pylibhipgraph.spectral_modularity_maximization#
2025-05-20
2 min read time
spectral_modularity_maximization (ResourceHandle resource_handle, _GPUGraph graph, num_clusters, num_eigen_vects, evs_tolerance, evs_max_iter, kmean_tolerance, kmean_max_iter, bool_t do_expensive_check)
Compute a clustering/partitioning of the given graph using the spectral modularity maximization method.
Parameters#
- resource_handleResourceHandle
Handle to the underlying device resources needed for referencing data and running algorithms.
- graphSGGraph
The input graph.
- num_clusterssize_t
Specifies the number of clusters to find, must be greater than 1
- num_eigen_vectssize_t
Specifies the number of eigenvectors to use. Must be lower or equal to num_clusters.
- evs_tolerance: double
Specifies the tolerance to use in the eigensolver.
- evs_max_iter: size_t
Specifies the maximum number of iterations for the eigensolver.
- kmean_tolerance: double
Specifies the tolerance to use in the k-means solver.
- kmean_max_iter: size_t
Specifies the maximum number of iterations for the k-means solver.
- do_expensive_checkbool_t
If True, performs more extensive tests on the inputs to ensure validity, at the expense of increased run time.
Returns#
A tuple containing the clustering vertices, clusters
Examples#
>>> import pylibhipgraph, cupy, numpy
>>> srcs = cupy.asarray([0, 1, 2], dtype=numpy.int32)
>>> dsts = cupy.asarray([1, 2, 0], dtype=numpy.int32)
>>> weights = cupy.asarray([1.0, 1.0, 1.0], dtype=numpy.float32)
>>> resource_handle = pylibhipgraph.ResourceHandle()
>>> graph_props = pylibhipgraph.GraphProperties(
... is_symmetric=True, is_multigraph=False)
>>> G = pylibhipgraph.SGGraph(
... resource_handle, graph_props, srcs, dsts, weight_array=weights,
... store_transposed=True, renumber=False, do_expensive_check=False)
>>> (vertices, clusters) = pylibhipgraph.spectral_modularity_maximization(
... resource_handle, G, num_clusters=5, num_eigen_vects=2, evs_tolerance=0.00001
... evs_max_iter=100, kmean_tolerance=0.00001, kmean_max_iter=100)
# FIXME: Fix docstring result.
>>> vertices
############
>>> clusters
############