docs-6.0.0/amd_openvx/openvx/include/VX/vxu.h File Reference

docs-6.0.0/amd_openvx/openvx/include/VX/vxu.h File Reference#

MIVisionX: docs-6.0.0/amd_openvx/openvx/include/VX/vxu.h File Reference
vxu.h File Reference

The OpenVX Utility Library. More...

Go to the source code of this file.

Functions

VX_API_ENTRY vx_status VX_API_CALL vxuColorConvert (vx_context context, vx_image input, vx_image output)
 [Immediate] Invokes an immediate Color Conversion. More...
 
VX_API_ENTRY vx_status VX_API_CALL vxuChannelExtract (vx_context context, vx_image input, vx_enum channel, vx_image output)
 [Immediate] Invokes an immediate Channel Extract. More...
 
VX_API_ENTRY vx_status VX_API_CALL vxuChannelCombine (vx_context context, vx_image plane0, vx_image plane1, vx_image plane2, vx_image plane3, vx_image output)
 [Immediate] Invokes an immediate Channel Combine. More...
 
VX_API_ENTRY vx_status VX_API_CALL vxuSobel3x3 (vx_context context, vx_image input, vx_image output_x, vx_image output_y)
 [Immediate] Invokes an immediate Sobel 3x3. More...
 
VX_API_ENTRY vx_status VX_API_CALL vxuMagnitude (vx_context context, vx_image grad_x, vx_image grad_y, vx_image mag)
 [Immediate] Invokes an immediate Magnitude. More...
 
VX_API_ENTRY vx_status VX_API_CALL vxuPhase (vx_context context, vx_image grad_x, vx_image grad_y, vx_image orientation)
 [Immediate] Invokes an immediate Phase. More...
 
VX_API_ENTRY vx_status VX_API_CALL vxuScaleImage (vx_context context, vx_image src, vx_image dst, vx_enum type)
 [Immediate] Scales an input image to an output image. More...
 
VX_API_ENTRY vx_status VX_API_CALL vxuTableLookup (vx_context context, vx_image input, vx_lut lut, vx_image output)
 [Immediate] Processes the image through the LUT. More...
 
VX_API_ENTRY vx_status VX_API_CALL vxuHistogram (vx_context context, vx_image input, vx_distribution distribution)
 [Immediate] Generates a distribution from an image. More...
 
VX_API_ENTRY vx_status VX_API_CALL vxuEqualizeHist (vx_context context, vx_image input, vx_image output)
 [Immediate] Equalizes the Histogram of a grayscale image. More...
 
VX_API_ENTRY vx_status VX_API_CALL vxuAbsDiff (vx_context context, vx_image in1, vx_image in2, vx_image out)
 [Immediate] Computes the absolute difference between two images. More...
 
VX_API_ENTRY vx_status VX_API_CALL vxuMeanStdDev (vx_context context, vx_image input, vx_float32 *mean, vx_float32 *stddev)
 [Immediate] Computes the mean value and optionally the standard deviation. More...
 
VX_API_ENTRY vx_status VX_API_CALL vxuThreshold (vx_context context, vx_image input, vx_threshold thresh, vx_image output)
 [Immediate] Threshold's an input image and produces a VX_DF_IMAGE_U8 boolean image. More...
 
VX_API_ENTRY vx_status VX_API_CALL vxuNonMaxSuppression (vx_context context, vx_image input, vx_image mask, vx_int32 win_size, vx_image output)
 [Immediate] Performs Non-Maxima Suppression on an image, producing an image of the same type. More...
 
VX_API_ENTRY vx_status VX_API_CALL vxuIntegralImage (vx_context context, vx_image input, vx_image output)
 [Immediate] Computes the integral image of the input. More...
 
VX_API_ENTRY vx_status VX_API_CALL vxuErode3x3 (vx_context context, vx_image input, vx_image output)
 [Immediate] Erodes an image by a 3x3 window. More...
 
VX_API_ENTRY vx_status VX_API_CALL vxuDilate3x3 (vx_context context, vx_image input, vx_image output)
 [Immediate] Dilates an image by a 3x3 window. More...
 
VX_API_ENTRY vx_status VX_API_CALL vxuMedian3x3 (vx_context context, vx_image input, vx_image output)
 [Immediate] Computes a median filter on the image by a 3x3 window. More...
 
VX_API_ENTRY vx_status VX_API_CALL vxuBox3x3 (vx_context context, vx_image input, vx_image output)
 [Immediate] Computes a box filter on the image by a 3x3 window. More...
 
VX_API_ENTRY vx_status VX_API_CALL vxuGaussian3x3 (vx_context context, vx_image input, vx_image output)
 [Immediate] Computes a gaussian filter on the image by a 3x3 window. More...
 
VX_API_ENTRY vx_status VX_API_CALL vxuNonLinearFilter (vx_context context, vx_enum function, vx_image input, vx_matrix mask, vx_image output)
 [Immediate] Performs Non-linear Filtering. More...
 
VX_API_ENTRY vx_status VX_API_CALL vxuConvolve (vx_context context, vx_image input, vx_convolution conv, vx_image output)
 [Immediate] Computes a convolution on the input image with the supplied matrix. More...
 
VX_API_ENTRY vx_status VX_API_CALL vxuGaussianPyramid (vx_context context, vx_image input, vx_pyramid gaussian)
 [Immediate] Computes a Gaussian pyramid from an input image. More...
 
VX_API_ENTRY vx_status VX_API_CALL vxuLaplacianPyramid (vx_context context, vx_image input, vx_pyramid laplacian, vx_image output)
 [Immediate] Computes a Laplacian pyramid from an input image. More...
 
VX_API_ENTRY vx_status VX_API_CALL vxuLaplacianReconstruct (vx_context context, vx_pyramid laplacian, vx_image input, vx_image output)
 [Immediate] Reconstructs an image from a Laplacian Image pyramid. More...
 
VX_API_ENTRY vx_status VX_API_CALL vxuWeightedAverage (vx_context context, vx_image img1, vx_scalar alpha, vx_image img2, vx_image output)
 [Immediate] Computes a weighted average image. More...
 
VX_API_ENTRY vx_status VX_API_CALL vxuMinMaxLoc (vx_context context, vx_image input, vx_scalar minVal, vx_scalar maxVal, vx_array minLoc, vx_array maxLoc, vx_scalar minCount, vx_scalar maxCount)
 [Immediate] Computes the minimum and maximum values of the image. More...
 
VX_API_ENTRY vx_status VX_API_CALL vxuMin (vx_context context, vx_image in1, vx_image in2, vx_image out)
 [Immediate] Computes pixel-wise minimum values between two images. More...
 
VX_API_ENTRY vx_status VX_API_CALL vxuMax (vx_context context, vx_image in1, vx_image in2, vx_image out)
 [Immediate] Computes pixel-wise maximum values between two images. More...
 
VX_API_ENTRY vx_status VX_API_CALL vxuConvertDepth (vx_context context, vx_image input, vx_image output, vx_enum policy, vx_int32 shift)
 [Immediate] Converts the input images bit-depth into the output image. More...
 
VX_API_ENTRY vx_status VX_API_CALL vxuCannyEdgeDetector (vx_context context, vx_image input, vx_threshold hyst, vx_int32 gradient_size, vx_enum norm_type, vx_image output)
 [Immediate] Computes Canny Edges on the input image into the output image. More...
 
VX_API_ENTRY vx_status VX_API_CALL vxuHalfScaleGaussian (vx_context context, vx_image input, vx_image output, vx_int32 kernel_size)
 [Immediate] Performs a Gaussian Blur on an image then half-scales it. The interpolation mode used is nearest-neighbor. More...
 
VX_API_ENTRY vx_status VX_API_CALL vxuAnd (vx_context context, vx_image in1, vx_image in2, vx_image out)
 [Immediate] Computes the bitwise and between two images. More...
 
VX_API_ENTRY vx_status VX_API_CALL vxuOr (vx_context context, vx_image in1, vx_image in2, vx_image out)
 [Immediate] Computes the bitwise inclusive-or between two images. More...
 
VX_API_ENTRY vx_status VX_API_CALL vxuXor (vx_context context, vx_image in1, vx_image in2, vx_image out)
 [Immediate] Computes the bitwise exclusive-or between two images. More...
 
VX_API_ENTRY vx_status VX_API_CALL vxuNot (vx_context context, vx_image input, vx_image output)
 [Immediate] Computes the bitwise not of an image. More...
 
VX_API_ENTRY vx_status VX_API_CALL vxuMultiply (vx_context context, vx_image in1, vx_image in2, vx_float32 scale, vx_enum overflow_policy, vx_enum rounding_policy, vx_image out)
 [Immediate] Performs elementwise multiplications on pixel values in the input images and a scale. More...
 
VX_API_ENTRY vx_status VX_API_CALL vxuAdd (vx_context context, vx_image in1, vx_image in2, vx_enum policy, vx_image out)
 [Immediate] Performs arithmetic addition on pixel values in the input images. More...
 
