pylibhipgraph.eigenvector_centrality#
2025-05-20
2 min read time
eigenvector_centrality (ResourceHandle resource_handle, _GPUGraph graph, double epsilon, size_t max_iterations, bool_t do_expensive_check)
Compute the Eigenvector centrality for the nodes of the graph.
Parameters#
- resource_handleResourceHandle
Handle to the underlying device resources needed for referencing data and running algorithms.
- graphSGGraph or MGGraph
The input graph, for either Single or Multi-GPU operations.
- epsilondouble
Error tolerance to check convergence
- max_iterations: size_t
Maximum number of Eignevector Centrality iterations
- do_expensive_checkbool_t
A flag to run expensive checks for input arguments if True.
Returns#
A tuple of device arrays, where the first item in the tuple is a device array containing the vertices and the second item in the tuple is a device array containing the eigenvector centrality scores for the corresponding vertices.
Examples#
>>> import pylibhipgraph, cupy, numpy
>>> srcs = cupy.asarray([0, 1, 2], dtype=numpy.int32)
>>> dsts = cupy.asarray([1, 2, 3], dtype=numpy.int32)
>>> weights = cupy.asarray([1.0, 1.0, 1.0], dtype=numpy.float32)
>>> resource_handle = pylibhipgraph.ResourceHandle()
>>> graph_props = pylibhipgraph.GraphProperties(
... is_symmetric=False, is_multigraph=False)
>>> G = pylibhipgraph.SGGraph(
... resource_handle, graph_props, srcs, dsts, weight_array=weights,
... store_transposed=True, renumber=False, do_expensive_check=False)
>>> (vertices, values) = pylibhipgraph.eigenvector_centrality(
resource_handle, G, 1e-6, 1000, False)