This page contains proposed changes for a future release of ROCm. Read the latest Linux release of ROCm documentation for your production environments.

hipblaszgeamstridedbatched Interface Reference

hipblaszgeamstridedbatched Interface Reference#

HIPFORT API Reference: hipfort_hipblas::hipblaszgeamstridedbatched Interface Reference
hipfort_hipblas::hipblaszgeamstridedbatched Interface Reference

BLAS Level 3 API. More...

Public Member Functions

integer(kind(hipblas_status_success)) function hipblaszgeamstridedbatched_ (handle, transa, transb, m, n, alpha, A, lda, strideA, beta, B, ldb, strideB, C, ldc, strideC, batchCount)
 
integer(kind(hipblas_status_success)) function hipblaszgeamstridedbatched_full_rank (handle, transa, transb, m, n, alpha, A, lda, strideA, beta, B, ldb, strideB, C, ldc, strideC, batchCount)
 
integer(kind(hipblas_status_success)) function hipblaszgeamstridedbatched_rank_0 (handle, transa, transb, m, n, alpha, A, lda, strideA, beta, B, ldb, strideB, C, ldc, strideC, batchCount)
 
integer(kind(hipblas_status_success)) function hipblaszgeamstridedbatched_rank_1 (handle, transa, transb, m, n, alpha, A, lda, strideA, beta, B, ldb, strideB, C, ldc, strideC, batchCount)
 

Detailed Description

BLAS Level 3 API.

geamStridedBatched performs one of the batched matrix-matrix operations

C_i = alpha*op( A_i ) + beta*op( B_i )  for i = 0, 1, ... batchCount - 1

where alpha and beta are scalars, and op(A_i), op(B_i) and C_i are m by n matrices and op( X ) is one of

op( X ) = X      or
op( X ) = X**T
Parameters
[in]handle[hipblasHandle_t] handle to the hipblas library context queue.
[in]transA[hipblasOperation_t] specifies the form of op( A )
[in]transB[hipblasOperation_t] specifies the form of op( B )
[in]m[int] matrix dimension m.
[in]n[int] matrix dimension n.
[in]alphadevice pointer or host pointer specifying the scalar alpha.
[in]Adevice pointer to the first matrix A_0 on the GPU. Each A_i is of dimension ( lda, k ), where k is m when transA == HIPBLAS_OP_N and is n when transA == HIPBLAS_OP_T.
[in]lda[int] specifies the leading dimension of A.
[in]strideA[hipblasStride] stride from the start of one matrix (A_i) and the next one (A_i+1)
[in]betadevice pointer or host pointer specifying the scalar beta.
[in]Bpointer to the first matrix B_0 on the GPU. Each B_i is of dimension ( ldb, k ), where k is m when transB == HIPBLAS_OP_N and is n when transB == HIPBLAS_OP_T.
[in]ldb[int] specifies the leading dimension of B.
[in]strideB[hipblasStride] stride from the start of one matrix (B_i) and the next one (B_i+1)
[in,out]Cpointer to the first matrix C_0 on the GPU. Each C_i is of dimension ( ldc, n ).
[in]ldc[int] specifies the leading dimension of C.
[in]strideC[hipblasStride] stride from the start of one matrix (C_i) and the next one (C_i+1)
[in]batchCount[int] number of instances i in the batch.

Member Function/Subroutine Documentation

◆ hipblaszgeamstridedbatched_()

integer(kind(hipblas_status_success)) function hipfort_hipblas::hipblaszgeamstridedbatched::hipblaszgeamstridedbatched_ ( type(c_ptr), value  handle,
integer(kind(hipblas_op_n)), value  transa,
integer(kind(hipblas_op_n)), value  transb,
integer(c_int), value  m,
integer(c_int), value  n,
complex(c_double_complex)  alpha,
type(c_ptr), value  A,
integer(c_int), value  lda,
integer(c_int64_t), value  strideA,
complex(c_double_complex)  beta,
type(c_ptr), value  B,
integer(c_int), value  ldb,
integer(c_int64_t), value  strideB,
type(c_ptr), value  C,
integer(c_int), value  ldc,
integer(c_int64_t), value  strideC,
integer(c_int), value  batchCount 
)

◆ hipblaszgeamstridedbatched_full_rank()

integer(kind(hipblas_status_success)) function hipfort_hipblas::hipblaszgeamstridedbatched::hipblaszgeamstridedbatched_full_rank ( type(c_ptr)  handle,
integer(kind(hipblas_op_n))  transa,
integer(kind(hipblas_op_n))  transb,
integer(c_int)  m,
integer(c_int)  n,
complex(c_double_complex)  alpha,
complex(c_double_complex), dimension(:,:), target  A,
integer(c_int)  lda,
integer(c_int64_t)  strideA,
complex(c_double_complex)  beta,
complex(c_double_complex), dimension(:,:), target  B,
integer(c_int)  ldb,
integer(c_int64_t)  strideB,
complex(c_double_complex), dimension(:,:), target  C,
integer(c_int)  ldc,
integer(c_int64_t)  strideC,
integer(c_int)  batchCount 
)

◆ hipblaszgeamstridedbatched_rank_0()

integer(kind(hipblas_status_success)) function hipfort_hipblas::hipblaszgeamstridedbatched::hipblaszgeamstridedbatched_rank_0 ( type(c_ptr)  handle,
integer(kind(hipblas_op_n))  transa,
integer(kind(hipblas_op_n))  transb,
integer(c_int)  m,
integer(c_int)  n,
complex(c_double_complex)  alpha,
complex(c_double_complex), target  A,
integer(c_int)  lda,
integer(c_int64_t)  strideA,
complex(c_double_complex)  beta,
complex(c_double_complex), target  B,
integer(c_int)  ldb,
integer(c_int64_t)  strideB,
complex(c_double_complex), target  C,
integer(c_int)  ldc,
integer(c_int64_t)  strideC,
integer(c_int)  batchCount 
)

◆ hipblaszgeamstridedbatched_rank_1()

integer(kind(hipblas_status_success)) function hipfort_hipblas::hipblaszgeamstridedbatched::hipblaszgeamstridedbatched_rank_1 ( type(c_ptr)  handle,
integer(kind(hipblas_op_n))  transa,
integer(kind(hipblas_op_n))  transb,
integer(c_int)  m,
integer(c_int)  n,
complex(c_double_complex)  alpha,
complex(c_double_complex), dimension(:), target  A,
integer(c_int)  lda,
integer(c_int64_t)  strideA,
complex(c_double_complex)  beta,
complex(c_double_complex), dimension(:), target  B,
integer(c_int)  ldb,
integer(c_int64_t)  strideB,
complex(c_double_complex), dimension(:), target  C,
integer(c_int)  ldc,
integer(c_int64_t)  strideC,
integer(c_int)  batchCount 
)

The documentation for this interface was generated from the following file: