Double Precision Floating-point Intrinsics#
Double Precision Floating-point Intrinsics
Collaboration diagram for Double Precision Floating-point Intrinsics:
Functions | |
__DEVICE__ double | __dadd_rn (double __x, double __y) |
Add two floating-point values in round-to-nearest-even mode. | |
__DEVICE__ double | __ddiv_rn (double __x, double __y) |
Divide two floating-point values in round-to-nearest-even mode. | |
__DEVICE__ double | __dmul_rn (double __x, double __y) |
Multiply two floating-point values in round-to-nearest-even mode. | |
__DEVICE__ double | __drcp_rn (double __x) |
Returns 1 / x in round-to-nearest-even mode. | |
__DEVICE__ double | __dsqrt_rn (double __x) |
Returns \(\sqrt{x}\) in round-to-nearest-even mode. | |
__DEVICE__ double | __dsub_rn (double __x, double __y) |
Subtract two floating-point values in round-to-nearest-even mode. | |
__DEVICE__ double | __fma_rn (double __x, double __y, double __z) |
Returns \(x \cdot y + z\) as a single operation in round-to-nearest-even mode. | |
Detailed Description
Double Precision Floating-point Intrinsics
Function Documentation
◆ __dadd_rn()
__DEVICE__ double __dadd_rn | ( | double | __x, |
double | __y | ||
) |
Add two floating-point values in round-to-nearest-even mode.
◆ __ddiv_rn()
__DEVICE__ double __ddiv_rn | ( | double | __x, |
double | __y | ||
) |
Divide two floating-point values in round-to-nearest-even mode.
◆ __dmul_rn()
__DEVICE__ double __dmul_rn | ( | double | __x, |
double | __y | ||
) |
Multiply two floating-point values in round-to-nearest-even mode.
◆ __drcp_rn()
__DEVICE__ double __drcp_rn | ( | double | __x | ) |
Returns 1 / x in round-to-nearest-even mode.
◆ __dsqrt_rn()
__DEVICE__ double __dsqrt_rn | ( | double | __x | ) |
Returns \(\sqrt{x}\) in round-to-nearest-even mode.
◆ __dsub_rn()
__DEVICE__ double __dsub_rn | ( | double | __x, |
double | __y | ||
) |
Subtract two floating-point values in round-to-nearest-even mode.
◆ __fma_rn()
__DEVICE__ double __fma_rn | ( | double | __x, |
double | __y, | ||
double | __z | ||
) |
Returns \(x \cdot y + z\) as a single operation in round-to-nearest-even mode.