Double Precision Floating-point Intrinsics

Double Precision Floating-point Intrinsics#

HIP Runtime API Reference: Double Precision Floating-point Intrinsics
Double Precision Floating-point Intrinsics
Collaboration diagram for Double Precision Floating-point Intrinsics:

Functions

__DEVICE__ double __dadd_rn (double __x, double __y)
 Add two floating-point values in round-to-nearest-even mode.
 
__DEVICE__ double __ddiv_rn (double __x, double __y)
 Divide two floating-point values in round-to-nearest-even mode.
 
__DEVICE__ double __dmul_rn (double __x, double __y)
 Multiply two floating-point values in round-to-nearest-even mode.
 
__DEVICE__ double __drcp_rn (double __x)
 Returns 1 / x in round-to-nearest-even mode.
 
__DEVICE__ double __dsqrt_rn (double __x)
 Returns \(\sqrt{x}\) in round-to-nearest-even mode.
 
__DEVICE__ double __dsub_rn (double __x, double __y)
 Subtract two floating-point values in round-to-nearest-even mode.
 
__DEVICE__ double __fma_rn (double __x, double __y, double __z)
 Returns \(x \cdot y + z\) as a single operation in round-to-nearest-even mode.
 

Detailed Description

Double Precision Floating-point Intrinsics

Function Documentation

◆ __dadd_rn()

__DEVICE__ double __dadd_rn ( double  __x,
double  __y 
)

Add two floating-point values in round-to-nearest-even mode.

◆ __ddiv_rn()

__DEVICE__ double __ddiv_rn ( double  __x,
double  __y 
)

Divide two floating-point values in round-to-nearest-even mode.

◆ __dmul_rn()

__DEVICE__ double __dmul_rn ( double  __x,
double  __y 
)

Multiply two floating-point values in round-to-nearest-even mode.

◆ __drcp_rn()

__DEVICE__ double __drcp_rn ( double  __x)

Returns 1 / x in round-to-nearest-even mode.

◆ __dsqrt_rn()

__DEVICE__ double __dsqrt_rn ( double  __x)

Returns \(\sqrt{x}\) in round-to-nearest-even mode.

◆ __dsub_rn()

__DEVICE__ double __dsub_rn ( double  __x,
double  __y 
)

Subtract two floating-point values in round-to-nearest-even mode.

◆ __fma_rn()

__DEVICE__ double __fma_rn ( double  __x,
double  __y,
double  __z 
)

Returns \(x \cdot y + z\) as a single operation in round-to-nearest-even mode.