Python API reference#
This chapter describes the rocRAND Python module API.
API index#
To search an API, refer to the API Index.
class PRNG#
- class rocrand.PRNG(rngtype=400, seed=None, offset=None, stream=None)#
-
- LFSR113 = 406#
LFSR113 pseudo-random generator type
- MRG31K3P = 405#
MRG31k3p pseudo-random generator type
- MRG32K3A = 402#
MRG32k3a pseudo-random generator type
- MT19937 = 407#
Mersenne Twister pseudo-random generator type
- MTGP32 = 403#
Mersenne Twister MTGP32 pseudo-random generator type
- PHILOX4_32_10 = 404#
PHILOX_4x32 (10 rounds) pseudo-random generator type
- THREEFRY2_32_20 = 408#
THREEFRY2_32_20 pseudo-random generator type
- THREEFRY2_64_20 = 409#
THREEFRY2_64_20 pseudo-random generator type
- THREEFRY4_32_20 = 410#
THREEFRY4_32_20 pseudo-random generator type
- THREEFRY4_64_20 = 411#
THREEFRY4_64_20 pseudo-random generator type
- XORWOW = 401#
XORWOW pseudo-random generator type
- generate(ary, size=None)#
Generates uniformly distributed integers.
Generates size (if present) or ary.size uniformly distributed integers and saves them to ary.
Supported dtype of ary:
numpy.uint32
,numpy.int32
.- Parameters:
ary – NumPy array (
numpy.ndarray
) or HIP device-side array (DeviceNDArray
)size – Number of samples to generate, default to ary.size
- lognormal(ary, mean, stddev, size=None)#
Generates log-normally distributed floats.
Generates size (if present) or ary.size log-normally distributed floats and saves them to ary.
Supported dtype of ary:
numpy.float32
,numpy.float64
.- Parameters:
ary – NumPy array (
numpy.ndarray
) or HIP device-side array (DeviceNDArray
)mean – Mean value of log normal distribution
stddev – Standard deviation value of log normal distribution
size – Number of samples to generate, default to ary.size
- normal(ary, mean, stddev, size=None)#
Generates normally distributed floats.
Generates size (if present) or ary.size normally distributed floats and saves them to ary.
Supported dtype of ary:
numpy.float32
,numpy.float64
.- Parameters:
ary – NumPy array (
numpy.ndarray
) or HIP device-side array (DeviceNDArray
)mean – Mean value of normal distribution
stddev – Standard deviation value of normal distribution
size – Number of samples to generate, default to ary.size
- property offset#
Mutable attribute of the offset of random numbers sequence.
Setting this attribute resets the sequence.
- poisson(ary, lmbd, size=None)#
Generates Poisson-distributed integers.
Generates size (if present) or ary.size Poisson-distributed integers and saves them to ary.
Supported dtype of ary:
numpy.uint32
,numpy.int32
.- Parameters:
ary – NumPy array (
numpy.ndarray
) or HIP device-side array (DeviceNDArray
)lmbd – lambda for the Poisson distribution
size – Number of samples to generate, default to ary.size
- property seed#
Mutable attribute of the seed of random numbers sequence.
Setting this attribute resets the sequence.
- uniform(ary, size=None)#
Generates uniformly distributed floats.
Generates size (if present) or ary.size uniformly distributed floats and saves them to ary.
Supported dtype of ary:
numpy.float32
,numpy.float64
.Generated numbers are between 0.0 and 1.0, excluding 0.0 and including 1.0.
- Parameters:
ary – NumPy array (
numpy.ndarray
) or HIP device-side array (DeviceNDArray
)size – Number of samples to generate, default to ary.size
class QRNG#
- class rocrand.QRNG(rngtype=500, ndim=None, offset=None, stream=None)#
-
- SCRAMBLED_SOBOL32 = 502#
Scrambled Sobol32 quasi-random generator type
- SCRAMBLED_SOBOL64 = 505#
Scrambled Sobol64 quasi-random generator type
- SOBOL32 = 501#
Sobol32 quasi-random generator type
- SOBOL64 = 504#
Sobol64 quasi-random generator type
- generate(ary, size=None)#
Generates uniformly distributed integers.
Generates size (if present) or ary.size uniformly distributed integers and saves them to ary.
Supported dtype of ary:
numpy.uint32
,numpy.int32
.- Parameters:
ary – NumPy array (
numpy.ndarray
) or HIP device-side array (DeviceNDArray
)size – Number of samples to generate, default to ary.size
- lognormal(ary, mean, stddev, size=None)#
Generates log-normally distributed floats.
Generates size (if present) or ary.size log-normally distributed floats and saves them to ary.
Supported dtype of ary:
numpy.float32
,numpy.float64
.- Parameters:
ary – NumPy array (
numpy.ndarray
) or HIP device-side array (DeviceNDArray
)mean – Mean value of log normal distribution
stddev – Standard deviation value of log normal distribution
size – Number of samples to generate, default to ary.size
- property ndim#
Mutable attribute of the number of dimensions of random numbers sequence.
Supported values are 1 to 20000. Setting this attribute resets the sequence.
- normal(ary, mean, stddev, size=None)#
Generates normally distributed floats.
Generates size (if present) or ary.size normally distributed floats and saves them to ary.
Supported dtype of ary:
numpy.float32
,numpy.float64
.- Parameters:
ary – NumPy array (
numpy.ndarray
) or HIP device-side array (DeviceNDArray
)mean – Mean value of normal distribution
stddev – Standard deviation value of normal distribution
size – Number of samples to generate, default to ary.size
- property offset#
Mutable attribute of the offset of random numbers sequence.
Setting this attribute resets the sequence.
- poisson(ary, lmbd, size=None)#
Generates Poisson-distributed integers.
Generates size (if present) or ary.size Poisson-distributed integers and saves them to ary.
Supported dtype of ary:
numpy.uint32
,numpy.int32
.- Parameters:
ary – NumPy array (
numpy.ndarray
) or HIP device-side array (DeviceNDArray
)lmbd – lambda for the Poisson distribution
size – Number of samples to generate, default to ary.size
- uniform(ary, size=None)#
Generates uniformly distributed floats.
Generates size (if present) or ary.size uniformly distributed floats and saves them to ary.
Supported dtype of ary:
numpy.float32
,numpy.float64
.Generated numbers are between 0.0 and 1.0, excluding 0.0 and including 1.0.
- Parameters:
ary – NumPy array (
numpy.ndarray
) or HIP device-side array (DeviceNDArray
)size – Number of samples to generate, default to ary.size
Exceptions#
- exception rocrand.RocRandError(value)#
Run-time rocRAND error.
- exception rocrand.HipError(value)#
Run-time HIP error.
Utilities#
- class rocrand.DeviceNDArray(shape, dtype, data=None)#
- copy_to_host(ary=None)#
Copy from data device memory to host memory.
If ary is passed then ary must have the same dtype and greater or equal size as self has.
If ary is not passed then a new
numpy.ndarray
will be created.- Parameters:
ary – NumPy array (
numpy.ndarray
)- Returns:
a new array or ary
- rocrand.empty(shape, dtype)#
Create a new device-side array of given shape and type, without initializing entries.
This function is a limited version of
numpy.empty()
for device-side arrays.Example:
import rocrand import numpy as np gen = rocrand.QRNG(ndim=5) d_a = rocrand.empty((5, 10000), dtype=np.float32) gen.uniform(d_a) a = d_a.copy_to_host() print(a)
See
DeviceNDArray
- rocrand.get_version()#
Returns the version number of the rocRAND library.
To search an API, refer to the Index for all rocRAND APIs.