Single-node network configuration for AMD Instinct accelerators#
This section explains setting up a testing environment on a single accelerator node and running benchmarks to simulate an AI or HPC workload.
Prerequisites#
Before following the steps in the following sections, ensure you have completed these prerequisites.
Install GPU and network hardware. Refer to the hardware support matrix.
Install OS and required GPU and network software on each node:
Install network drivers for NICs. If using InfiniBand, also install OpenSM.
Ensure network settings are correctly configured for your hardware.
Configure system BIOS and OS settings according to System optimization for your architecture (MI300, MI200, and so on).
Disable NUMA balancing.
Run
sudo sysctl kernel.numa_balancing=0
.To verify NUMA balancing is disabled, run
cat /proc/sys/kernel/numa_balancing
and confirm that0
is returned.See Disable NUMA auto-balancing for more information.
Disable PCI ACS (access control services). Run the disable ACS script on all PCIe devices supporting it. This must be done after each reboot.
Configure IOMMU settings.
Add
iommu=pt
to theGRUB_CMDLINE_LINUX_DEFAULT
entry in/etc/default/grub
.Run
sudo update-grub
, then reboot.See GRUB settings and Issue #5: Application hangs on Multi-GPU systems for more information.
Verify group permissions.
Ensure the user belongs to the
render
andvideo
groups.Refer to Setting permissions for groups for guidance.
Best practices for software consistency#
To ensure consistent software configurations across systems:
Use a shared NFS (network file system) mount. Install the necessary software on a common NFS mount accessible to all systems.
Create a system image with all the software installed. Re-image when software changes are made.
Validate PCIe performance#
Checking that your relevant PCIe devices (GPUs, NICs, and internal switches) are using the maximum available transfer speed and width in their respective bus keeps you from having to troubleshoot any related issues in subsequent testing where it may not be obvious.
Tip
Gather all the PCIe addresses for your GPUs, NICs, and switches in advance and take note of them so you have them on hand for next steps.
Check PCIe device speed and width#
From the command line of your host, run
lspci
to retrieve a list of PCIe devices and locate your GPU and network devices.Run
sudo lspci -s <PCI address> -vvv | grep Speed
to review the speed and width of your device. This example shows the speed and width for a GPU at the address02:00.0
.$ sudo lspci -s 02:00.0 -vvv | grep Speed LnkCap: Port #0, Speed 32GT/s, Width x16, ASPM L0s L1, Exit Latency L0s <64ns, L1 <1us LnkSta: Speed 32GT/s (ok), Width x16 (ok)
sudo lspci -s 02:00.0 -vvv | grep Speed
The maximum supported speed of the GPU is reported in
LnkCap
along with a width of x16. Current status is shown inLnkSta
–both speed and width are aligned. Your values may differ depending on your hardware.Query and validate all GPUs in your node with the previous steps.
Gather the PCI addresses for your NICs and validate them next. See this example from a NIC running at
05:00.0
:$ sudo lspci -s 05:00.0 -vvv | grep Speed LnkCap: Port #0, Speed 16GT/s, Width x16, ASPM not supported LnkSta: Speed 16GT/s (ok), Width x16 (ok)
sudo lspci -s 05:00.0 -vvv | grep Speed
Here, the NIC is running at a speed of 16GT/s. However, because the NIC configuration only supports PCIe Gen4 speeds, this is an expected value.
Once you verify all GPUs and NICs are running at maximum supported speeds and widths, then proceed to the next section.
Note
If you’re running a cloud instance, hardware passthrough to your guest OS
might not be accurate. Verify your lspci
results with your cloud
provider.
Check PCIe switch speed and width#
Now, check the PCIe switches to ensure they are operating at the maximum speed
and width for the LnkSta
(Link Status).
Run
lspci -vv
andlspci -tv
to identify PCIe switch locations on the server.Run
lspci -vvv <PCI address> | grep Speed
to verify speed and width as previously demonstrated.
Check max payload size and max read request#
The MaxPayload
and MaxReadReq
attributes define the maximum size of PCIe
packets and the number of simultaneous read requests, respectively. For optimal
bandwidth, ensure that all GPUs and NICs are configured to use the maximum
values for both attributes.
Run
sudo lspci -vvv -s <PCI address> | grep DevCtl: -C 2
to review max payload size and max read request. Here is an example using the same NIC as before.$ sudo lspci -vvv -s 05:00.0 | grep DevCtl: -C 2 DevCap: MaxPayload 512 bytes, PhantFunc 0, Latency L0s <4us, L1 <64us ExtTag+ AttnBtn- AttnInd- PwrInd- RBE+ FLReset+ SlotPowerLimit 40.000W DevCtl: CorrErr+ NonFatalErr+ FatalErr+ UnsupReq- RlxdOrd+ ExtTag+ PhantFunc- AuxPwr+ NoSnoop+ FLReset- MaxPayload 512 bytes, MaxReadReq 4096 bytes
sudo lspci -vvv -s 05:00.0 | grep DevCtl: -C 2
MaxReadRequest
is unique because it can be changed during runtime with thesetpci
command. If your value here is lower than expected, you can correct it as follows:$ sudo lspci -vvvs a1:00.0 | grep axReadReq MaxPayload 512 bytes, MaxReadReq 512 bytes $ sudo setpci -s a1:00.0 68.w 295e $ sudo setpci -s a1:00.0 68.w=595e $ sudo lspci -vvvs a1:00.0 | grep axReadReq MaxPayload 512 bytes, MaxReadReq 4096 bytes
sudo lspci -vvvs a1:00.0 | grep axReadReq sudo setpci -s a1:00.0 68.w sudo setpci -s a1:00.0 68.w=595e sudo lspci -vvvs a1:00.0 | grep axReadReq
Note
Changes made with setpci
are not persistent across reboots. This example
uses a single NIC for simplicity, but in practice you must run the change for
each NIC in the node.
Validate NIC configuration#
After you’ve verified optimal PCIe speeds for all devices, configure your NICs according to best practices in the manufacturer or vendor documentation. This might already include some of the pre-assessment steps outlined in this guide and provide more hardware-specific tuning optimizations.
Vendor-specific NIC tuning#
Your NICs may require tuning if it has not already been done. Some steps differ based on the type of NIC you’re deploying (InfiniBand or RoCE).
Ensure ACS is disabled.
For Mellanox NICs (InfiniBand or RoCE): Disable ATS, enable PCI Relaxed Ordering, increase max read requests, enable advanced PCI settings.
sudo mst start sudo mst status sudo mlxconfig -d /dev/mst/mt4123_pciconf0 s ADVANCED_PCI_SETTINGS=1 sudo mlxconfig -d /dev/mst/mt4123_pciconf0 s MAX_ACC_OUT_READ=44 sudo mlxconfig -d /dev/mst/mt4123_pciconf0 s PCI_WR_ORDERING=1 reboot
For Broadcom NICs, ensure RoCE is enabled and consider disabling any unused ports. See the Broadcom RoCE configuration scripts for more details.
Ensure Relaxed Ordering is enabled in the PCIe settings for your system BIOS as well.
Note
All instructions for RoCE networks in this guide and additional guides are based on the v2 protocol.
Check NIC link speed#
Verify the NICs in your servers are reporting the correct speeds. Several commands and utilities are available to measure speed based on your network type.
- RoCE / Ethernet
sudo ethtool <interface> | grep -i speed
cat /sys/class/net/<interface>/speed
- InfiniBand
ibdiagnet
provides an output of the entire fabric in the default log files. You can verify link speeds here.ibstat
oribstatus
tells you if the link is up and the speed at which it is running for all HCAs in the server.
Verify Mellanox OFED and firmware installation#
Note
This step is only necessary for InfiniBand networks.
Download the latest version of Mellanox OFED (MLNX_OFED) from NVIDIA. Run the installer and flint tools to verify the latest version of MLNX_OFED and firmware is on the HCAs.
Set up a GPU testing environment#
Next, create a testing environment to gather performance data for your GPUs. This requires installation of ROCm Validation Suite (RVS), TransferBench, and ROCm Bandwidth Test.
Connect to the CLI of your GPU node.
Install ROCm Validation Suite following the directions at Installing ROCm Validation Suite.
Once installed, RVS is located in
/opt/rocm/
.
Install TransferBench. Refer to Installing TransferBench for details.
$ git clone https://github.com/ROCm/TransferBench.git $ cd TransferBench $ sudo make # Running make without sudo seems to cause runtime issues # If this doesn't work, install math libraries manually using https://github.com/ROCm/ROCm/issues/1843 $ sudo apt install libstdc++-12-dev
Install ROCm Bandwidth Test. Refer to Building the environment for details.
$ sudo apt install rocm-bandwidth-test
Run ROCm Validation Suite (RVS)#
RVS contains many different tests, otherwise referred to as modules. The relevant tests for this guide are as follows:
GPU Properties (GPUP)
GPU Stress test (GST)
You can run multiple tests at once with sudo /opt/rocm/rvs/rvs -d 3
, which
runs all tests set in /opt/rocm/share/rocm-validation-suite/rvs.conf
at
verbosity level 3. The default tests are GPUP, PEQT, PEBB, and PBQT, but you can
modify the config file to add your preferred tests. The
RVS documentation has more
information on how to modify rvs.conf
and helpful command line options.
Tip
When you identify a problem, use rvs -g
to understand what the GPU ID is
referring to.
GPU numbering in RVS does not have the same order as in rocm-smi
. To map
the GPU order listed in rvs-g
to the rocm output, run
rocm-smi --showbus
and match each GPU by bus ID.
You can run a specific RVS test by calling its configuration file with
sudo /opt/rocm/bin/rvs -c /opt/rocm/share/rocm-validation-suite/conf/<test name>.conf
.
The following shell examples demonstrate what the commands and outputs look like
for some of these tests.
Example of GPU stress tests with the GST module#
$ sudo /opt/rocm/bin/rvs -c /opt/rocm/share/rocm-validation-suite/conf/gst_single.conf
[RESULT] [508635.659800] Action name :gpustress-9000-sgemm-false
[RESULT] [508635.660582] Module name :gst
[RESULT] [508642.648770] [gpustress-9000-sgemm-false] gst <GPU ID> GFLOPS <performance output>
[RESULT] [508643.652155] [gpustress-9000-sgemm-false] gst <GPU ID> GFLOPS <performance output>
[RESULT] [508644.657965] [gpustress-9000-sgemm-false] gst <GPU ID> GFLOPS <performance output>
[RESULT] [508646.633979] [gpustress-9000-sgemm-false] gst <GPU ID> GFLOPS <performance output>
[RESULT] [508647.641379] [gpustress-9000-sgemm-false] gst <GPU ID> GFLOPS <performance output>
[RESULT] [508648.649070] [gpustress-9000-sgemm-false] gst <GPU ID> GFLOPS <performance output>
[RESULT] [508649.657010] [gpustress-9000-sgemm-false] gst <GPU ID> GFLOPS <performance output>
[RESULT] [508650.665296] [gpustress-9000-sgemm-false] gst <GPU ID> GFLOPS <performance output>
[RESULT] [508655.632843] [gpustress-9000-sgemm-false] gst <GPU ID> GFLOPS <performance output> Target stress : <stress value> met :TRUE
sudo /opt/rocm/bin/rvs -c /opt/rocm/share/rocm-validation-suite/conf/gst_single.conf
Example of PCIe bandwidth benchmarks with the PBQT module#
$ sudo /opt/rocm/rvs/rvs -c /opt/rocm/share/rocm-validation-suite/conf/pbqt_single.conf -d 3
[RESULT] [1148200.536604] Action name :action_1
Discovered Nodes
==============================================
Node Name Node Type Index GPU ID
=============================================================================================================================
<CPU1> CPU 0 N/A
<CPU2> CPU 1 N/A
<CPU3> CPU 2 N/A
<CPU4> CPU 3 N/A
<GPU1> GPU 4 <GPU1-ID>
<GPU2> GPU 5 <GPU2-ID>
=============================================================================================================================
[RESULT] [1148200.576371] Module name :pbqt
[INFO ] [1148200.576394] Missing 'device_index' key.
[RESULT] [1148200.576498] [action_1] p2p <GPU1> <GPU2> peers:true distance:72 PCIe:72
[RESULT] [1148205.576740] [action_1] p2p-bandwidth [1/1] <GPU1> <GPU2> bidirectional: true <result> GBps duration: <result> sec
[RESULT] [1148205.577850] Action name :action_2
[RESULT] [1148205.577862] Module name :pbqt
[INFO ] [1148205.577883] Missing 'device_index' key.
[RESULT] [1148205.578085] [action_2] p2p <GPU1> <GPU2> peers:true distance:72 PCIe:72
[INFO ] [1148216.581794] [action_2] p2p-bandwidth [1/1] <GPU1> <GPU2> bidirectional: true <result> GBps
[INFO ] [1148217.581371] [action_2] p2p-bandwidth [1/1] <GPU1> <GPU2> bidirectional: true <result> GBps
[INFO ] [1148218.580844] [action_2] p2p-bandwidth [1/1] <GPU1> <GPU2> bidirectional: true <result> GBps
[INFO ] [1148219.580909] [action_2] p2p-bandwidth [1/1] <GPU1> <GPU2> bidirectional: true <result> GBps
sudo /opt/rocm/rvs/rvs -c /opt/rocm/share/rocm-validation-suite/conf/pbqt_single.conf -d 3
Run TransferBench#
TransferBench is a benchmarking tool designed to measure simultaneous data transfers between CPU and GPU devices. To use it, first navigate to the TransferBench installation directory. Then, execute the following command to display available commands, flags, and an overview of your system’s CPU/GPU topology as detected by TransferBench:
./TransferBench
Like RVS, TransferBench operates based on configuration files. You can either
choose from several preset configuration files or create a custom configuration
to suit your testing needs. A commonly recommended test is the p2p
(peer-to-peer) test, which measures unidirectional and bidirectional transfer
rates across all CPUs and GPUs detected by the tool. The following example shows
the output of a p2p
test on a system with 2 CPUs and 8 GPUs, using 4 MB
transfer packets.
$ ./TransferBench p2p 4M
TransferBench v1.50
===============================================================
[Common]
ALWAYS_VALIDATE = 0 : Validating after all iterations
<SNIP>……
Bytes Per Direction 4194304
Unidirectional copy peak bandwidth GB/s [Local read / Remote write] (GPU-Executor: GFX)
SRC+EXE\DST CPU 00 CPU 01 GPU 00 GPU 01 GPU 02 GPU 03 GPU 04 GPU 05 GPU 06 GPU 07
CPU 00 -> 24.37 25.62 17.32 16.97 17.33 17.47 16.77 17.12 16.91 16.96
CPU 01 -> 18.83 19.62 14.84 15.47 15.16 15.13 16.11 16.13 16.01 15.91
GPU 00 -> 23.83 23.40 108.95 64.58 31.56 28.39 28.44 26.99 47.46 39.97
GPU 01 -> 24.05 23.93 66.52 109.18 29.07 32.53 27.80 31.73 40.79 36.42
GPU 02 -> 23.83 23.47 31.48 28.58 109.45 65.11 47.40 40.11 28.45 27.46
GPU 03 -> 24.35 23.93 28.65 32.00 65.68 108.68 39.85 36.08 27.08 31.49
GPU 04 -> 23.30 23.84 28.57 26.93 47.36 39.77 110.94 64.66 31.14 28.15
GPU 05 -> 23.39 24.08 27.19 31.26 39.85 35.49 64.98 110.10 28.57 31.43
GPU 06 -> 23.43 24.03 47.58 39.22 28.97 26.93 31.48 28.41 109.78 64.98
GPU 07 -> 23.45 23.94 39.70 35.50 27.08 31.25 28.14 32.19 65.00 110.47
CPU->CPU CPU->GPU GPU->CPU GPU->GPU
Averages (During UniDir): 22.23 16.35 23.77 37.74
Bidirectional copy peak bandwidth GB/s [Local read / Remote write] (GPU-Executor: GFX)
SRC\DST CPU 00 CPU 01 GPU 00 GPU 01 GPU 02 GPU 03 GPU 04 GPU 05 GPU 06 GPU 07
CPU 00 -> N/A 17.07 16.90 17.09 15.39 17.07 16.62 16.65 16.40 16.32
CPU 00 <- N/A 13.90 24.06 24.03 24.00 24.21 23.09 23.14 22.11 22.15
CPU 00 <-> N/A 30.97 40.96 41.12 39.39 41.28 39.71 39.80 38.51 38.47
CPU 01 -> 12.85 N/A 15.29 15.14 15.03 15.16 15.95 15.62 16.06 15.85
CPU 01 <- 17.34 N/A 22.95 23.18 22.98 22.92 23.86 24.05 23.94 23.94
CPU 01 <-> 30.19 N/A 38.24 38.32 38.01 38.08 39.80 39.67 40.00 39.79
GPU 00 -> 23.99 22.94 N/A 62.40 30.30 25.15 25.00 25.20 46.58 37.99
GPU 00 <- 16.87 14.75 N/A 65.21 31.10 25.91 25.53 25.48 47.34 38.17
GPU 00 <-> 40.85 37.69 N/A 127.61 61.40 51.06 50.53 50.68 93.91 76.16
GPU 01 -> 24.11 23.20 65.10 N/A 25.88 31.74 25.66 31.01 39.37 34.75
GPU 01 <- 17.00 14.08 61.91 N/A 26.09 31.90 25.73 31.34 38.97 34.76
GPU 01 <-> 41.11 37.29 127.01 N/A 51.97 63.64 51.39 62.35 78.35 69.51
GPU 02 -> 23.89 22.78 30.94 26.39 N/A 62.22 45.73 38.40 25.95 25.26
GPU 02 <- 16.59 13.91 30.47 26.54 N/A 63.63 47.42 38.68 26.29 25.64
GPU 02 <-> 40.48 36.69 61.42 52.93 N/A 125.85 93.15 77.08 52.24 50.90
GPU 03 -> 24.15 22.98 25.84 31.69 64.03 N/A 38.82 35.12 25.46 30.82
GPU 03 <- 17.22 14.19 25.28 31.16 61.90 N/A 38.16 34.85 25.81 30.97
GPU 03 <-> 41.37 37.16 51.12 62.84 125.93 N/A 76.99 69.97 51.27 61.79
GPU 04 -> 23.12 23.73 25.50 25.40 47.04 38.29 N/A 62.44 30.56 25.15
GPU 04 <- 16.15 12.86 25.13 25.63 46.38 38.65 N/A 63.89 30.88 25.74
GPU 04 <-> 39.27 36.58 50.63 51.03 93.42 76.94 N/A 126.34 61.43 50.89
GPU 05 -> 23.09 24.04 25.61 31.29 38.82 34.96 63.55 N/A 25.87 30.35
GPU 05 <- 13.65 15.46 25.26 30.87 38.51 34.70 61.57 N/A 26.34 31.47
GPU 05 <-> 36.75 39.50 50.87 62.16 77.32 69.66 125.12 N/A 52.21 61.82
GPU 06 -> 22.09 23.73 47.51 38.56 26.15 25.59 31.32 25.98 N/A 62.34
GPU 06 <- 16.31 15.40 46.22 39.16 25.63 25.17 30.44 25.58 N/A 63.88
GPU 06 <-> 38.39 39.13 93.72 77.72 51.78 50.76 61.76 51.56 N/A 126.22
GPU 07 -> 22.31 23.88 38.68 34.96 25.54 30.96 25.79 31.28 63.69 N/A
GPU 07 <- 16.27 15.89 38.39 35.06 25.27 30.62 25.25 30.91 62.36 N/A
GPU 07 <-> 38.58 39.77 77.07 70.02 50.81 61.58 51.05 62.20 126.04 N/A
CPU->CPU CPU->GPU GPU->CPU GPU->GPU
Averages (During BiDir): 15.29 19.72 19.39 36.17
./TransferBench p2p 4M
If you want to define your own configuration file, run
cat ~/TransferBench/examples/example.cfg
to view an example configuration
file with information on commands and arguments to run more granular testing.
Running DMA tests between single pairs of devices is one helpful and common
use case for custom configuration files. See the
TransferBench documentation for more information.
Run ROCm Bandwidth Test (RBT)#
ROCm Bandwidth Test lets you identify performance characteristics for host-to-device (H2D), device-to-host (D2H), and device-to-device (D2D) buffer copies on a ROCm platform. This assists when looking for abnormalities and tuning performance.
Run /opt/rocm/bin/rocm-bandwidth-test -h
to get a help screen with available
commands.
$ /opt/rocm/bin/rocm-bandwidth-test -h
Supported arguments:
-h Prints the help screen
-q Query version of the test
-v Run the test in validation mode
-l Run test to collect Latency data
-c Time the operation using CPU Timers
-e Prints the list of ROCm devices enabled on platform
-i Initialize copy buffer with specified 'long double' pattern
-t Prints system topology and allocatable memory info
-m List of buffer sizes to use, specified in Megabytes
-b List devices to use in bidirectional copy operations
-s List of source devices to use in copy unidirectional operations
-d List of destination devices to use in unidirectional copy operations
-a Perform Unidirectional Copy involving all device combinations
-A Perform Bidirectional Copy involving all device combinations
NOTE: Mixing following options is illegal/unsupported
Case 1: rocm_bandwidth_test -a with {lm}{1,}
Case 2: rocm_bandwidth_test -b with {clv}{1,}
Case 3: rocm_bandwidth_test -A with {clmv}{1,}
Case 4: rocm_bandwidth_test -s x -d y with {lmv}{2,}
The default behavior of /opt/rocm/bin/rocm-bandwidth-test
without any flags
runs unilateral and bilateral benchmarks (flags -a
and -A
) on all
available combinations of device. Review the following for examples of common
commands and output.
Getting a list of all ROCm-detected devices:
$ /opt/rocm/bin/rocm-bandwidth-test -e
RocmBandwidthTest Version: 2.6.0
Launch Command is: /opt/rocm/bin/rocm-bandwidth-test -e
Device Index: 0
Device Type: CPU
Device Name: <CPU Name>
Allocatable Memory Size (KB): 1044325060
Device Index: 1
Device Type: CPU
Device Name: <CPU Name>
Allocatable Memory Size (KB): 1056868156
Device Index: 2
Device Type: GPU
Device Name: <GPU Name>
Device BDF: XX:0.0
Device UUID: GPU-0000
Allocatable Memory Size (KB): 67092480
Allocatable Memory Size (KB): 67092480
Device Index: 3
Device Type: GPU
Device Name: <GPU Name>
Device BDF: XX:0.0
Device UUID: GPU-0000
Allocatable Memory Size (KB): 67092480
Allocatable Memory Size (KB): 67092480
Device Index: 4
Device Type: GPU
Device Name: <GPU Name>
Device BDF: XX:0.0
Device UUID: GPU-0000
Allocatable Memory Size (KB): 67092480
Allocatable Memory Size (KB): 67092480
Device Index: 5
Device Type: GPU
Device Name: <GPU Name>
Device BDF: XX:0.0
Device UUID: GPU-0000
Allocatable Memory Size (KB): 67092480
Allocatable Memory Size (KB): 67092480
Device Index: 6
Device Type: GPU
Device Name: <GPU Name>
Device BDF: XX:0.0
Device UUID: GPU-0000
Allocatable Memory Size (KB): 67092480
Allocatable Memory Size (KB): 67092480
Device Index: 7
Device Type: GPU
Device Name: <GPU Name>
Device BDF: XX:0.0
Device UUID: GPU-0000
Allocatable Memory Size (KB): 67092480
Allocatable Memory Size (KB): 67092480
Device Index: 8
Device Type: GPU
Device Name: <GPU Name>
Device BDF: XX:0.0
Device UUID: GPU-0000
Allocatable Memory Size (KB): 67092480
Allocatable Memory Size (KB): 67092480
Device Index: 9
Device Type: GPU
Device Name: <GPU Name>
Device BDF: XX:0.0
Device UUID: GPU-0000
Allocatable Memory Size (KB): 67092480
Allocatable Memory Size (KB): 67092480
/opt/rocm/bin/rocm-bandwidth-test -e
Running a unidirectional benchmark between devices 0 (CPU) and 4 (GPU):
$ /opt/rocm/bin/rocm-bandwidth-test -s 0 -d 4
........................................
RocmBandwidthTest Version: 2.6.0
Launch Command is: /opt/rocm/bin/rocm-bandwidth-test -s 0 -d 4
================ Unidirectional Benchmark Result ================
================ Src Device Id: 0 Src Device Type: Cpu ================
================ Dst Device Id: 4 Dst Device Type: Gpu ================
Data Size Avg Time(us) Avg BW(GB/s) Min Time(us) Peak BW(GB/s)
1 KB 5.400 0.190 5.280 0.194
2 KB 5.360 0.382 5.280 0.388
4 KB 5.440 0.753 5.440 0.753
8 KB 5.440 1.506 5.440 1.506
16 KB 5.880 2.786 5.760 2.844
32 KB 6.400 5.120 6.400 5.120
64 KB 7.520 8.715 7.520 8.715
128 KB 9.920 13.213 9.920 13.213
256 KB 14.520 18.054 14.400 18.204
512 KB 23.560 22.253 23.520 22.291
1 MB 41.880 25.038 41.760 25.110
2 MB 78.400 26.749 78.400 26.749
4 MB 153.201 27.378 152.641 27.478
8 MB 299.641 27.996 299.521 28.007
16 MB 592.002 28.340 592.002 28.340
32 MB 1176.925 28.510 1176.805 28.513
64 MB 2346.730 28.597 2346.730 28.597
128 MB 4686.180 28.641 4686.100 28.642
256 MB 9365.280 28.663 9365.160 28.663
512 MB 18722.762 28.675 18722.482 28.675
/opt/rocm/bin/rocm-bandwidth-test -s 0 -d 4
Running a bidirectional benchmark on all available device combinations:
$ /opt/rocm/bin/rocm-bandwidth-test -A
<SNIP>……
Bidirectional copy peak bandwidth GB/s
D/D 0 1 2 3 4 5 6 7 8 9
0 N/A N/A 47.703 47.679 47.619 47.586 38.106 38.160 36.771 36.773
1 N/A N/A 38.351 38.395 36.488 36.454 47.495 47.512 47.525 47.471
2 47.703 38.351 N/A 101.458 80.902 81.300 81.387 79.279 101.526 101.106
3 47.679 38.395 101.458 N/A 81.278 80.488 79.535 79.907 101.615 101.618
4 47.619 36.488 80.902 81.278 N/A 101.643 101.089 101.693 81.336 79.232
5 47.586 36.454 81.300 80.488 101.643 N/A 101.217 101.478 79.460 79.922
6 38.106 47.495 81.387 79.535 101.089 101.217 N/A 101.506 80.497 81.302
7 38.160 47.512 79.279 79.907 101.693 101.478 101.506 N/A 81.301 80.501
8 36.771 47.525 101.526 101.615 81.336 79.460 80.497 81.301 N/A 100.908
9 36.773 47.471 101.106 101.618 79.232 79.922 81.302 80.501 100.908 N/A
/opt/rocm/bin/rocm-bandwidth-test -A
For a more detailed explanation of different ways to run ROCm Bandwidth Test, see the ROCm Bandwidth Test user guide.
Configuration scripts#
Run these scripts where indicated to aid in the configuration and setup of your devices.
Disable ACS script
#!/bin/bash
#
# Disable ACS on every device that supports it
#
PLATFORM=$(dmidecode --string system-product-name)
logger "PLATFORM=${PLATFORM}"
# Enforce platform check here.
#case "${PLATFORM}" in
#"OAM"*)
#logger "INFO: Disabling ACS is no longer necessary for ${PLATFORM}"
#exit 0
#;;
#*)
#;;
#esac
# must be root to access extended PCI config space
if [ "$EUID" -ne 0 ]; then
echo "ERROR: $0 must be run as root"
exit 1
fi
for BDF in `lspci -d "*:*:*" | awk '{print $1}'`; do
# skip if it doesn't support ACS
setpci -v -s ${BDF} ECAP_ACS+0x6.w > /dev/null 2>&1
if [ $? -ne 0 ]; then
#echo "${BDF} does not support ACS, skipping"
continue
fi
logger "Disabling ACS on `lspci -s ${BDF}`"
setpci -v -s ${BDF} ECAP_ACS+0x6.w=0000
if [ $? -ne 0 ]; then
logger "Error enabling directTrans ACS on ${BDF}"
continue
fi
NEW_VAL=`setpci -v -s ${BDF} ECAP_ACS+0x6.w | awk '{print $NF}'`
if [ "${NEW_VAL}" != "0000" ]; then
logger "Failed to enabling directTrans ACS on ${BDF}"
continue
fi
done
exit 0
RoCE configuration script for Broadcom Thor NIC
# Increase Max Read request Size to 4k
lspci -vvvs 41:00.0 | grep axReadReq
# Check if Relaxed Ordering is enabled
for i in $(sudo niccli listdev | grep Interface | awk {'print $5'}); \ do echo $i - $(sudo niccli -dev=$i getoption -name pcie_relaxed_ordering); done
# Set Relaxed Ordering if not enabled
for i in $(sudo niccli listdev | grep Interface | awk {'print $5'}); \ do echo $i - $(sudo niccli -dev=$i setoption -name pcie_relaxed_ordering -value 1); done
# Check if RDMA support is enabled
for i in $(sudo niccli listdev | grep Interface | awk {'print $5'}); \ do echo $i - $(sudo niccli -dev=$i getoption -name support_rdma -scope 0) - $(sudo niccli -dev=$i \ getoption=support_rdma:1); done
# Set RMDA support if not enabled
for i in $(sudo niccli listdev | grep Interface | awk {'print $5'}); \ do echo $i - $(sudo \ niccli -dev=$i setoption -name support_rdma -scope 0 -value 1) - $(sudo niccli -dev=$i \ setoption -name support_rdma -scope 1 -value 1); done
# Set Speed Mask
niccli -dev=<interface name> setoption=autodetect_speed_exclude_mask:0#01C0
# Set 200Gbps
ethtool -s <interface name> autoneg off speed 200000 duplex full
# Set performance profile to RoCE ==REQUIRES REBOOT IF OLDER FIRMWARE LOADED==
for i in $(sudo niccli listdev | grep Interface | awk {'print $5'}); \ do echo $i - $(sudo \ niccli -dev=$i setoption -name performance_profile -value 1); done