VX_API_ENTRY vx_status VX_API_CALL vxuSubtract (vx_context context, vx_image in1, vx_image in2, vx_enum policy, vx_image out)
 [Immediate] Performs arithmetic subtraction on pixel values in the input images. More...
 
VX_API_ENTRY vx_status VX_API_CALL vxuWarpAffine (vx_context context, vx_image input, vx_matrix matrix, vx_enum type, vx_image output)
 [Immediate] Performs an Affine warp on an image. More...
 
VX_API_ENTRY vx_status VX_API_CALL vxuWarpPerspective (vx_context context, vx_image input, vx_matrix matrix, vx_enum type, vx_image output)
 [Immediate] Performs an Perspective warp on an image. More...
 
VX_API_ENTRY vx_status VX_API_CALL vxuHarrisCorners (vx_context context, vx_image input, vx_scalar strength_thresh, vx_scalar min_distance, vx_scalar sensitivity, vx_int32 gradient_size, vx_int32 block_size, vx_array corners, vx_scalar num_corners)
 [Immediate] Computes the Harris Corners over an image and produces the array of scored points. More...
 
VX_API_ENTRY vx_status VX_API_CALL vxuFastCorners (vx_context context, vx_image input, vx_scalar strength_thresh, vx_bool nonmax_suppression, vx_array corners, vx_scalar num_corners)
 [Immediate] Computes corners on an image using FAST algorithm and produces the array of feature points. More...
 
VX_API_ENTRY vx_status VX_API_CALL vxuOpticalFlowPyrLK (vx_context context, vx_pyramid old_images, vx_pyramid new_images, vx_array old_points, vx_array new_points_estimates, vx_array new_points, vx_enum termination, vx_scalar epsilon, vx_scalar num_iterations, vx_scalar use_initial_estimate, vx_size window_dimension)
 [Immediate] Computes an optical flow on two images. More...
 
VX_API_ENTRY vx_status VX_API_CALL vxuMatchTemplate (vx_context context, vx_image src, vx_image templateImage, vx_enum matchingMethod, vx_image output)
 [Immediate] The function compares an image template against overlapped image regions. More...
 
VX_API_ENTRY vx_status VX_API_CALL vxuLBP (vx_context context, vx_image in, vx_enum format, vx_int8 kernel_size, vx_image out)
 [Immediate] The function extracts LBP image from an input image More...
 
VX_API_ENTRY vx_status VX_API_CALL vxuHOGCells (vx_context context, vx_image input, vx_int32 cell_width, vx_int32 cell_height, vx_int32 num_bins, vx_tensor magnitudes, vx_tensor bins)
 [Immediate] Performs cell calculations for the average gradient magnitude and gradient orientation histograms. More...
 
VX_API_ENTRY vx_status VX_API_CALL vxuHOGFeatures (vx_context context, vx_image input, vx_tensor magnitudes, vx_tensor bins, const vx_hog_t *params, vx_size hog_param_size, vx_tensor features)
 [Immediate] Computes Histogram of Oriented Gradients features for the W1xW2 window in a sliding window fashion over the whole input image. More...
 
VX_API_ENTRY vx_status VX_API_CALL vxuHoughLinesP (vx_context context, vx_image input, const vx_hough_lines_p_t *params, vx_array lines_array, vx_scalar num_lines)
 [Immediate] Finds the Probabilistic Hough Lines detected in the input binary image, each line is stored in the output array as a set of points (x1, y1, x2, y2) . More...
 
VX_API_ENTRY vx_status VX_API_CALL vxuRemap (vx_context context, vx_image input, vx_remap table, vx_enum policy, vx_image output)
 [Immediate] Remaps an output image from an input image. More...
 
VX_API_ENTRY vx_status VX_API_CALL vxuBilateralFilter (vx_context context, vx_tensor src, vx_int32 diameter, vx_float32 sigmaSpace, vx_float32 sigmaValues, vx_tensor dst)
 [Immediate] The function applies bilateral filtering to the input tensor. More...
 
VX_API_ENTRY vx_status VX_API_CALL vxuTensorMultiply (vx_context context, vx_tensor input1, vx_tensor input2, vx_scalar scale, vx_enum overflow_policy, vx_enum rounding_policy, vx_tensor output)
 [Immediate] Performs element wise multiplications on element values in the input tensor data with a scale. More...
 
VX_API_ENTRY vx_status VX_API_CALL vxuTensorAdd (vx_context context, vx_tensor input1, vx_tensor input2, vx_enum policy, vx_tensor output)
 [Immediate] Performs arithmetic addition on element values in the input tensor data. More...
 
VX_API_ENTRY vx_status VX_API_CALL vxuTensorSubtract (vx_context context, vx_tensor input1, vx_tensor input2, vx_enum policy, vx_tensor output)
 [Immediate] Performs arithmetic subtraction on element values in the input tensor data. More...
 
VX_API_ENTRY vx_status VX_API_CALL vxuTensorTableLookup (vx_context context, vx_tensor input1, vx_lut lut, vx_tensor output)
 [Immediate] Performs LUT on element values in the input tensor data. More...
 
VX_API_ENTRY vx_status VX_API_CALL vxuTensorTranspose (vx_context context, vx_tensor input, vx_tensor output, vx_size dimension1, vx_size dimension2)
 [Immediate] Performs transpose on the input tensor. The tensor is transposed according to a specified 2 indexes in the tensor (0-based indexing) More...
 
VX_API_ENTRY vx_status VX_API_CALL vxuTensorConvertDepth (vx_context context, vx_tensor input, vx_enum policy, vx_scalar norm, vx_scalar offset, vx_tensor output)
 [Immediate] Performs a bit-depth conversion. More...
 
VX_API_ENTRY vx_status VX_API_CALL vxuTensorMatrixMultiply (vx_context context, vx_tensor input1, vx_tensor input2, vx_tensor input3, const vx_tensor_matrix_multiply_params_t *matrix_multiply_params, vx_tensor output)
 [Immediate] Performs a generalized matrix multiplication. More...
 
VX_API_ENTRY vx_status VX_API_CALL vxuCopy (vx_context context, vx_reference input, vx_reference output)
 [Immediate] Copy data from one object to another. More...
 

Detailed Description

The OpenVX Utility Library.

Function Documentation

◆ vxuAbsDiff()

VX_API_ENTRY vx_status VX_API_CALL vxuAbsDiff ( vx_context  context,
vx_image  in1,
vx_image  in2,
vx_image  out 
)

[Immediate] Computes the absolute difference between two images.

Parameters
[in]contextThe reference to the overall context.
[in]in1An input image in VX_DF_IMAGE_U8 or VX_DF_IMAGE_S16 format.
[in]in2An input image in VX_DF_IMAGE_U8 or VX_DF_IMAGE_S16 format.
[out]outThe output image in VX_DF_IMAGE_U8 or VX_DF_IMAGE_S16 format.
Returns
A vx_status_e enumeration.
Return values
VX_SUCCESSSuccess
*An error occurred. See vx_status_e.

◆ vxuAdd()

VX_API_ENTRY vx_status VX_API_CALL vxuAdd ( vx_context  context,
vx_image  in1,
vx_image  in2,
vx_enum  policy,
vx_image  out 
)

[Immediate] Performs arithmetic addition on pixel values in the input images.

Parameters
[in]contextThe reference to the overall context.
[in]in1A VX_DF_IMAGE_U8 or VX_DF_IMAGE_S16 input image.
[in]in2A VX_DF_IMAGE_U8 or VX_DF_IMAGE_S16 input image.
[in]policyA vx_convert_policy_e enumeration.
[out]outThe output image in VX_DF_IMAGE_U8 or VX_DF_IMAGE_S16 format.
Returns
A vx_status_e enumeration.
Return values
VX_SUCCESSSuccess
*An error occurred. See vx_status_e.

◆ vxuAnd()

VX_API_ENTRY vx_status VX_API_CALL vxuAnd ( vx_context  context,
vx_image  in1,
vx_image  in2,
vx_image  out 
)

[Immediate] Computes the bitwise and between two images.

Parameters
[in]contextThe reference to the overall context.
[in]in1A VX_DF_IMAGE_U8 or VX_DF_IMAGE_U1 input image.
[in]in2A VX_DF_IMAGE_U8 or VX_DF_IMAGE_U1 input image.
[out]outThe VX_DF_IMAGE_U8 or VX_DF_IMAGE_U1 output image, which must have the same dimensions and type as the input images.
Returns
A vx_status_e enumeration.
Return values
VX_SUCCESSSuccess
*An error occurred. See vx_status_e.

◆ vxuBilateralFilter()

VX_API_ENTRY vx_status VX_API_CALL vxuBilateralFilter ( vx_context  context,
vx_tensor  src,
vx_int32  diameter,
vx_float32  sigmaSpace,
vx_float32  sigmaValues,
vx_tensor  dst 
)

[Immediate] The function applies bilateral filtering to the input tensor.

Parameters
[in]contextThe reference to the overall context.
[in]srcThe input data a vx_tensor. maximum 3 dimension and minimum 2. The tensor is of type VX_TYPE_UINT8 or VX_TYPE_INT16. dimensions are [radiometric ,width,height] or [width,height]
[in]diameterof each pixel neighbourhood that is used during filtering. Values of diameter must be odd. Bigger then 3 and smaller then 10.
[in]sigmaValuesFilter sigma in the radiometric space. Supported values are bigger then 0 and smaller or equal 20.
[in]sigmaSpaceFilter sigma in the spatial space. Supported values are bigger then 0 and smaller or equal 20.
[out]dstThe output data a vx_tensor,Of type VX_TYPE_UINT8 or VX_TYPE_INT16. And must be the same type and size of the input.
Note
The border modes VX_NODE_BORDER value VX_BORDER_REPLICATE and VX_BORDER_CONSTANT are supported.
Returns
A vx_status_e enumeration.
Return values
VX_SUCCESSSuccess
*An error occurred. See vx_status_e.

◆ vxuBox3x3()

VX_API_ENTRY vx_status VX_API_CALL vxuBox3x3 ( vx_context  context,
vx_image  input,
vx_image  output 
)

[Immediate] Computes a box filter on the image by a 3x3 window.

Parameters
[in]contextThe reference to the overall context.
[in]inputThe input image in VX_DF_IMAGE_U8 format.
[out]outputThe output image in VX_DF_IMAGE_U8 format.
Returns
A vx_status_e enumeration.
Return values
VX_SUCCESSSuccess
*An error occurred. See vx_status_e.

◆ vxuCannyEdgeDetector()

VX_API_ENTRY vx_status VX_API_CALL vxuCannyEdgeDetector ( vx_context  context,
vx_image  input,
vx_threshold  hyst,
vx_int32  gradient_size,
vx_enum  norm_type,
vx_image  output 
)

[Immediate] Computes Canny Edges on the input image into the output image.

Parameters
[in]contextThe reference to the overall context.
[in]inputThe input VX_DF_IMAGE_U8 image.
[in]hystThe double threshold for hysteresis. The VX_THRESHOLD_INPUT_FORMAT shall be either VX_DF_IMAGE_U8 or VX_DF_IMAGE_S16. The VX_THRESHOLD_OUTPUT_FORMAT is ignored.
[in]gradient_sizeThe size of the Sobel filter window, must support at least 3, 5 and 7.
[in]norm_typeA flag indicating the norm used to compute the gradient, VX_NORM_L1 or VX_NORM_L2.
[out]outputThe binary output image in VX_DF_IMAGE_U1 or VX_DF_IMAGE_U8 format with values either 0 and 1 (VX_DF_IMAGE_U1), or 0 and 255 (VX_DF_IMAGE_U8).
Returns
A vx_status_e enumeration.
Return values
VX_SUCCESSSuccess
*An error occurred. See vx_status_e.

◆ vxuChannelCombine()

VX_API_ENTRY vx_status VX_API_CALL vxuChannelCombine ( vx_context  context,
vx_image  plane0,
vx_image  plane1,
vx_image  plane2,
vx_image  plane3,
vx_image  output 
)

[Immediate] Invokes an immediate Channel Combine.

Parameters
[in]contextThe reference to the overall context.
[in]plane0The plane that forms channel 0. Must be VX_DF_IMAGE_U8.
[in]plane1The plane that forms channel 1. Must be VX_DF_IMAGE_U8.
[in]plane2[optional] The plane that forms channel 2. Must be VX_DF_IMAGE_U8.
[in]plane3[optional] The plane that forms channel 3. Must be VX_DF_IMAGE_U8.
[out]outputThe output image.
Returns
A vx_status_e enumeration.
Return values
VX_SUCCESSSuccess
*An error occurred. See vx_status_e.

◆ vxuChannelExtract()

VX_API_ENTRY vx_status VX_API_CALL vxuChannelExtract ( vx_context  context,
vx_image  input,
vx_enum  channel,
vx_image  output 
)

[Immediate] Invokes an immediate Channel Extract.

Parameters
[in]contextThe reference to the overall context.
[in]inputThe input image. Must be one of the defined vx_df_image_e multi-channel formats.
[in]channelThe vx_channel_e enumeration to extract.
[out]outputThe output image. Must be VX_DF_IMAGE_U8.
Returns
A vx_status_e enumeration.
Return values
VX_SUCCESSSuccess
*An error occurred. See vx_status_e.

◆ vxuColorConvert()

VX_API_ENTRY vx_status VX_API_CALL vxuColorConvert ( vx_context  context,
vx_image  input,
vx_image  output 
)

[Immediate] Invokes an immediate Color Conversion.

Parameters
[in]contextThe reference to the overall context.
[in]inputThe input image.
[out]outputThe output image.
Returns
A vx_status_e enumeration.
Return values
VX_SUCCESSSuccess
*An error occurred. See vx_status_e.

◆ vxuConvertDepth()

VX_API_ENTRY vx_status VX_API_CALL vxuConvertDepth ( vx_context  context,
vx_image  input,
vx_image  output,
vx_enum  policy,
vx_int32  shift 
)

[Immediate] Converts the input images bit-depth into the output image.

Parameters
[in]contextThe reference to the overall context.
[in]inputThe input image.
[out]outputThe output image.
[in]policyA VX_TYPE_ENUM of the vx_convert_policy_e enumeration.
[in]shiftA scalar containing a VX_TYPE_INT32 of the shift value.
Returns
A vx_status_e enumeration.
Return values
VX_SUCCESSSuccess
*An error occurred. See vx_status_e..

◆ vxuConvolve()

VX_API_ENTRY vx_status VX_API_CALL vxuConvolve ( vx_context  context,
vx_image  input,
vx_convolution  conv,
vx_image  output 
)

[Immediate] Computes a convolution on the input image with the supplied matrix.

Parameters
[in]contextThe reference to the overall context.
[in]inputThe input image in VX_DF_IMAGE_U8 format.
[in]convThe vx_int16 convolution matrix.
[out]outputThe output image in VX_DF_IMAGE_U8 or VX_DF_IMAGE_S16 format.
Returns
A vx_status_e enumeration.
Return values
VX_SUCCESSSuccess
*An error occurred. See vx_status_e.

◆ vxuCopy()

VX_API_ENTRY vx_status VX_API_CALL vxuCopy ( vx_context  context,
vx_reference  input,
vx_reference  output 
)

[Immediate] Copy data from one object to another.

Parameters
[in]contextThe reference to the overall context.
[in]inputThe input data object.
[out]outputThe output data object.
Returns
A vx_status_e enumeration.
Return values
VX_SUCCESSSuccess
*An error occurred. See vx_status_e.

◆ vxuDilate3x3()

VX_API_ENTRY vx_status VX_API_CALL vxuDilate3x3 ( vx_context  context,
vx_image  input,
vx_image  output 
)

[Immediate] Dilates an image by a 3x3 window.

Parameters
[in]contextThe reference to the overall context.
[in]inputThe input image in VX_DF_IMAGE_U8 or VX_DF_IMAGE_U1 format.
[out]outputThe output image in VX_DF_IMAGE_U8 or VX_DF_IMAGE_U1 format, which must have the same dimensions and type as the input image.
Returns
A vx_status_e enumeration.
Return values
VX_SUCCESSSuccess
*An error occurred. See vx_status_e.

◆ vxuEqualizeHist()

VX_API_ENTRY vx_status VX_API_CALL vxuEqualizeHist ( vx_context  context,
vx_image  input,
vx_image  output 
)

[Immediate] Equalizes the Histogram of a grayscale image.

Parameters
[in]contextThe reference to the overall context.
[in]inputThe grayscale input image in VX_DF_IMAGE_U8
[out]outputThe grayscale output image of type VX_DF_IMAGE_U8 with equalized brightness and contrast.
Returns
A vx_status_e enumeration.
Return values
VX_SUCCESSSuccess
*An error occurred. See vx_status_e.

◆ vxuErode3x3()

VX_API_ENTRY vx_status VX_API_CALL vxuErode3x3 ( vx_context  context,
vx_image  input,
vx_image  output 
)

[Immediate] Erodes an image by a 3x3 window.

Parameters
[in]contextThe reference to the overall context.
[in]inputThe input image in VX_DF_IMAGE_U8 or VX_DF_IMAGE_U1 format.
[out]outputThe output image in VX_DF_IMAGE_U8 or VX_DF_IMAGE_U1 format, which must have the same dimensions and type as the input image.
Returns
A vx_status_e enumeration.
Return values
VX_SUCCESSSuccess
*An error occurred. See vx_status_e.

◆ vxuFastCorners()

VX_API_ENTRY vx_status VX_API_CALL vxuFastCorners ( vx_context  context,
vx_image  input,
vx_scalar  strength_thresh,
vx_bool  nonmax_suppression,
vx_array  corners,
vx_scalar  num_corners 
)

[Immediate] Computes corners on an image using FAST algorithm and produces the array of feature points.

Parameters
[in]contextThe reference to the overall context.
[in]inputThe input VX_DF_IMAGE_U8 image.
[in]strength_threshThreshold on difference between intensity of the central pixel and pixels on Bresenham's circle of radius 3 (VX_TYPE_FLOAT32 scalar), with a value in the range of 0.0 $\le$ strength_thresh < 256.0. Any fractional value will be truncated to an integer.
[in]nonmax_suppressionIf true, non-maximum suppression is applied to detected corners before being places in the vx_array of VX_TYPE_KEYPOINT structs.
[out]cornersOutput corner vx_array of VX_TYPE_KEYPOINT. The order of the keypoints in this array is implementation dependent.
[out]num_corners[optional] The total number of detected corners in image. Use a VX_TYPE_SIZE scalar.
Returns
A vx_status_e enumeration.
Return values
VX_SUCCESSSuccess
*An error occurred. See vx_status_e.

◆ vxuGaussian3x3()

VX_API_ENTRY vx_status VX_API_CALL vxuGaussian3x3 ( vx_context  context,
vx_image  input,
vx_image  output 
)

[Immediate] Computes a gaussian filter on the image by a 3x3 window.

Parameters
[in]contextThe reference to the overall context.
[in]inputThe input image in VX_DF_IMAGE_U8 format.
[out]outputThe output image in VX_DF_IMAGE_U8 format.
Returns
A vx_status_e enumeration.
Return values
VX_SUCCESSSuccess
*An error occurred. See vx_status_e.

◆ vxuGaussianPyramid()

VX_API_ENTRY vx_status VX_API_CALL vxuGaussianPyramid ( vx_context  context,
vx_image  input,
vx_pyramid  gaussian 
)

[Immediate] Computes a Gaussian pyramid from an input image.

Parameters
[in]contextThe reference to the overall context.
[in]inputThe input image in VX_DF_IMAGE_U8
[out]gaussianThe Gaussian pyramid with VX_DF_IMAGE_U8 to construct.
Returns
A vx_status_e enumeration.
Return values
VX_SUCCESSSuccess
*An error occurred. See vx_status_e.

◆ vxuHalfScaleGaussian()

VX_API_ENTRY vx_status VX_API_CALL vxuHalfScaleGaussian ( vx_context  context,
vx_image  input,
vx_image  output,
vx_int32  kernel_size 
)

[Immediate] Performs a Gaussian Blur on an image then half-scales it. The interpolation mode used is nearest-neighbor.

Parameters
[in]contextThe reference to the overall context.
[in]inputThe input VX_DF_IMAGE_U8 image.
[out]outputThe output VX_DF_IMAGE_U8 image.
[in]kernel_sizeThe input size of the Gaussian filter. Supported values are 1, 3 and 5.
Returns
A vx_status_e enumeration.
Return values
VX_SUCCESSSuccess
*An error occurred. See vx_status_e.

◆ vxuHarrisCorners()

VX_API_ENTRY vx_status VX_API_CALL vxuHarrisCorners ( vx_context  context,
vx_image  input,
vx_scalar  strength_thresh,
vx_scalar  min_distance,
vx_scalar  sensitivity,
vx_int32  gradient_size,
vx_int32  block_size,
vx_array  corners,
vx_scalar  num_corners 
)

[Immediate] Computes the Harris Corners over an image and produces the array of scored points.

Parameters
[in]contextThe reference to the overall context.
[in]inputThe input VX_DF_IMAGE_U8 image.
[in]strength_threshThe VX_TYPE_FLOAT32 minimum threshold which to eliminate Harris Corner scores (computed using the normalized Sobel kernel).
[in]min_distanceThe VX_TYPE_FLOAT32 radial Euclidean distance for non-maximum suppression.
[in]sensitivityThe VX_TYPE_FLOAT32 scalar sensitivity threshold $ k $ from the Harris-Stephens equation.
[in]gradient_sizeThe gradient window size to use on the input. The implementation must support at least 3, 5, and 7.
[in]block_sizeThe block window size used to compute the harris corner score. The implementation must support at least 3, 5, and 7.
[out]cornersThe array of VX_TYPE_KEYPOINT structs. The order of the keypoints in this array is implementation dependent.
[out]num_corners[optional] The total number of detected corners in image. Use a VX_TYPE_SIZE scalar
Returns
A vx_status_e enumeration.
Return values
VX_SUCCESSSuccess
*An error occurred. See vx_status_e.

◆ vxuHistogram()

VX_API_ENTRY vx_status VX_API_CALL vxuHistogram ( vx_context  context,
vx_image  input,
vx_distribution  distribution 
)

[Immediate] Generates a distribution from an image.

Parameters
[in]contextThe reference to the overall context.
[in]inputThe input image in VX_DF_IMAGE_U8
[out]distributionThe output distribution.
Returns
A vx_status_e enumeration.
Return values
VX_SUCCESSSuccess
*An error occurred. See vx_status_e.

◆ vxuHOGCells()

VX_API_ENTRY vx_status VX_API_CALL vxuHOGCells ( vx_context  context,
vx_image  input,
vx_int32  cell_width,
vx_int32  cell_height,
vx_int32  num_bins,
vx_tensor  magnitudes,
vx_tensor  bins 
)

[Immediate] Performs cell calculations for the average gradient magnitude and gradient orientation histograms.

Firstly, the gradient magnitude and gradient orientation are computed for each pixel in the input image. Two 1-D centred, point discrete derivative masks are applied to the input image in the horizontal and vertical directions.

\[ M_h = [-1, 0, 1] \]

and

\[ M_v = [-1, 0, 1]^T \]

$G_v$ is the result of applying mask $M_v$ to the input image, and $G_h$ is the result of applying mask $M_h$ to the input image. The border mode used for the gradient calculation is implementation dependent. Its behavior should be similar to VX_BORDER_UNDEFINED. The gradient magnitudes and gradient orientations for each pixel are then calculated in the following manner.

\[ G(x,y) = \sqrt{G_v(x,y)^2 + G_h(x,y)^2} \]

\[ \theta(x,y) = arctan(G_v(x,y), G_h(x,y)) \]

where $arctan(v, h)$ is $ tan^{-1}(v/h)$ when $h!=0$,

$ -pi/2 $ if $v<0$ and $h==0$,

$ pi/2 $ if $v>0$ and $h==0$

and $ 0 $ if $v==0$ and $h==0$

Secondly, the gradient magnitudes and orientations are used to compute the bins output tensor and optional magnitudes output tensor. These tensors are computed on a cell level where the cells are rectangular in shape. The magnitudes tensor contains the average gradient magnitude for each cell.

\[magnitudes(c) = \frac{1}{(cell\_width * cell\_height)}\sum\limits_{w=0}^{cell\_width} \sum\limits_{h=0}^{cell\_height} G_c(w,h)\]

where $G_c$ is the gradient magnitudes related to cell $c$. The bins tensor contains histograms of gradient orientations for each cell. The gradient orientations at each pixel range from 0 to 360 degrees. These are quantised into a set of histogram bins based on the num_bins parameter. Each pixel votes for a specific cell histogram bin based on its gradient orientation. The vote itself is the pixel's gradient magnitude.

\[bins(c, n) = \sum\limits_{w=0}^{cell\_width} \sum\limits_{h=0}^{cell\_height} G_c(w,h) * 1[B_c(w, h, num\_bins) == n]\]

where $B_c$ produces the histogram bin number based on the gradient orientation of the pixel at location ( $w$, $h$) in cell $c$ based on the $num\_bins$ and

\[1[B_c(w, h, num\_bins) == n]\]

is a delta-function with value 1 when $B_c(w, h, num\_bins) == n$ or 0 otherwise.

Parameters
[in]contextThe reference to the overall context.
[in]inputThe input image of type VX_DF_IMAGE_U8.
[in]cell_widthThe histogram cell width of type VX_TYPE_INT32.
[in]cell_heightThe histogram cell height of type VX_TYPE_INT32.
[in]num_binsThe histogram size of type VX_TYPE_INT32.
[out]magnitudesThe output average gradient magnitudes per cell of vx_tensor of type VX_TYPE_INT16 of size $ [floor(image_{width}/cell_{width}) ,floor(image_{height}/cell_{height}) ] $.
[out]binsThe output gradient orientation histograms per cell of vx_tensor of type VX_TYPE_INT16 of size $ [floor(image_{width}/cell_{width}) ,floor(image_{height}/cell_{height}), num_{bins}] $.
Returns
A vx_status_e enumeration.
Return values
VX_SUCCESSSuccess
*An error occurred. See vx_status_e.

◆ vxuHOGFeatures()

VX_API_ENTRY vx_status VX_API_CALL vxuHOGFeatures ( vx_context  context,
vx_image  input,
vx_tensor  magnitudes,
vx_tensor  bins,
const vx_hog_t params,
vx_size  hog_param_size,
vx_tensor  features 
)

[Immediate] Computes Histogram of Oriented Gradients features for the W1xW2 window in a sliding window fashion over the whole input image.

Firstly if a magnitudes tensor is provided the cell histograms in the bins tensor are normalised by the average cell gradient magnitudes.

\[bins(c,n) = \frac{bins(c,n)}{magnitudes(c)}\]

To account for changes in illumination and contrast the cell histograms must be locally normalized which requires grouping the cell histograms together into larger spatially connected blocks. Blocks are rectangular grids represented by three parameters: the number of cells per block, the number of pixels per cell, and the number of bins per cell histogram. These blocks typically overlap, meaning that each cell histogram contributes more than once to the final descriptor. To normalize a block its cell histograms $h$ are grouped together to form a vector $v = [h_1, h_2, h_3, ... , h_n]$. This vector is normalised using L2-Hys which means performing L2-norm on this vector; clipping the result (by limiting the maximum values of v to be threshold) and renormalizing again. If the threshold is equal to zero then L2-Hys normalization is not performed.

\[L2norm(v) = \frac{v}{\sqrt{\|v\|_2^2 + \epsilon^2}}\]

where $ \|v\|_k $ be its k-norm for k=1, 2, and $ \epsilon $ be a small constant. For a specific window its HOG descriptor is then the concatenated vector of the components of the normalized cell histograms from all of the block regions contained in the window. The W1xW2 window starting position is at coordinates 0x0. If the input image has dimensions that are not an integer multiple of W1xW2 blocks with the specified stride, then the last positions that contain only a partial W1xW2 window will be calculated with the remaining part of the W1xW2 window padded with zeroes. The Window W1xW2 must also have a size so that it contains an integer number of cells, otherwise the node is not well-defined. The final output tensor will contain HOG descriptors equal to the number of windows in the input image. The output features tensor has 3 dimensions, given by:

\[[ (floor((image_{width}-window_{width})/window_{stride}) + 1),\]

\[ (floor((image_{height}-window_{height})/window_{stride}) + 1),\]

\[ floor((window_{width} - block_{width})/block_{stride} + 1) * floor((window_{height} - block_{height})/block_{stride} + 1) *\]

\[ (((block_{width} * block_{height}) / (cell_{width} * cell_{height})) * num_{bins})] \]

See vxCreateTensor and vxCreateVirtualTensor. The output tensor from this function may be very large. For this reason, is it not recommended that this "immediate mode" version of the function be used. The preferred method to perform this function is as graph node with a virtual tensor as the output.

Parameters
[in]contextThe reference to the overall context.
[in]inputThe input image of type VX_DF_IMAGE_U8.
[in]magnitudesThe averge gradient magnitudes per cell of vx_tensor of type VX_TYPE_INT16. It is the output of vxuHOGCells.
[in]binsThe gradient orientation histogram per cell of vx_tensor of type VX_TYPE_INT16. It is the output of vxuHOGCells.
[in]paramsThe parameters of type vx_hog_t.
[in]hog_param_sizeSize of vx_hog_t in bytes.
[out]featuresThe output HOG features of vx_tensor of type VX_TYPE_INT16.
Returns
A vx_status_e enumeration.
Return values
VX_SUCCESSSuccess
*An error occurred. See vx_status_e.

◆ vxuHoughLinesP()

VX_API_ENTRY vx_status VX_API_CALL vxuHoughLinesP ( vx_context  context,
vx_image  input,
const vx_hough_lines_p_t params,
vx_array  lines_array,
vx_scalar  num_lines 
)

[Immediate] Finds the Probabilistic Hough Lines detected in the input binary image, each line is stored in the output array as a set of points (x1, y1, x2, y2) .

Some implementations of the algorithm may have a random or non-deterministic element. If the target application is in a safety-critical environment this should be borne in mind and steps taken in the implementation, the application or both to achieve the level of determinism required by the system design.

Parameters
[in]contextThe reference to the overall context.
[in]inputA single channel binary source image of type VX_DF_IMAGE_U8 or VX_DF_IMAGE_U1.
[in]paramsparameters of the struct vx_hough_lines_p_t
[out]lines_arraylines_array contains array of lines, see vx_line2d_t The order of lines in implementation dependent
[out]num_lines[optional] The total number of detected lines in image. Use a VX_TYPE_SIZE scalar
Returns
A vx_status_e enumeration.
Return values
VX_SUCCESSSuccess
*An error occurred. See vx_status_e.

◆ vxuIntegralImage()

VX_API_ENTRY vx_status VX_API_CALL vxuIntegralImage ( vx_context  context,
vx_image  input,
vx_image  output 
)

[Immediate] Computes the integral image of the input.

Parameters
[in]contextThe reference to the overall context.
[in]inputThe input image in VX_DF_IMAGE_U8 format.
[out]outputThe output image in VX_DF_IMAGE_U32 format.
Returns
A vx_status_e enumeration.
Return values
VX_SUCCESSSuccess
*An error occurred. See vx_status_e.

◆ vxuLaplacianPyramid()

VX_API_ENTRY vx_status VX_API_CALL vxuLaplacianPyramid ( vx_context  context,
vx_image  input,
vx_pyramid  laplacian,
vx_image  output 
)

[Immediate] Computes a Laplacian pyramid from an input image.

Parameters
[in]contextThe reference to the overall context.
[in]inputThe input image in VX_DF_IMAGE_U8 or VX_DF_IMAGE_S16 format.
[out]laplacianThe Laplacian pyramid with VX_DF_IMAGE_S16 to construct.
[out]outputThe lowest resolution image in VX_DF_IMAGE_U8 or VX_DF_IMAGE_S16 format necessary to reconstruct the input image from the pyramid. The output image format should be same as input image format.
See also
group_pyramid
Returns
A vx_status enumeration.
Return values
VX_SUCCESSSuccess.
*An error occured. See vx_status_e

◆ vxuLaplacianReconstruct()

VX_API_ENTRY vx_status VX_API_CALL vxuLaplacianReconstruct ( vx_context  context,
vx_pyramid  laplacian,
vx_image  input,
vx_image  output 
)

[Immediate] Reconstructs an image from a Laplacian Image pyramid.

Parameters
[in]contextThe reference to the overall context.
[in]laplacianThe Laplacian pyramid with VX_DF_IMAGE_S16 format.
[in]inputThe lowest resolution image in VX_DF_IMAGE_U8 or VX_DF_IMAGE_S16 format for the Laplacian pyramid.
[out]outputThe output image in VX_DF_IMAGE_U8 or VX_DF_IMAGE_S16 format with the highest possible resolution reconstructed from the Laplacian pyramid. The output image format should be same as input image format.
See also
group_pyramid
Returns
A vx_status enumeration.
Return values
VX_SUCCESSSuccess.
*An error occured. See vx_status_e

◆ vxuLBP()

VX_API_ENTRY vx_status VX_API_CALL vxuLBP ( vx_context  context,
vx_image  in,
vx_enum  format,
vx_int8  kernel_size,
vx_image  out 
)

[Immediate] The function extracts LBP image from an input image

Parameters
[in]contextThe reference to the overall context.
[in]inAn input image in vx_image. Or $ SrcImg$ in the equations. the image is of type VX_DF_IMAGE_U8
[in]formatA variation of LBP like original LBP and mLBP. see vx_lbp_format_e
[in]kernel_sizeKernel size. Only size of 3 and 5 are supported
[out]outAn output image in vx_image.Or $ DstImg$ in the equations. the image is of type VX_DF_IMAGE_U8
Returns
A vx_status_e enumeration.
Return values
VX_SUCCESSSuccess
*An error occurred. See vx_status_e.

◆ vxuMagnitude()

VX_API_ENTRY vx_status VX_API_CALL vxuMagnitude ( vx_context  context,
vx_image  grad_x,
vx_image  grad_y,
vx_image  mag 
)

[Immediate] Invokes an immediate Magnitude.

Parameters
[in]contextThe reference to the overall context.
[in]grad_xThe input x image. This must be in VX_DF_IMAGE_S16 format.
[in]grad_yThe input y image. This must be in VX_DF_IMAGE_S16 format.
[out]magThe magnitude image. This will be in VX_DF_IMAGE_S16 format.
Returns
A vx_status_e enumeration.
Return values
VX_SUCCESSSuccess
*An error occurred. See vx_status_e.

◆ vxuMatchTemplate()

VX_API_ENTRY vx_status VX_API_CALL vxuMatchTemplate ( vx_context  context,
vx_image  src,
vx_image  templateImage,
vx_enum  matchingMethod,
vx_image  output 
)

[Immediate] The function compares an image template against overlapped image regions.

The detailed equation to the matching can be found in vx_comp_metric_e. The output of the template matching node is a comparison map as described in vx_comp_metric_e. The Node have a limitation on the template image size (width*height). It should not be larger then 65535. If the valid region of the template image is smaller than the entire template image, the result in the destination image is implementation-dependent.

Parameters
[in]contextThe reference to the overall context.
[in]srcThe input image of type VX_DF_IMAGE_U8.
[in]templateImageSearched template of type VX_DF_IMAGE_U8.
[in]matchingMethodattribute specifying the comparison method vx_comp_metric_e. This function support only VX_COMPARE_CCORR_NORM and VX_COMPARE_L2.
[out]outputMap of comparison results. The output is an image of type VX_DF_IMAGE_S16
Returns
A vx_status_e enumeration.
Return values
VX_SUCCESSSuccess
*An error occurred. See vx_status_e.

◆ vxuMax()

VX_API_ENTRY vx_status VX_API_CALL vxuMax ( vx_context  context,
vx_image  in1,
vx_image  in2,
vx_image  out 
)

[Immediate] Computes pixel-wise maximum values between two images.

Parameters
[in]contextThe reference to the overall context.
[in]in1The first input image. Must be of type VX_DF_IMAGE_U8 or VX_DF_IMAGE_S16.
[in]in2The second input image. Must be of type VX_DF_IMAGE_U8 or VX_DF_IMAGE_S16.
[out]outThe output image which will hold the result of max.
Returns
A vx_status_e enumeration.
Return values
VX_SUCCESSSuccess
*An error occurred. See vx_status_e.

◆ vxuMeanStdDev()

VX_API_ENTRY vx_status VX_API_CALL vxuMeanStdDev ( vx_context  context,
vx_image  input,
vx_float32 mean,
vx_float32 stddev 
)

[Immediate] Computes the mean value and optionally the standard deviation.

Parameters
[in]contextThe reference to the overall context.
[in]inputThe input image. VX_DF_IMAGE_U8 and VX_DF_IMAGE_U1 are supported.
[out]meanThe average pixel value.
[out]stddev[optional] The standard deviation of the pixel values.
Returns
A vx_status_e enumeration.
Return values
VX_SUCCESSSuccess
*An error occurred. See vx_status_e.

◆ vxuMedian3x3()

VX_API_ENTRY vx_status VX_API_CALL vxuMedian3x3 ( vx_context  context,
vx_image  input,
vx_image  output 
)

[Immediate] Computes a median filter on the image by a 3x3 window.

Parameters
[in]contextThe reference to the overall context.
[in]inputThe input image in VX_DF_IMAGE_U8 or VX_DF_IMAGE_U1 format.
[out]outputThe output image in VX_DF_IMAGE_U8 or VX_DF_IMAGE_U1 format, which must have the same dimensions and type as the input image.
Returns
A vx_status_e enumeration.
Return values
VX_SUCCESSSuccess
*An error occurred. See vx_status_e.

◆ vxuMin()

VX_API_ENTRY vx_status VX_API_CALL vxuMin ( vx_context  context,
vx_image  in1,
vx_image  in2,
vx_image  out 
)

[Immediate] Computes pixel-wise minimum values between two images.

Parameters
[in]contextThe reference to the overall context.
[in]in1The first input image. Must be of type VX_DF_IMAGE_U8 or VX_DF_IMAGE_S16.
[in]in2The second input image. Must be of type VX_DF_IMAGE_U8 or VX_DF_IMAGE_S16.
[out]outThe output image which will hold the result of min.
Returns
A vx_status_e enumeration.
Return values
VX_SUCCESSSuccess
*An error occurred. See vx_status_e.

◆ vxuMinMaxLoc()

VX_API_ENTRY vx_status VX_API_CALL vxuMinMaxLoc ( vx_context  context,
vx_image  input,
vx_scalar  minVal,
vx_scalar  maxVal,
vx_array  minLoc,
vx_array  maxLoc,
vx_scalar  minCount,
vx_scalar  maxCount 
)

[Immediate] Computes the minimum and maximum values of the image.

Parameters
[in]contextThe reference to the overall context.
[in]inputThe input image in VX_DF_IMAGE_U8 or VX_DF_IMAGE_S16 format.
[out]minValThe minimum value in the image, which corresponds to the type of the input.
[out]maxValThe maximum value in the image, which corresponds to the type of the input.
[out]minLoc[optional] The minimum VX_TYPE_COORDINATES2D locations. If the input image has several minimums, the kernel will return up to the capacity of the array.
[out]maxLoc[optional] The maximum VX_TYPE_COORDINATES2D locations. If the input image has several maximums, the kernel will return up to the capacity of the array.
[out]minCount[optional] The total number of detected minimums in image. Use a VX_TYPE_SIZE scalar.
[out]maxCount[optional] The total number of detected maximums in image. Use a VX_TYPE_SIZE scalar.
Returns
A vx_status_e enumeration.
Return values
VX_SUCCESSSuccess
*An error occurred. See vx_status_e.

◆ vxuMultiply()

VX_API_ENTRY vx_status VX_API_CALL vxuMultiply ( vx_context  context,
vx_image  in1,
vx_image  in2,
vx_float32  scale,
vx_enum  overflow_policy,
vx_enum  rounding_policy,
vx_image  out 
)

[Immediate] Performs elementwise multiplications on pixel values in the input images and a scale.

Parameters
[in]contextThe reference to the overall context.
[in]in1A VX_DF_IMAGE_U8 or VX_DF_IMAGE_S16 input image.
[in]in2A VX_DF_IMAGE_U8 or VX_DF_IMAGE_S16 input image.
[in]scaleA non-negative VX_TYPE_FLOAT32 multiplied to each product before overflow handling.
[in]overflow_policyA vx_convert_policy_e enumeration.
[in]rounding_policyA vx_round_policy_e enumeration.
[out]outThe output image in VX_DF_IMAGE_U8 or VX_DF_IMAGE_S16 format.
Returns
A vx_status_e enumeration.
Return values
VX_SUCCESSSuccess
*An error occurred. See vx_status_e.

◆ vxuNonLinearFilter()

VX_API_ENTRY vx_status VX_API_CALL vxuNonLinearFilter ( vx_context  context,
vx_enum  function,
vx_image  input,
vx_matrix  mask,
vx_image  output 
)

[Immediate] Performs Non-linear Filtering.

Parameters
[in]contextThe reference to the overall context.
[in]functionThe non-linear filter function. See vx_non_linear_filter_e.
[in]inputThe input image in VX_DF_IMAGE_U8 or VX_DF_IMAGE_U1 format.
[in]maskThe mask to be applied to the Non-linear function. VX_MATRIX_ORIGIN attribute is used to place the mask appropriately when computing the resulting image. See vxCreateMatrixFromPattern and vxCreateMatrixFromPatternAndOrigin.
[out]outputThe output image in VX_DF_IMAGE_U8 or VX_DF_IMAGE_U1 format, which must have the same dimensions and type as the input image.
Returns
A vx_status_e enumeration.
Return values
VX_SUCCESSSuccess
*An error occurred. See vx_status_e.

◆ vxuNonMaxSuppression()

VX_API_ENTRY vx_status VX_API_CALL vxuNonMaxSuppression ( vx_context  context,
vx_image  input,
vx_image  mask,
vx_int32  win_size,
vx_image  output 
)

[Immediate] Performs Non-Maxima Suppression on an image, producing an image of the same type.

Parameters
[in]contextThe reference to the overall context.
[in]inputThe input image in VX_DF_IMAGE_U8 or VX_DF_IMAGE_S16 format.
[in]mask[optional] Constrict suppression to a ROI. The mask image is of type VX_DF_IMAGE_U8 or VX_DF_IMAGE_U1 and must be the same dimensions as the input image.
[in]win_sizeThe size of window over which to perform the localized non-maxima suppression. Must be odd, and less than or equal to the smallest dimension of the input image.
[out]outputThe output image, of the same type as the input, that has been non-maxima suppressed.
Returns
A vx_status_e enumeration.
Return values
VX_SUCCESSSuccess
*An error occurred. See vx_status_e.

◆ vxuNot()

VX_API_ENTRY vx_status VX_API_CALL vxuNot ( vx_context  context,
vx_image  input,
vx_image  output 
)

[Immediate] Computes the bitwise not of an image.

Parameters
[in]contextThe reference to the overall context.
[in]inputA VX_DF_IMAGE_U8 or VX_DF_IMAGE_U1 input image.
[out]outputThe VX_DF_IMAGE_U8 or VX_DF_IMAGE_U1 output image, which must have the same dimensions and type as the input image.
Returns
A vx_status_e enumeration.
Return values
VX_SUCCESSSuccess
*An error occurred. See vx_status_e.

◆ vxuOpticalFlowPyrLK()

VX_API_ENTRY vx_status VX_API_CALL vxuOpticalFlowPyrLK ( vx_context  context,
vx_pyramid  old_images,
vx_pyramid  new_images,
vx_array  old_points,
vx_array  new_points_estimates,
vx_array  new_points,
vx_enum  termination,
vx_scalar  epsilon,
vx_scalar  num_iterations,
vx_scalar  use_initial_estimate,
vx_size  window_dimension 
)

[Immediate] Computes an optical flow on two images.

Parameters
[in]contextThe reference to the overall context.
[in]old_imagesInput of first (old) image pyramid in VX_DF_IMAGE_U8.
[in]new_imagesInput of destination (new) image pyramid in VX_DF_IMAGE_U8
[in]old_pointsan array of key points in a vx_array of VX_TYPE_KEYPOINT those key points are defined at the old_images high resolution pyramid
[in]new_points_estimatesan array of estimation on what is the output key points in a vx_array of VX_TYPE_KEYPOINT those keypoints are defined at the new_images high resolution pyramid
[out]new_pointsan output array of key points in a vx_array of VX_TYPE_KEYPOINT those key points are defined at the new_images high resolution pyramid
[in]terminationtermination can be VX_TERM_CRITERIA_ITERATIONS or VX_TERM_CRITERIA_EPSILON or VX_TERM_CRITERIA_BOTH
[in]epsilonis the vx_float32 error for terminating the algorithm
[in]num_iterationsis the number of iterations. Use a VX_TYPE_UINT32 scalar.
[in]use_initial_estimateCan be set to either vx_false_e or vx_true_e.
[in]window_dimensionThe size of the window on which to perform the algorithm. See VX_CONTEXT_OPTICAL_FLOW_MAX_WINDOW_DIMENSION
Returns
A vx_status_e enumeration.
Return values
VX_SUCCESSSuccess
*An error occurred. See vx_status_e.

◆ vxuOr()

VX_API_ENTRY vx_status VX_API_CALL vxuOr ( vx_context  context,
vx_image  in1,
vx_image  in2,
vx_image  out 
)

[Immediate] Computes the bitwise inclusive-or between two images.

Parameters
[in]contextThe reference to the overall context.
[in]in1A VX_DF_IMAGE_U8 or VX_DF_IMAGE_U1 input image.
[in]in2A VX_DF_IMAGE_U8 or VX_DF_IMAGE_U1 input image.
[out]outThe VX_DF_IMAGE_U8 or VX_DF_IMAGE_U1 output image, which must have the same dimensions and type as the input images.
Returns
A vx_status_e enumeration.
Return values
VX_SUCCESSSuccess
*An error occurred. See vx_status_e.

◆ vxuPhase()

VX_API_ENTRY vx_status VX_API_CALL vxuPhase ( vx_context  context,
vx_image  grad_x,
vx_image  grad_y,
vx_image  orientation 
)

[Immediate] Invokes an immediate Phase.

Parameters
[in]contextThe reference to the overall context.
[in]grad_xThe input x image. This must be in VX_DF_IMAGE_S16 format.
[in]grad_yThe input y image. This must be in VX_DF_IMAGE_S16 format.
[out]orientationThe phase image. This will be in VX_DF_IMAGE_U8 format.
Returns
A vx_status_e enumeration.
Return values
VX_SUCCESSSuccess
*An error occurred. See vx_status_e.

◆ vxuRemap()

VX_API_ENTRY vx_status VX_API_CALL vxuRemap ( vx_context  context,
vx_image  input,
vx_remap  table,
vx_enum  policy,
vx_image  output 
)

[Immediate] Remaps an output image from an input image.

Parameters
[in]contextThe reference to the overall context.
[in]inputThe input VX_DF_IMAGE_U8 image.
[in]tableThe remap table object.
[in]policyThe interpolation policy from vx_interpolation_type_e. VX_INTERPOLATION_AREA is not supported.
[out]outputThe output VX_DF_IMAGE_U8 image.
Returns
A vx_status_e enumeration.

◆ vxuScaleImage()

VX_API_ENTRY vx_status VX_API_CALL vxuScaleImage ( vx_context  context,
vx_image  src,
vx_image  dst,
vx_enum  type 
)

[Immediate] Scales an input image to an output image.

Parameters
[in]contextThe reference to the overall context.
[in]srcThe source image of type VX_DF_IMAGE_U8 or VX_DF_IMAGE_U1.
[out]dstThe destination image of type VX_DF_IMAGE_U8 or VX_DF_IMAGE_U1. Must be of the same format as the input image.
[in]typeThe interpolation type.
See also
vx_interpolation_type_e.
Returns
A vx_status_e enumeration.
Return values
VX_SUCCESSSuccess
*An error occurred. See vx_status_e.

◆ vxuSobel3x3()

VX_API_ENTRY vx_status VX_API_CALL vxuSobel3x3 ( vx_context  context,
vx_image  input,
vx_image  output_x,
vx_image  output_y 
)

[Immediate] Invokes an immediate Sobel 3x3.

Parameters
[in]contextThe reference to the overall context.
[in]inputThe input image in VX_DF_IMAGE_U8 format.
[out]output_x[optional] The output gradient in the x direction in VX_DF_IMAGE_S16.
[out]output_y[optional] The output gradient in the y direction in VX_DF_IMAGE_S16.
Returns
A vx_status_e enumeration.
Return values
VX_SUCCESSSuccess
*An error occurred. See vx_status_e.

◆ vxuSubtract()

VX_API_ENTRY vx_status VX_API_CALL vxuSubtract ( vx_context  context,
vx_image  in1,
vx_image  in2,
vx_enum  policy,
vx_image  out 
)

[Immediate] Performs arithmetic subtraction on pixel values in the input images.

Parameters
[in]contextThe reference to the overall context.
[in]in1A VX_DF_IMAGE_U8 or VX_DF_IMAGE_S16 input image, the minuend.
[in]in2A VX_DF_IMAGE_U8 or VX_DF_IMAGE_S16 input image, the subtrahend.
[in]policyA vx_convert_policy_e enumeration.
[out]outThe output image in VX_DF_IMAGE_U8 or VX_DF_IMAGE_S16 format.
Returns
A vx_status_e enumeration.
Return values
VX_SUCCESSSuccess
*An error occurred. See vx_status_e.

◆ vxuTableLookup()

VX_API_ENTRY vx_status VX_API_CALL vxuTableLookup ( vx_context  context,
vx_image  input,
vx_lut  lut,
vx_image  output 
)

[Immediate] Processes the image through the LUT.

Parameters
[in]contextThe reference to the overall context.
[in]inputThe input image in VX_DF_IMAGE_U8 or VX_DF_IMAGE_S16.
[in]lutThe LUT which is of type VX_TYPE_UINT8 if input image is VX_DF_IMAGE_U8 or VX_TYPE_INT16 if input image is VX_DF_IMAGE_S16.
[out]outputThe output image of the same size as the input image.
Returns
A vx_status_e enumeration.
Return values
VX_SUCCESSSuccess
*An error occurred. See vx_status_e.

◆ vxuTensorAdd()

VX_API_ENTRY vx_status VX_API_CALL vxuTensorAdd ( vx_context  context,
vx_tensor  input1,
vx_tensor  input2,
vx_enum  policy,
vx_tensor  output 
)

[Immediate] Performs arithmetic addition on element values in the input tensor data.

Parameters
[in]contextThe reference to the overall context.
[in]input1Input tensor data. Implementations must support input tensor data type VX_TYPE_INT16 with fixed_point_position 8, and tensor data types VX_TYPE_UINT8 and VX_TYPE_INT8, with fixed_point_position 0.
[in]input2Input tensor data. The dimensions and sizes of input2 match those of input1, unless the vx_tensor of one or more dimensions in input2 is 1. In this case, those dimensions are treated as if this tensor was expanded to match the size of the corresponding dimension of input1, and data was duplicated on all terms in that dimension. After this expansion, the dimensions will be equal. The data type must match the data type of Input1.
[in]policyA vx_convert_policy_e enumeration.
[out]outputThe output tensor data with the same dimensions as the input tensor data.
Returns
A vx_status_e enumeration.
Return values
VX_SUCCESSSuccess
*An error occurred. See vx_status_e.

◆ vxuTensorConvertDepth()

VX_API_ENTRY vx_status VX_API_CALL vxuTensorConvertDepth ( vx_context  context,
vx_tensor  input,
vx_enum  policy,
vx_scalar  norm,
vx_scalar  offset,
vx_tensor  output 
)

[Immediate] Performs a bit-depth conversion.

Parameters
[in]contextThe reference to the overall context.
[in]inputThe input tensor. Implementations must support input tensor data type VX_TYPE_INT16 with fixed_point_position 8, and tensor data types VX_TYPE_UINT8 and VX_TYPE_INT8, with fixed_point_position 0.
[in]policyA VX_TYPE_ENUM of the vx_convert_policy_e enumeration.
[in]normA scalar containing a VX_TYPE_FLOAT32 of the normalization value.
[in]offsetA scalar containing a VX_TYPE_FLOAT32 of the offset value subtracted before normalization.
[out]outputThe output tensor. Implementations must support input tensor data type VX_TYPE_INT16. with fixed_point_position 8. And VX_TYPE_UINT8 with fixed_point_position 0.
Returns
A vx_status_e enumeration.
Return values
VX_SUCCESSSuccess
*An error occurred. See vx_status_e.

◆ vxuTensorMatrixMultiply()

VX_API_ENTRY vx_status VX_API_CALL vxuTensorMatrixMultiply ( vx_context  context,
vx_tensor  input1,
vx_tensor  input2,
vx_tensor  input3,
const vx_tensor_matrix_multiply_params_t matrix_multiply_params,
vx_tensor  output 
)

[Immediate] Performs a generalized matrix multiplication.

Parameters
[in]contextThe reference to the overall context.
[in]input1The first input 2D tensor of type VX_TYPE_INT16 with fixed_point_pos 8, or tensor data types VX_TYPE_UINT8 or VX_TYPE_INT8, with fixed_point_pos 0.
[in]input2The second 2D tensor. Must be in the same data type as input1.
[in]input3The third 2D tensor. Must be in the same data type as input1. [optional].
[in]matrix_multiply_paramsMatrix multiply parameters, see vx_tensor_matrix_multiply_params_t .
[out]outputThe output 2D tensor. Must be in the same data type as input1. Output dimension must agree the formula in the description.
Returns
A vx_status_e enumeration.
Return values
VX_SUCCESSSuccess
*An error occurred. See vx_status_e.

◆ vxuTensorMultiply()

VX_API_ENTRY vx_status VX_API_CALL vxuTensorMultiply ( vx_context  context,
vx_tensor  input1,
vx_tensor  input2,
vx_scalar  scale,
vx_enum  overflow_policy,
vx_enum  rounding_policy,
vx_tensor  output 
)

[Immediate] Performs element wise multiplications on element values in the input tensor data with a scale.

Parameters
[in]contextThe reference to the overall context.
[in]input1Input tensor data. Implementations must support input tensor data type VX_TYPE_INT16 with fixed_point_position 8, and tensor data types VX_TYPE_UINT8 and VX_TYPE_INT8, with fixed_point_position 0.
[in]input2Input tensor data. The dimensions and sizes of input2 match those of input1, unless the vx_tensor of one or more dimensions in input2 is 1. In this case, those dimensions are treated as if this tensor was expanded to match the size of the corresponding dimension of input1, and data was duplicated on all terms in that dimension. After this expansion, the dimensions will be equal. The data type must match the data type of Input1.
[in]scaleA non-negative VX_TYPE_FLOAT32 multiplied to each product before overflow handling.
[in]overflow_policyA vx_convert_policy_e enumeration.
[in]rounding_policyA vx_round_policy_e enumeration.
[out]outputThe output tensor data with the same dimensions as the input tensor data.
Returns
A vx_status_e enumeration.
Return values
VX_SUCCESSSuccess
*An error occurred. See vx_status_e.

◆ vxuTensorSubtract()

VX_API_ENTRY vx_status VX_API_CALL vxuTensorSubtract ( vx_context  context,
vx_tensor  input1,
vx_tensor  input2,
vx_enum  policy,
vx_tensor  output 
)

[Immediate] Performs arithmetic subtraction on element values in the input tensor data.

Parameters
[in]contextThe reference to the overall context.
[in]input1Input tensor data. Implementations must support input tensor data type VX_TYPE_INT16 with fixed_point_position 8, and tensor data types VX_TYPE_UINT8 and VX_TYPE_INT8, with fixed_point_position 0.
[in]input2Input tensor data. The dimensions and sizes of input2 match those of input1, unless the vx_tensor of one or more dimensions in input2 is 1. In this case, those dimensions are treated as if this tensor was expanded to match the size of the corresponding dimension of input1, and data was duplicated on all terms in that dimension. After this expansion, the dimensions will be equal. The data type must match the data type of Input1.
[in]policyA vx_convert_policy_e enumeration.
[out]outputThe output tensor data with the same dimensions as the input tensor data.
Returns
A vx_status_e enumeration.
Return values
VX_SUCCESSSuccess
*An error occurred. See vx_status_e.

◆ vxuTensorTableLookup()

VX_API_ENTRY vx_status VX_API_CALL vxuTensorTableLookup ( vx_context  context,
vx_tensor  input1,
vx_lut  lut,
vx_tensor  output 
)

[Immediate] Performs LUT on element values in the input tensor data.

Parameters
[in]contextThe reference to the overall context.
[in]input1Input tensor data. Implementations must support input tensor data type VX_TYPE_INT16 with fixed_point_position 8, and tensor data types VX_TYPE_UINT8, with fixed_point_position 0.
[in]lutThe look-up table to use, of type vx_lut. The elements of input1 are treated as unsigned integers to determine an index into the look-up table. The data type of the items in the look-up table must match that of the output tensor.
[out]outputThe output tensor data with the same dimensions as the input tensor data.
Returns
A vx_status_e enumeration.
Return values
VX_SUCCESSSuccess
*An error occurred. See vx_status_e.

◆ vxuTensorTranspose()

VX_API_ENTRY vx_status VX_API_CALL vxuTensorTranspose ( vx_context  context,
vx_tensor  input,
vx_tensor  output,
vx_size  dimension1,
vx_size  dimension2 
)

[Immediate] Performs transpose on the input tensor. The tensor is transposed according to a specified 2 indexes in the tensor (0-based indexing)

Parameters
[in]contextThe reference to the overall context.
[in]inputInput tensor data, Implementations must support input tensor data type VX_TYPE_INT16 with fixed_point_position 8, and tensor data types VX_TYPE_UINT8 and VX_TYPE_INT8, with fixed_point_position 0.
[out]outputoutput tensor data,
[in]dimension1Dimension index that is transposed with dim 2.
[in]dimension2Dimension index that is transposed with dim 1.
Returns
A vx_status_e enumeration.
Return values
VX_SUCCESSSuccess
*An error occurred. See vx_status_e.

◆ vxuThreshold()

VX_API_ENTRY vx_status VX_API_CALL vxuThreshold ( vx_context  context,
vx_image  input,
vx_threshold  thresh,
vx_image  output 
)

[Immediate] Threshold's an input image and produces a VX_DF_IMAGE_U8 boolean image.

Parameters
[in]contextThe reference to the overall context.
[in]inputThe input image. Only images with format VX_DF_IMAGE_U8 and VX_DF_IMAGE_S16 are supported.
[in]threshThe thresholding object that defines the parameters of the operation. The VX_THRESHOLD_INPUT_FORMAT must be the same as the input image format and the VX_THRESHOLD_OUTPUT_FORMAT must be the same as the output image format.
[out]outputThe output image, that will contain as pixel values true and false values defined by thresh. Only images with format VX_DF_IMAGE_U8 or VX_DF_IMAGE_U1 are supported. Must be of the same size as the input image.
Returns
A vx_status_e enumeration.
Return values
VX_SUCCESSSuccess
*An error occurred. See vx_status_e.

◆ vxuWarpAffine()

VX_API_ENTRY vx_status VX_API_CALL vxuWarpAffine ( vx_context  context,
vx_image  input,
vx_matrix  matrix,
vx_enum  type,
vx_image  output 
)

[Immediate] Performs an Affine warp on an image.

Parameters
[in]contextThe reference to the overall context.
[in]inputThe input VX_DF_IMAGE_U1 or VX_DF_IMAGE_U8 image.
[in]matrixThe affine matrix. Must be 2x3 of type VX_TYPE_FLOAT32.
[in]typeThe interpolation type from vx_interpolation_type_e. VX_INTERPOLATION_AREA is not supported.
[out]outputThe output VX_DF_IMAGE_U1 or VX_DF_IMAGE_U8 image of the same format as the input image.
Returns
A vx_status_e enumeration.
Return values
VX_SUCCESSSuccess
*An error occurred. See vx_status_e.

◆ vxuWarpPerspective()

VX_API_ENTRY vx_status VX_API_CALL vxuWarpPerspective ( vx_context  context,
vx_image  input,
vx_matrix  matrix,
vx_enum  type,
vx_image  output 
)

[Immediate] Performs an Perspective warp on an image.

Parameters
[in]contextThe reference to the overall context.
[in]inputThe input VX_DF_IMAGE_U8 image.
[in]matrixThe perspective matrix. Must be 3x3 of type VX_TYPE_FLOAT32.
[in]typeThe interpolation type from vx_interpolation_type_e. VX_INTERPOLATION_AREA is not supported.
[out]outputThe output VX_DF_IMAGE_U8 image.
Returns
A vx_status_e enumeration.
Return values
VX_SUCCESSSuccess
*An error occurred. See vx_status_e.

◆ vxuWeightedAverage()

VX_API_ENTRY vx_status VX_API_CALL vxuWeightedAverage ( vx_context  context,
vx_image  img1,
vx_scalar  alpha,
vx_image  img2,
vx_image  output 
)

[Immediate] Computes a weighted average image.

Parameters
[in]contextThe reference to the overall context.
[in]img1The first VX_DF_IMAGE_U8 image.
[in]alphaA VX_TYPE_FLOAT32 type, the input value with the range $ 0.0 \le \alpha \le 1.0 $.
[in]img2The second VX_DF_IMAGE_U8 image.
[out]outputThe output VX_DF_IMAGE_U8 image.
Returns
A vx_status_e enumeration.
Return values
VX_SUCCESSSuccess
*An error occurred. See vx_status_e.

◆ vxuXor()

VX_API_ENTRY vx_status VX_API_CALL vxuXor ( vx_context  context,
vx_image  in1,
vx_image  in2,
vx_image  out 
)

[Immediate] Computes the bitwise exclusive-or between two images.

Parameters
[in]contextThe reference to the overall context.
[in]in1A VX_DF_IMAGE_U8 or VX_DF_IMAGE_U1 input image.
[in]in2A VX_DF_IMAGE_U8 or VX_DF_IMAGE_U1 input image.
[out]outThe VX_DF_IMAGE_U8 or VX_DF_IMAGE_U1 output image, which must have the same dimensions and type as the input images.
Returns
A vx_status_e enumeration.
Return values
VX_SUCCESSSuccess
*An error occurred. See vx_status_e.