lda >= n.
Specifies the leading dimension of matrices A_i.
[out]ipivpointer to int. Array on the GPU.
Contains the vectors of pivot indices ipiv_i (corresponding to A_i). Dimension of ipiv_i is n. Elements of ipiv_i are 1-based indices. For each instance A_i in the batch and for 1 <= j <= n, the row j of the matrix A_i was interchanged with row ipiv_i[j]. Matrix P_i of the factorization can be derived from ipiv_i. The factorization here can be done without pivoting if ipiv is passed in as a nullptr.
[out]infopointer to int. Array of batchCount integers on the GPU.
If info[i] = 0, successful exit for factorization of A_i. If info[i] = j > 0, U_i is singular. U_i[j,j] is the first zero pivot.
[in]batchCountint. batchCount >= 0.
Number of matrices in the batch.

Member Function/Subroutine Documentation

◆ hipblaszgetrfbatched_()

integer(kind(hipblas_status_success)) function hipfort_hipblas::hipblaszgetrfbatched::hipblaszgetrfbatched_ ( type(c_ptr), value  handle,
integer(c_int), value  n,
type(c_ptr)  A,
integer(c_int), value  lda,
type(c_ptr), value  ipiv,
type(c_ptr), value  myInfo,
integer(c_int), value  batchCount 
)

◆ hipblaszgetrfbatched_full_rank()

integer(kind(hipblas_status_success)) function hipfort_hipblas::hipblaszgetrfbatched::hipblaszgetrfbatched_full_rank ( type(c_ptr)  handle,
integer(c_int)  n,
complex(c_double_complex), dimension(:,:,:), target  A,
integer(c_int)  lda,
type(c_ptr)  ipiv,
type(c_ptr)  myInfo,
integer(c_int)  batchCount 
)

◆ hipblaszgetrfbatched_rank_0()

integer(kind(hipblas_status_success)) function hipfort_hipblas::hipblaszgetrfbatched::hipblaszgetrfbatched_rank_0 ( type(c_ptr)  handle,
integer(c_int)  n,
complex(c_double_complex), target  A,
integer(c_int)  lda,
type(c_ptr)  ipiv,
type(c_ptr)  myInfo,
integer(c_int)  batchCount 
)

◆ hipblaszgetrfbatched_rank_1()

integer(kind(hipblas_status_success)) function hipfort_hipblas::hipblaszgetrfbatched::hipblaszgetrfbatched_rank_1 ( type(c_ptr)  handle,
integer(c_int)  n,
complex(c_double_complex), dimension(:), target  A,
integer(c_int)  lda,
type(c_ptr)  ipiv,
type(c_ptr)  myInfo,
integer(c_int)  batchCount 
)

The documentation for this interface was generated from the following file: