Programmers guide

Contents

Programmers guide#

Source Code Organization#

The rocBLAS code can be found at ROCm/rocBLAS. It is split into three major parts:

  • The library directory contains all source code for the library.

  • The clients directory contains all test code and code to build clients.

  • Infrastructure such as docs and cmake to support the library.

The library Directory#

The library directory contains the following structure and content for rocBLAS.

library/include#

Contains C98 include files for the external API. These files also contain Doxygen comments that document the API.

library/src/blas[1,2,3]#

Source code for Level 1, 2, and 3 BLAS functions in .cpp and .hpp files.

  • The *.cpp files contain

    • External C functions that call or instantiate templated functions with an _impl extension

    • The _impl functions have argument checking and logging, and they in turn call functions with a _template extension

  • The *_imp.hpp files contain - _template functions that may be exported to rocSOLVER and usually call the _launcher functions - API implementations that can be instantiated in two ways: once for the original APIs with integer args using rocblas_int and

again for the ILP64 API with integer arguments as int64_t.

  • The *_kernels.cpp files contain - _launcher functions that invoke or launch kernels with ROCBLAS_LAUNCH_KERNEL or related macros - _kernel functions that run on the device

library/src/blas_ex#

Source code for mixed precision BLAS

library/src/src64#

This directory contains the ILP64 source code for Level 1, 2, and 3 BLAS and mixed precision functions in blas_ex. Files should normally end with _64 before the file type extension (e.g. _64.cpp). The API integers are int64_t instead of rocblas_int. Function behaviour is kept identical at the higher level detail by instantiable macros and C++ templates. Only at the kernel dispatch level does the code diverge by providing a _64 version for which invocation is controlled by the ROCBLAS_API macro. The directory structure mirrors the level organization used for the parent directory library/src.

device kernel code#

Most BLAS device functions (kernels) are C++ templated functions based on data type. In C++ host code any duplicate instantiations of templates can be handled by the linker and the duplicates will be ignored. LLVM device code instantiations, however, are not handled in this way; therefore we must avoid duplicate instantiations in multiple code units. Thus kernel templates should only be provided as C++ template prototypes in the include files unless they must be instantiated. We should try to instantiate all forms in a single unit (e.g. a .cpp file) and expose a launcher C++ interface to invoke the device calls, where possible. This is especially important for ILP64 implementations where we want to reuse the LP64 instantiations without any duplication to avoid bloating the library size.

library/src/blas3/Tensile#

Code for calling Tensile from rocBLAS, and YAML files with Tensile tuning configurations

library/src/include#

Internal include files for:

  • Handle code

  • Device memory allocation

  • Logging

  • Numerical checking

  • Utility code

The clients Directory#

The clients directory contains all test code and code to build clients.

clients/gtest#

Code for client rocblas-test. This client is used to test rocBLAS.

clients/benchmarks#

Code for client rocblas-benchmark. This client is used to benchmark rocBLAS functions.

clients/include#

Code for testing and benchmarking individual rocBLAS functions, and utility code for testing. Test harness functions are templated by data type and are defined in separate files for each function form: non-batched, batched, strided_batched. When a function also supports the ILP64 API then both forms can be tested by the same template and is controlled the Arguments api member variable. This follows the pattern for FORTRAN API testing and includes FORTRAN_64 for the ILP64 form.

clients/common#

Common code used by both rocblas-benchmark and rocblas-test

clients/samples#

Sample code for calling rocBLAS functions

Infrastructure#

  • CMake is used to build and package rocBLAS. There are CMakeLists.txt files throughout the code.

  • Doxygen/Breathe/Sphinx/ReadTheDocs are used to produce documentation. Content for the documentation is from:

    • Doxygen comments in include files in the directory library/include

    • Files in the docs folder.

  • Jenkins is used to automate Continuous Integration testing.

  • clang-format is used to format C++ code.

Handle, Stream, and Device Management#

Handle#

A rocBLAS_handle must be created as shown before calling other rocBLAS functions:

rocblas_handle handle;
if(rocblas_create_handle(&handle) != rocblas_status_success) return EXIT_FAILURE;

The created handle should be destroyed as shown when the users have completed calling rocBLAS functions:

if(rocblas_destroy_handle(handle) != rocblas_status_success) return EXIT_FAILURE;

The above-created handle will use the default stream and the default device. If the user wants the non-default stream and the non-default device, then call:

int deviceId = non_default_device_id;
if(hipSetDevice(deviceId) != hipSuccess) return EXIT_FAILURE;

//optional call to rocblas_initialize
rocblas_initialize();

// note the order, call hipSetDevice before hipStreamCreate
hipStream_t stream;
if(hipStreamCreate(&stream) != hipSuccess) return EXIT_FAILURE;

rocblas_handle handle;
if(rocblas_create_handle(&handle) != rocblas_status_success) return EXIT_FAILURE;

if(rocblas_set_stream(handle, stream) != rocblas_status_success) return EXIT_FAILURE;

For the library to use a non-default device within a host thread, the device must be set using hipSetDevice() before creating the handle.

The device in the host thread should not be changed between hipStreamCreate and hipStreamDestroy. If the device in the host thread is changed between creating and destroying the stream, then the behavior is undefined.

If the user created a non-default stream, it is the user’s responsibility to synchronize the old non-default stream, and update rocblas handle with default/new non-default stream before destroying the old non-default stream.

// Synchronize the non-default stream before destroying it
if(hipStreamSynchronize(stream) != hipSuccess) return EXIT_FAILURE;

// Reset the stream reference in the handle to either default or new non-default
if(rocblas_set_stream(handle, 0) != rocblas_status_success) return EXIT_FAILURE;

if(hipStreamDestroy(stream) != hipSuccess) return EXIT_FAILURE;

Note

Resetting the rocblas handle’s stream reference is essential to avoid the internally handled hipErrorContextIsDestroyed error. If this step is skipped, users may encounter this error in AMD_LOG_LEVEL logging or with hipPeekAtLastError( ).

When a user switches from one non-default stream to another, they must complete all rocblas operations previously submitted with this handle on the old stream using hipStreamSynchronize(old_stream) API before setting the new stream.

// Synchronize the old stream
if(hipStreamSynchronize(old_stream) != hipSuccess) return EXIT_FAILURE;

// Create a new stream (this step can be done before the steps above)
if(hipStreamCreate(&new_stream) != hipSuccess) return EXIT_FAILURE;

// Set the handle to use the new stream (must come after synchronization & before deletion of old stream)
if(rocblas_set_stream(handle, new_stream) != rocblas_status_success) return EXIT_FAILURE;

// Destroy the old stream (this step is optional but must come after synchronization)
if(hipStreamDestroy(old_stream) != hipSuccess) return EXIT_FAILURE;

The above hipStreamSynchronize is necessary because the rocBLAS_handle contains allocated device memory that must not be shared by multiple asynchronous streams at the same time.

If either the old or new stream is the default (NULL) stream, it is not necessary to synchronize the old stream before destroying it, or before setting the new stream, because the synchronization is implicit.

Note

A user can switch from one non-default stream to another without calling hipStreamSynchronize() by enabling stream-order memory allocation. Refer to section Stream-Ordered Memory Allocation.

Creating the handle will incur a startup cost. There is an additional startup cost for gemm functions to load gemm kernels for a specific device. Users can shift the gemm startup cost to occur after setting the device by calling rocblas_initialize() after calling hipSetDevice(). This action needs to be done once for each device. If the user has two rocBLAS handles which use the same device, then the user only needs to call rocblas_initialize() once. If rocblas_initialize() is not called, then the first gemm call will have the startup cost.

The rocBLAS_handle stores the following:

  • Stream

  • Logging mode

  • Pointer mode

  • Atomics mode

Stream and Device Management#

HIP kernels are launched in a queue. This queue is otherwise known as a stream. A stream is a queue of work on a particular device.

A rocBLAS_handle always has one stream, and a stream is always associated with one device. The rocBLAS_handle is passed as an argument to all rocBLAS functions that launch kernels, and these kernels are launched in that handle’s stream to run on that stream’s device.

If the user does not create a stream, then the rocBLAS_handle uses the default (NULL) stream, maintained by the system. Users cannot create or destroy the default stream. However, users can create a new non-default stream and bind it to the rocBLAS_handle with the two commands: hipStreamCreate() and rocblas_set_stream().

rocBLAS supports use of non-blocking stream for functions requiring synchronization to guarantee results on the host. For functions like rocblas_Xnrm2, scalar result is copied from device to host when rocblas_pointer_mode == rocblas_pointer_mode_host. This is done using hipMemcpyAsync() followed by hipStreamSynchronize(). The stream that is synchronized is the stream in the rocBLAS_handle.

Note

Exception to the above pattern are the following rocBLAS functions, rocblas_set_vector(), rocblas_get_vector(), rocblas_set_matrix(), rocblas_get_matrix() which block on default stream.

If the user creates a stream, they are responsible for destroying it with hipStreamDestroy(). If the handle is switching from one non-default stream to another, then the old stream needs to be synchronized. Next, the user needs to create and set the new non-default stream using hipStreamCreate() and rocblas_set_stream(), respectively. Then the user can optionally destroy the old stream.

HIP has two important device management functions, hipSetDevice(), and hipGetDevice().

  • hipSetDevice(): Set default device to be used for subsequent hip API calls from this thread.

  • hipGetDevice(): Return the default device id for the calling host thread.

The device which was set using hipSetDevice() at the time of calling hipStreamCreate() is the one that is associated with a stream. But, if the device was not set using hipSetDevice(), then, the default device will be used.

Users cannot switch the device in a stream between hipStreamCreate() and hipStreamDestroy(). If users want to use another device, they should create another stream.

rocBLAS never sets a device, it only queries using hipGetDevice(). If rocBLAS does not see a valid device, it returns an error message to users.

Multiple Streams and Multiple Devices#

If a machine has num GPU devices, they will have deviceID numbers 0, 1, 2, … (num - 1). The default device has deviceID == 0. Each rocBLAS_handle can only be used with a single device, but users can run <num> handles on <num> devices concurrently.

Device Memory Allocation#

Requirements#

  • Some rocBLAS functions need temporary device memory.

  • Allocating and deallocating device memory is expensive and synchronizing.

  • Temporary device memory should be recycled across multiple rocBLAS function calls using the same rocblas_handle.

  • The following schemes need to be supported:

    • Default Functions allocate required device memory automatically. This has the disadvantage that allocation is a synchronizing event.

    • Preallocate Query all the functions called using a rocblas_handle to find out how much device memory is needed. Preallocate the required device memory when the rocblas_handle is created, and there are no more synchronizing allocations or deallocations.

    • Manual Query a function to find out how much device memory is required. Allocate and deallocate the device memory before and after function calls. This allows the user to control where the synchronizing allocation and deallocation occur.

In all above schemes, temporary device memory needs to be held by the rocblas_handle and recycled if a subsequent function using the handle needs it.

Design#

  • rocBLAS uses per-handle device memory allocation with out-of-band management.

  • The state of the device memory is stored in the rocblas_handle.

  • For the user of rocBLAS:

    • Functions are provided to query how much device memory a function needs.

    • An environment variable is provided to preallocate when the rocblas_handle is created.

    • Functions are provided to manually allocate and deallocate after the rocblas_handle is created.

    • The following two values are added to the rocblas_status enum to indicate how a rocBLAS function is changing the state of the temporary device memory in the rocblas_handle :

      • rocblas_status_size_unchanged

      • rocblas_status_size_increased

  • For the rocBLAS developer:

    • Functions are provided to answer device memory size queries.

    • Functions are provided to allocate temporary device memory.

    • Opaque RAII objects are used to hold the temporary device memory, and allocated memory is returned to the handle automatically when it is no longer needed.

The functions for the rocBLAS user are described in the rocBLAS API Reference. The functions for the rocBLAS developer are described below.

Answering device memory size queries in functions that need memory#

Example#

Functions should contain code like below to answer a query on how much temporary device memory is required. In this case, m * n * sizeof(T) bytes of memory is required:

rocblas_status rocblas_function(rocblas_handle handle, ...)
{
    if(!handle) return rocblas_status_invalid_handle;

    if (handle->is_device_memory_size_query())
    {
        size_t size = m * n * sizeof(T);
        return handle->set_optimal_device_memory_size(size);
    }

    //  rest of function
}

Function#

bool _rocblas_handle::is_device_memory_size_query() const

Indicates if the current function call is collecting information about the optimal device memory allocation size

return value:

  • true if information is being collected

  • false if information is not being collected

Function#

rocblas_status _rocblas_handle::set_optimal_device_memory_size(size...)

Sets the optimal size(s) of device memory buffer(s) in bytes for this function. The sizes are rounded up to the next multiple of 64 (or some other chunk size), and the running maximum is updated.

return value:

  • rocblas_status_size_unchanged If the maximum optimal device memory size did not change, this is the case where the function does not use device memory.

  • rocblas_satus_size_increased If the maximum optimal device memory size increased.

  • rocblas_status_internal_error If this function is not supposed to be collecting size information.

Function#

size_t rocblas_sizeof_datatype(rocblas_datatype type)

Returns size of a rocBLAS runtime data type

Answering device memory size queries in functions that do not need memory#

Example#

rocblas_status rocblas_function(rocblas_handle handle, ...)
{
    if(!handle) return rocblas_status_invalid_handle;

    RETURN_ZERO_DEVICE_MEMORY_SIZE_IF_QUERIED(handle);

//  rest of function
}

Macro#

RETURN_ZERO_DEVICE_MEMORY_SIZE_IF_QUERIED(handle)

A convenience macro that returns rocblas_status_size_unchanged if the function call is a memory size query

rocBLAS Kernel device memory allocation#

Example#

Device memory can be allocated for n floats using device_malloc as follows:

auto workspace = handle->device_malloc(n * sizeof(float));
if (!workspace) return rocblas_status_memory_error;
float* ptr = static_cast<float*>(workspace);

Example#

To allocate multiple buffers:

size_t size1 = m * n;
size_t size2 = m * k;

auto workspace = handle->device_malloc(size1, size2);
if (!workspace) return rocblas_status_memory_error;

void * w_buf1, * w_buf2;
w_buf1 = workspace[0];
w_buf2 = workspace[1];

Function#

auto workspace = handle->device_malloc(size...)
  • Returns an opaque RAII object lending allocated device memory to a particular rocBLAS function.

  • The object returned is convertible to void * or other pointer types if only one size is specified.

  • The individual pointers can be accessed with the subscript operator[].

  • The lifetime of the returned object is the lifetime of the borrowed device memory (RAII).

  • To simplify and optimize the code, only one successful allocation object can be alive at a time.

  • If the handle’s device memory is currently being managed by rocBLAS, as in the default scheme, it is expanded in size as necessary.

  • If the user allocated (or pre-allocated) an explicit size of device memory, then that size is used as the limit, and no resizing or synchronization ever occurs.

Parameters:

  • size size in bytes of memory to be allocated

return value:

  • On success, returns an opaque RAII object that evaluates to true when converted to bool

  • On failure, returns an opaque RAII object that evaluates to false when converted to bool

Performance Degrade#

The rocblas_status enum value rocblas_status_perf_degraded is used to indicate that a slower algorithm was used because of insufficient device memory for the optimal algorithm.

Example#

rocblas_status ret = rocblas_status_success;
size_t size_for_optimal_algorithm = m + n + k;
size_t size_for_degraded_algorithm = m;
auto workspace_optimal = handle->device_malloc(size_for_optimal_algorithm);
if (workspace_optimal)
{
    // Algorithm using larger optimal memory
}
else
{
    auto workspace_degraded = handle->device_malloc(size_for_degraded_algorithm);
    if (workspace_degraded)
    {
        // Algorithm using smaller degraded memory
        ret = rocblas_status_perf_degraded;
    }
    else
    {
        // Not enough device memory for either optimal or degraded algorithm
        ret = rocblas_status_memory_error;
    }
}
return ret;

Thread Safe Logging#

rocBLAS has thread safe logging. This prevents garbled output when multiple threads are writing to the same file.

Thread safe logging is obtained from using rocblas_internal_ostream, a class that can be used similarly to std::ostream. It provides standardized methods for formatted output to either strings or files. The default constructor of rocblas_internal_ostream writes to strings, which are thread-safe because they are owned by the calling thread. There are also rocblas_internal_ostream constructors for writing to files. The rocblas_internal_ostream::yaml_on and rocblas_internal_ostream::yaml_off IO modifiers turn YAML formatting mode on and off.

rocblas_cout and rocblas_cerr are the thread-safe versions of std::cout and std::cerr.

Many output identifiers have been marked “poisoned” in rocblas-test and rocblas-bench, to catch the use of non-thread-safe IO. These include std::cout, std::cerr, printf, fprintf, fputs, puts, and others. The poisoning is not turned on in the library itself or in the samples, because we cannot impose restrictions on the use of these symbols on outside users.

rocblas_handle contains three rocblas_internal_ostream pointers for logging output:

  • static rocblas_internal_ostream* log_trace_os

  • static rocblas_internal_ostream* log_bench_os

  • static rocblas_internal_ostream* log_profile_os

The user can also create rocblas_internal_ostream pointers/objects outside the handle.

Each rocblas_internal_ostream associated with a file points to a single rocblas_internal_ostream::worker with a std::shared_ptr, for writing to the file. The worker is mapped from the device id and inode corresponding to the file. More than one rocblas_internal_ostream can point to the same worker.

This means if more than one rocblas_internal_ostream is writing to a single output file, they will share the same rocblas_internal_ostream::worker.

The << operator for rocblas_internal_ostream is overloaded. Output is first accumulated in rocblas_internal_ostream::os, a std::ostringstream buffer. Each rocblas_internal_ostream has its own os std::ostringstream buffer, so strings in os will not be garbled.

When rocblas_internal_ostream.os is flushed with either a std::endl or an explicit flush of rocblas_internal_ostream, then rocblas_internal_ostream::worker::send pushes the string contents of rocblas_internal_ostream.os and a promise, the pair being called a task, onto rocblas_internal_ostream.worker.queue.

The send function uses promise/future to asynchronously transfer data from rocblas_internal_ostream.os to rocblas_internal_ostream.worker.queue, and to wait for the worker to finish writing the string to the file. It also locks a mutex to make sure the push of the task onto the queue is atomic.

The ostream.worker.queue will contain a number of tasks. When rocblas_internal_ostream is destroyed, all the tasks.string in rocblas_internal_ostream.worker.queue are printed to the rocblas_internal_ostream file, the std::shared_ptr to the ostream.worker is destroyed, and if the reference count to the worker becomes 0, the worker’s thread is sent a 0-length string to tell it to exit.

rocBLAS Numerical Checking#

Note

Performance will degrade when numerical checking is enabled.

rocBLAS provides the environment variable ROCBLAS_CHECK_NUMERICS, which allows users to debug numerical abnormalities. Setting a value of ROCBLAS_CHECK_NUMERICS enables checks on the input and the output vectors/matrices of the rocBLAS functions for (not-a-number) NaN’s, zeros, infinities, and denormal/subnormal values. Numerical checking is available to check the input and the output vectors for all level 1 and 2 functions. In level 2 functions, only the general (ge) type input and the output matrix can be checked for numerical abnormalities. In level 3, GEMM is the only function to have numerical checking.

ROCBLAS_CHECK_NUMERICS is a bitwise OR of zero or more bit masks as follows:

  • ROCBLAS_CHECK_NUMERICS = 0: is not set, then there is no numerical checking

  • ROCBLAS_CHECK_NUMERICS = 1: fully informative message, prints the results of numerical checking whether the input and the output Matrices/Vectors have NaN/zero/infinity/denormal values to the console

  • ROCBLAS_CHECK_NUMERICS = 2: prints result of numerical checking only if the input and the output Matrices/Vectors has a NaN/infinity/denormal value

  • ROCBLAS_CHECK_NUMERICS = 4: return rocblas_status_check_numeric_fail status if there is a NaN/infinity/denormal value

  • ROCBLAS_CHECK_NUMERICS = 8: ignore denormal values if there are no NaN/infinity values present

An example usage of ROCBLAS_CHECK_NUMERICS is shown below,

ROCBLAS_CHECK_NUMERICS=4 ./rocblas-bench -f gemm -i 1 -j 0

The above command will return a rocblas_status_check_numeric_fail if the input and the output matrices of BLAS level 3 GEMM function has a NaN/infinity/denormal value. If there are no numerical abnormalities, then rocblas_status_success is returned.

Note

In stream capture mode all numerical checking will be skipped and rocblas_status_success is returned.

rocBLAS Order of Argument Checking and Logging#

Legacy BLAS#

Legacy BLAS has two types of argument checking:

  • Error-return for incorrect argument (Legacy BLAS implement this with a call to the function XERBLA)

  • Quick-return-success when an argument allows for the subprogram to be a no-operation or a constant result

Level 2 and Level 3 BLAS subprograms have both error-return and quick-return-success. Level 1 BLAS subprograms have only quick-return-success

rocBLAS#

rocBLAS has 5 types of argument checking:

  • rocblas_status_invalid_handle if the handle is a NULL pointer

  • rocblas_status_invalid_size for invalid size, increment or leading dimension argument

  • rocblas_status_invalid_value for unsupported enum value

  • rocblas_status_success for quick-return-success

  • rocblas_status_invalid_pointer for NULL argument pointers

rocBLAS has the Following Differences When Compared To Legacy BLAS#

  • It is a C API, returning a rocblas_status type indicating the success of the call.

  • In legacy BLAS, the following functions return a scalar result: dot, nrm2, asum, amax, and amin. In rocBLAS, a pointers to scalar return value is passed as the last argument.

  • The first argument is a rocblas_handle argument, an opaque pointer to rocBLAS resources, corresponding to a single HIP stream.

  • Scalar arguments like alpha and beta are pointers on either the host or device, controlled by the rocBLAS handle’s pointer mode. In cases where the other arguments do not dictate an early return, if the alpha and beta pointers are NULL the function will return rocblas_status_invalid_pointer.

  • Vector and matrix arguments are always pointers to device memory.

  • When rocblas_pointer_mode == rocblas_pointer_mode_host alpha and beta values are inspected and based on their values it is determined which vector and matrix pointers must be dereferenced. If these pointers will be dereferenced a NULL pointer will lead to a return value rocblas_status_invalid_pointer.

  • Otherwise if rocblas_pointer_mode == rocblas_pointer_mode_device we do NOT check if these vector or matrix pointers will dereference a NULL pointer as we do not want to slow execution to fetch and inspect alpha and beta values.

  • The ROCBLAS_LAYER environment variable controls the option to log argument values.

  • There is added functionality like - batched - strided_batched - mixed precision in gemm_ex, gemm_batched_ex, and gemm_strided_batched_ex

To Accommodate the Additions#
  • See Logging below.

  • For batched and strided_batched L2 and L3 functions, there is a quick-return-success for batch_count == 0, and an invalid size error for batch_count < 0.

  • For batched and strided_batched L1 functions, there is a quick-return-success for batch_count <= 0

  • When rocblas_pointer_mode == rocblas_pointer_mode_device alpha and beta are not copied from device to host for quick-return-success checks. In this case, the quick-return-success checks are omitted. This will still give a correct result, but the operation will be slower.

  • For strided_batched functions there is no argument checking for stride. To access elements in a strided_batched_matrix, for example the C matrix in gemm, the zero based index is calculated as i1 + i2 * ldc + i3 * stride_c, where i1 = 0, 1, 2, ..., m-1; i2 = 0, 1, 2, ..., n-1; i3 = 0, 1, 2, ..., batch_count -1. An incorrect stride can result in a core dump due a segmentation fault. It can also produce an indeterminate result if there is a memory overlap in the output matrix between different values of i3.

Device Memory Size Queries#

  • When handle->is_device_memory_size_query() is true, the call is not a normal call, but it is a device memory size query.

  • No logging should be performed during device memory size queries.

  • If the rocBLAS kernel requires no temporary device memory, the macro RETURN_ZERO_DEVICE_MEMORY_SIZE_IF_QUERIED(handle) can be called after checking that handle != nullptr.

  • If the rocBLAS kernel requires temporary device memory, then it should be set, and the kernel returned, by calling return handle->set_optimal_device_memory_size(size...), where size... is a list of one or more sizes for different sub-problems. The sizes are rounded up and added.

Logging#

  • There is logging before a quick-return-success or error-return, except: - When handle == nullptr, return rocblas_status_invalid_handle. - When handle->is_device_memory_size_query() returns true.

  • Vectors and matrices are logged with their addresses and are always on device memory.

  • Scalar values in device memory are logged as their addresses. Scalar values in host memory are logged as their values, with a nullptr logged as NaN (std::numeric_limits<T>::quiet_NaN()).

rocBLAS Control Flow#

  1. If handle == nullptr, then return rocblas_status_invalid_handle.

  2. If the function does not require temporary device memory, then call the macro RETURN_ZERO_DEVICE_MEMORY_SIZE_IF_QUERIED(handle);.

  3. If the function requires temporary device memory, and handle->is_device_memory_size_query() is true, then validate any pointers and arguments required to determine the optimal size of temporary device memory, returning rocblas_status_invalid_pointer or rocblas_status_invalid_size if the arguments are invalid, and otherwise return handle->set_optimal_device_memory_size(size...);, where size... is a list of one or more sizes of temporary buffers, which are allocated with handle->device_malloc(size...) later.

  4. Perform logging if enabled, taking care not to dereference nullptr arguments.

  5. Check for unsupported enum value. Return rocblas_status_invalid_value if enum value is invalid.

  6. Check for invalid sizes. Return rocblas_status_invalid_size if size arguments are invalid.

  7. Return rocblas_status_invalid_pointer if any pointers used to determine quick return conditions are NULL.

  8. If quick return conditions are met:

    • If there is no return value - Return rocblas_status_success

    • If there is a return value - If the return value pointer argument is nullptr, return rocblas_status_invalid_pointer - Else, return rocblas_status_success

  9. If any pointers not checked in #7 are NULL and MUST be dereferenced return rocblas_status_invalid_pointer; only when in rocblas_pointer_mode == rocblas_pointer_mode_host can it be determined efficiently if some vector/matrix arguments must be dereferenced.

  10. (Optional.) Allocate device memory, returning rocblas_status_memory_error if the allocation fails.

  11. If all checks above pass, launch the kernel and return rocblas_status_success.

Legacy L1 BLAS “single vector”#

Below are four code snippets from NETLIB for “single vector” legacy L1 BLAS. They have quick-return-success for (n <= 0) || (incx <= 0):

DOUBLE PRECISION FUNCTION DASUM(N,DX,INCX)
IF (N.LE.0 .OR. INCX.LE.0) RETURN

DOUBLE PRECISION FUNCTION DNRM2(N,X,INCX)
IF (N.LT.1 .OR. INCX.LT.1) THEN
    return = ZERO

SUBROUTINE DSCAL(N,DA,DX,INCX)
IF (N.LE.0 .OR. INCX.LE.0) RETURN

INTEGER FUNCTION IDAMAX(N,DX,INCX)
IDAMAX = 0
IF (N.LT.1 .OR. INCX.LE.0) RETURN
IDAMAX = 1
IF (N.EQ.1) RETURN

Legacy L1 BLAS “two vector”#

Below are seven legacy L1 BLAS codes from NETLIB. There is quick-return-success for (n <= 0). In addition, for DAXPY, there is quick-return-success for (alpha == 0):

SUBROUTINE DAXPY(N,alpha,DX,INCX,DY,INCY)
IF (N.LE.0) RETURN
IF (alpha.EQ.0.0d0) RETURN

SUBROUTINE DCOPY(N,DX,INCX,DY,INCY)
IF (N.LE.0) RETURN

DOUBLE PRECISION FUNCTION DDOT(N,DX,INCX,DY,INCY)
IF (N.LE.0) RETURN

SUBROUTINE DROT(N,DX,INCX,DY,INCY,C,S)
IF (N.LE.0) RETURN

SUBROUTINE DSWAP(N,DX,INCX,DY,INCY)
IF (N.LE.0) RETURN

DOUBLE PRECISION FUNCTION DSDOT(N,SX,INCX,SY,INCY)
IF (N.LE.0) RETURN

SUBROUTINE DROTM(N,DX,INCX,DY,INCY,DPARAM)
DFLAG = DPARAM(1)
IF (N.LE.0 .OR. (DFLAG+TWO.EQ.ZERO)) RETURN

Legacy L2 BLAS#

Below are code snippets from NETLIB for legacy L2 BLAS. They have both argument checking and quick-return-success:

SUBROUTINE DGER(M,N,ALPHA,X,INCX,Y,INCY,A,LDA)
INFO = 0
IF (M.LT.0) THEN
    INFO = 1
ELSE IF (N.LT.0) THEN
    INFO = 2
ELSE IF (INCX.EQ.0) THEN
    INFO = 5
ELSE IF (INCY.EQ.0) THEN
    INFO = 7
ELSE IF (LDA.LT.MAX(1,M)) THEN
    INFO = 9
END IF
IF (INFO.NE.0) THEN
    CALL XERBLA('DGER  ',INFO)
    RETURN
END IF

IF ((M.EQ.0) .OR. (N.EQ.0) .OR. (ALPHA.EQ.ZERO)) RETURN
SUBROUTINE DSYR(UPLO,N,ALPHA,X,INCX,A,LDA)

INFO = 0
IF (.NOT.LSAME(UPLO,'U') .AND. .NOT.LSAME(UPLO,'L')) THEN
    INFO = 1
ELSE IF (N.LT.0) THEN
    INFO = 2
ELSE IF (INCX.EQ.0) THEN
    INFO = 5
ELSE IF (LDA.LT.MAX(1,N)) THEN
    INFO = 7
END IF
IF (INFO.NE.0) THEN
    CALL XERBLA('DSYR  ',INFO)
    RETURN
END IF

IF ((N.EQ.0) .OR. (ALPHA.EQ.ZERO)) RETURN
SUBROUTINE DGEMV(TRANS,M,N,ALPHA,A,LDA,X,INCX,BETA,Y,INCY)

INFO = 0
IF (.NOT.LSAME(TRANS,'N') .AND. .NOT.LSAME(TRANS,'T') .AND. .NOT.LSAME(TRANS,'C')) THEN
    INFO = 1
ELSE IF (M.LT.0) THEN
    INFO = 2
ELSE IF (N.LT.0) THEN
    INFO = 3
ELSE IF (LDA.LT.MAX(1,M)) THEN
    INFO = 6
ELSE IF (INCX.EQ.0) THEN
    INFO = 8
ELSE IF (INCY.EQ.0) THEN
    INFO = 11
END IF
IF (INFO.NE.0) THEN
    CALL XERBLA('DGEMV ',INFO)
    RETURN
END IF

IF ((M.EQ.0) .OR. (N.EQ.0) .OR. ((ALPHA.EQ.ZERO).AND. (BETA.EQ.ONE))) RETURN
SUBROUTINE DTRSV(UPLO,TRANS,DIAG,N,A,LDA,X,INCX)

INFO = 0
IF (.NOT.LSAME(UPLO,'U') .AND. .NOT.LSAME(UPLO,'L')) THEN
    INFO = 1
ELSE IF (.NOT.LSAME(TRANS,'N') .AND. .NOT.LSAME(TRANS,'T') .AND. .NOT.LSAME(TRANS,'C')) THEN
    INFO = 2
ELSE IF (.NOT.LSAME(DIAG,'U') .AND. .NOT.LSAME(DIAG,'N')) THEN
    INFO = 3
ELSE IF (N.LT.0) THEN
    INFO = 4
ELSE IF (LDA.LT.MAX(1,N)) THEN
    INFO = 6
ELSE IF (INCX.EQ.0) THEN
    INFO = 8
END IF
IF (INFO.NE.0) THEN
    CALL XERBLA('DTRSV ',INFO)
    RETURN
END IF

IF (N.EQ.0) RETURN

Legacy L3 BLAS#

Below is a code snippet from NETLIB for legacy L3 BLAS dgemm. It has both argument checking and quick-return-success:

    SUBROUTINE DGEMM(TRANSA,TRANSB,M,N,K,ALPHA,A,LDA,B,LDB,BETA,C,LDC)

    NOTA = LSAME(TRANSA,'N')
    NOTB = LSAME(TRANSB,'N')
    IF (NOTA) THEN
        NROWA = M
        NCOLA = K
    ELSE
        NROWA = K
        NCOLA = M
    END IF
    IF (NOTB) THEN
        NROWB = K
    ELSE
        NROWB = N
    END IF

//  Test the input parameters.

    INFO = 0
    IF ((.NOT.NOTA) .AND. (.NOT.LSAME(TRANSA,'C')) .AND.
   +    (.NOT.LSAME(TRANSA,'T'))) THEN
        INFO = 1
    ELSE IF ((.NOT.NOTB) .AND. (.NOT.LSAME(TRANSB,'C')) .AND.
   +         (.NOT.LSAME(TRANSB,'T'))) THEN
        INFO = 2
    ELSE IF (M.LT.0) THEN
        INFO = 3
    ELSE IF (N.LT.0) THEN
        INFO = 4
    ELSE IF (K.LT.0) THEN
        INFO = 5
    ELSE IF (LDA.LT.MAX(1,NROWA)) THEN
        INFO = 8
    ELSE IF (LDB.LT.MAX(1,NROWB)) THEN
        INFO = 10
    ELSE IF (LDC.LT.MAX(1,M)) THEN
        INFO = 13
    END IF
    IF (INFO.NE.0) THEN
        CALL XERBLA('DGEMM ',INFO)
        RETURN
    END IF

//  Quick return if possible.

    IF ((M.EQ.0) .OR. (N.EQ.0) .OR. (((ALPHA.EQ.ZERO).OR. (K.EQ.0)).AND. (BETA.EQ.ONE))) RETURN

rocBLAS Benchmarking and Testing#

There are three client executables that can be used with rocBLAS. They are:

  • rocblas-bench

  • rocblas-gemm-tune

  • rocblas-test

These three clients can be built by following the instructions in the Building and Installing section of the User Guide. After building the rocBLAS clients, they can be found in the directory rocBLAS/build/release/clients/staging.

The next three sections will provide a brief explanation and the usage of each rocBLAS client.

rocblas-bench#

rocblas-bench is used to measure performance and verify the correctness of rocBLAS functions.

It has a command line interface. For more information:

rocBLAS/build/release/clients/staging/rocblas-bench --help

The following table shows all the data types in rocBLAS:

Table 1 Data types in rocBLAS#

Data type

accronym

real 16 bit Brain Floating Point

bf16_r

real half

f16_r (h)

real float

f32_r (s)

real double

f64_r (d)

Complex float

f32_c (c)

Complex double

f64_c (z)

Integer 32

i32_r

Integer 8

i8_r

All options for problem types in rocBLAS for gemm are shown here:

  • N: not transposed

  • T: transposed

  • C: complex conjugate (for real data type C is the same as T)

Table 2 various matrix operations#

Problem Types

problem_type

data type

NN

Cijk_Ailk_Bljk

real/complex

NT

Cijk_Ailk_Bjlk

real/complex

TN

Cijk_Alik_Bljk

real/complex

TT

Cijk_Alik_Bjlk

real/complex

NC

Cijk_Ailk_BjlkC

complex

CN

Cijk_AlikC_Bljk

complex

CC

Cijk_AlikC_BjlkC

complex

TC

Cijk_Alik_BjlkC

complex

CT

Cijk_AlikC_Bjlk

complex

For example, NT means A * BT.

Gemm functions can be divided into two main categories:

  1. HPA functions (HighPrecisionAccumulate) where the compute data type is different from the input data type (A/B). All HPA functions must be called using gemm_ex API in rocblas-bench (and not gemm). gemm_ex function name consists of three letters: A/B data type, C/D data type, compute data type.

  2. Non-HPA functions where the input (A/B), output (C/D), and compute data types are all the same. Non-HPA cases can be called using gemm or gemm_ex. But using gemm is recommended.

The following table shows all possible gemm functions in rocBLAS.

Table 3 all gemm functions in rocBLAS#

function

Kernel name

A/B data type

C/D data type

compute data type

hgemm

<arch>_<problem_type>_HB

f16_r

f16_r

f16_r

hgemm_batched

<arch>_<problem_type>_HB_GB

f16_r

f16_r

f16_r

hgemm_strided_batched

<arch>_<problem_type>_HB

f16_r

f16_r

f16_r

sgemm

<arch>_<problem_type>_SB

f32_r

f32_r

f32_r

sgemm_batched

<arch>_<problem_type>_SB_GB

f32_r

f32_r

f32_r

sgemm_strided_batched

<arch>_<problem_type>_SB

f32_r

f32_r

f32_r

dgemm

<arch>_<problem_type>_DB

f64_r

f64_r

f64_r

dgemm_batched

<arch>_<problem_type>_DB_GB

f64_r

f64_r

f64_r

dgemm_strided_batched

<arch>_<problem_type>_DB

f64_r

f64_r

f64_r

cgemm

<arch>_<problem_type>_CB

f32_c

f32_c

f32_c

cgemm_batched

<arch>_<problem_type>_CB_GB

f32_c

f32_c

f32_c

cgemm_strided_batched

<arch>_<problem_type>_CB

f32_c

f32_c

f32_c

zgemm

<arch>_<problem_type>_ZB

f64_c

f64_c

f64_c

zgemm_batched

<arch>_<problem_type>_ZB_GB

f64_c

f64_c

f64_c

zgemm_strided_batched

<arch>_<problem_type>_ZB

f64_c

f64_c

f64_c

HHS

<arch>_<problem_type>_HHS_BH

f16_r

f16_r

f32_r

HHS_batched

<arch>_<problem_type>_HHS_BH_GB

f16_r

f16_r

f32_r

HHS_strided_batched

<arch>_<problem_type>_HHS_BH

f16_r

f16_r

f32_r

HSS

<arch>_<problem_type>_HSS_BH

f16_r

f32_r

f32_r

HSS_batched

<arch>_<problem_type>_HSS_BH_GB

f16_r

f32_r

f32_r

HSS_strided_batched

<arch>_<problem_type>_HSS_BH

f16_r

f32_r

f32_r

BBS

<arch>_<problem_type>_BBS_BH

bf16_r

bf16_r

f32_r

BBS_batched

<arch>_<problem_type>_BBS_BH_GB

bf16_r

bf16_r

f32_r

BBS_strided_batched

<arch>_<problem_type>_BBS_BH

bf16_r

bf16_r

f32_r

BSS

<arch>_<problem_type>_BSS_BH

bf16_r

f32_r

f32_r

BSS_batched

<arch>_<problem_type>_BSS_BH_GB

bf16_r

f32_r

f32_r

BSS_strided_batched

<arch>_<problem_type>_BSS_BH

bf16_r

f32_r

f32_r

I8II

<arch>_<problem_type>_I8II_BH

I8

I

I

I8II_batched

<arch>_<problem_type>_I8II_BH_GB

I8

I

I

I8II_strided_batched

<arch>_<problem_type>_I8II_BH

I8

I

I

How to benchmark the performance of a gemm function using rocblas-bench#

This method is good only if you want to test a few sizes, otherwise, refer to the next section. The following listing shows how to configure rocblas-bench to call each of the gemm functions:

Non-HPA cases (gemm)

#dgemm
$ ./rocblas-bench -f gemm --transposeA N --transposeB T -m 1024 -n 2048 -k 512 -r d --lda 1024 --ldb 2048 --ldc 1024 --ldd 1024 --alpha 1.1 --beta 1.0
# dgemm batched
$ ./rocblas-bench -f gemm_batched --transposeA N --transposeB T -m 1024 -n 2048 -k 512 -r d --lda 1024 --ldb 2048 --ldc 1024 --ldd 1024 --alpha 1.1 --beta 1 --batch_count 5
# dgemm strided batched
$ ./rocblas-bench -f gemm_strided_batched --transposeA N --transposeB T -m 1024 -n 2048 -k 512 -r d --lda 1024 --stride_a 4096 --ldb 2048 --stride_b 4096 --ldc 1024 --stride_c 2097152 --ldd 1024 --stride_d 2097152 --alpha 1.1 --beta 1 --batch_count 5

# sgemm
$ ./rocblas-bench -f gemm --transposeA N --transposeB T -m 1024 -n 2048 -k 512 -r s --lda 1024 --ldb 2048 --ldc 1024 --ldd 1024 --alpha 1.1 --beta 1
# sgemm batched
$ ./rocblas-bench -f gemm_batched --transposeA N --transposeB T -m 1024 -n 2048 -k 512 -r s --lda 1024 --ldb 2048 --ldc 1024 --ldd 1024 --alpha 1.1 --beta 1 --batch_count 5
# sgemm strided batched
$ ./rocblas-bench -f gemm_strided_batched --transposeA N --transposeB T -m 1024 -n 2048 -k 512 -r s --lda 1024 --stride_a 4096 --ldb 2048 --stride_b 4096 --ldc 1024 --stride_c 2097152 --ldd 1024 --stride_d 2097152 --alpha 1.1 --beta 1 --batch_count 5

# hgemm (this function is not really very fast. Use HHS instead, which is faster and more accurate)
$ ./rocblas-bench -f gemm --transposeA N --transposeB T -m 1024 -n 2048 -k 512 -r h --lda 1024 --ldb 2048 --ldc 1024 --ldd 1024 --alpha 1.1 --beta 1
# hgemm batched
$ ./rocblas-bench -f gemm_batched --transposeA N --transposeB T -m 1024 -n 2048 -k 512 -r h --lda 1024 --ldb 2048 --ldc 1024 --ldd 1024 --alpha 1.1 --beta 1 --batch_count 5
# hgemm strided batched
$ ./rocblas-bench -f gemm_strided_batched --transposeA N --transposeB T -m 1024 -n 2048 -k 512 -r h --lda 1024 --stride_a 4096 --ldb 2048 --stride_b 4096 --ldc 1024 --stride_c 2097152 --ldd 1024 --stride_d 2097152 --alpha 1.1 --beta 1 --batch_count 5

# cgemm
$ ./rocblas-bench -f gemm --transposeA N --transposeB T -m 1024 -n 2048 -k 512 -r c --lda 1024 --ldb 2048 --ldc 1024 --ldd 1024 --alpha 1.1 --beta 1
# cgemm batched
$ ./rocblas-bench -f gemm_batched --transposeA N --transposeB T -m 1024 -n 2048 -k 512 -r c --lda 1024 --ldb 2048 --ldc 1024 --ldd 1024 --alpha 1.1 --beta 1 --batch_count 5
# cgemm strided batched
$ ./rocblas-bench -f gemm_strided_batched --transposeA N --transposeB T -m 1024 -n 2048 -k 512 -r c --lda 1024 --stride_a 4096 --ldb 2048 --stride_b 4096 --ldc 1024 --stride_c 2097152 --ldd 1024 --stride_d 2097152 --alpha 1.1 --beta 1 --batch_count 5

# zgemm
$ ./rocblas-bench -f gemm --transposeA N --transposeB T -m 1024 -n 2048 -k 512 -r z --lda 1024 --ldb 2048 --ldc 1024 --ldd 1024 --alpha 1.1 --beta 1
# zgemm batched
$ ./rocblas-bench -f gemm_batched --transposeA N --transposeB T -m 1024 -n 2048 -k 512 -r z --lda 1024 --ldb 2048 --ldc 1024 --ldd 1024 --alpha 1.1 --beta 1 --batch_count 5
# zgemm strided batched
$ ./rocblas-bench -f gemm_strided_batched --transposeA N --transposeB T -m 1024 -n 2048 -k 512 -r z --lda 1024 --stride_a 4096 --ldb 2048 --stride_b 4096 --ldc 1024 --stride_c 2097152 --ldd 1024 --stride_d 2097152 --alpha 1.1 --beta 1 --batch_count 5

# cgemm (NC)
$ ./rocblas-bench -f gemm --transposeA N --transposeB C -m 1024 -n 2048 -k 512 -r c --lda 1024 --ldb 2048 --ldc 1024 --ldd 1024 --alpha 1.1 --beta 1
# cgemm batched (NC)
$ ./rocblas-bench -f gemm_batched --transposeA N --transposeB C -m 1024 -n 2048 -k 512 -r c --lda 1024 --ldb 2048 --ldc 1024 --ldd 1024 --alpha 1.1 --beta 1 --batch_count 5
# cgemm strided batched (NC)
$ ./rocblas-bench -f gemm_strided_batched --transposeA N --transposeB C -m 1024 -n 2048 -k 512 -r c --lda 1024 --stride_a 4096 --ldb 2048 --stride_b 4096 --ldc 1024 --stride_c 2097152 --ldd 1024 --stride_d 2097152 --alpha 1.1 --beta 1 --batch_count 5

HPA cases (gemm_ex)

# HHS
$ ./rocblas-bench -f gemm_ex --transposeA N --transposeB T -m 1024 -n 2048 -k 512 --a_type h --lda 1024 --b_type h --ldb 2048 --c_type h --ldc 1024 --d_type h --ldd 1024 --compute_type s --alpha 1.1 --beta 1
# HHS batched
$ ./rocblas-bench -f gemm_batched_ex --transposeA N --transposeB T -m 1024 -n 2048 -k 512 --a_type h --lda 1024 --b_type h --ldb 2048 --c_type h --ldc 1024 --d_type h --ldd 1024 --compute_type s --alpha 1.1 --beta 1 --batch_count 5
# HHS strided batched
$ ./rocblas-bench -f gemm_strided_batched_ex --transposeA N --transposeB T -m 1024 -n 2048 -k 512 --a_type h --lda 1024 --stride_a 4096 --b_type h --ldb 2048 --stride_b 4096 --c_type h --ldc 1024 --stride_c 2097152 --d_type h --ldd 1024 --stride_d 2097152 --compute_type s --alpha 1.1 --beta 1 --batch_count 5

# HSS
$ ./rocblas-bench -f gemm_ex --transposeA N --transposeB T -m 1024 -n 2048 -k 512 --a_type h --lda 1024 --b_type h --ldb 2048 --c_type s --ldc 1024 --d_type s --ldd 1024 --compute_type s --alpha 1.1 --beta 1
# HSS batched
$ ./rocblas-bench -f gemm_batched_ex --transposeA N --transposeB T -m 1024 -n 2048 -k 512 --a_type h --lda 1024 --b_type h --ldb 2048 --c_type s --ldc 1024 --d_type s --ldd 1024 --compute_type s --alpha 1.1 --beta 1 --batch_count 5
# HSS strided batched
$ ./rocblas-bench -f gemm_strided_batched_ex --transposeA N --transposeB T -m 1024 -n 2048 -k 512 --a_type h --lda 1024 --stride_a 4096 --b_type h --ldb 2048 --stride_b 4096 --c_type s --ldc 1024 --stride_c 2097152 --d_type s --ldd 1024 --stride_d 2097152 --compute_type s --alpha 1.1 --beta 1 --batch_count 5

# BBS
$ ./rocblas-bench -f gemm_ex --transposeA N --transposeB T -m 1024 -n 2048 -k 512 --a_type bf16_r --lda 1024 --b_type bf16_r --ldb 2048 --c_type bf16_r --ldc 1024 --d_type bf16_r --ldd 1024 --compute_type s --alpha 1.1 --beta 1
# BBS batched
$ ./rocblas-bench -f gemm_batched_ex --transposeA N --transposeB T -m 1024 -n 2048 -k 512 --a_type bf16_r --lda 1024 --b_type bf16_r --ldb 2048 --c_type bf16_r --ldc 1024 --d_type bf16_r --ldd 1024 --compute_type s --alpha 1.1 --beta 1 --batch_count 5
# BBS strided batched
$ ./rocblas-bench -f gemm_strided_batched_ex --transposeA N --transposeB T -m 1024 -n 2048 -k 512 --a_type bf16_r --lda 1024 --stride_a 4096 --b_type bf16_r --ldb 2048 --stride_b 4096 --c_type bf16_r --ldc 1024 --stride_c 2097152 --d_type bf16_r --ldd 1024 --stride_d 2097152 --compute_type s --alpha 1.1 --beta 1 --batch_count 5

# BSS
$ ./rocblas-bench -f gemm_ex --transposeA N --transposeB T -m 1024 -n 2048 -k 512 --a_type bf16_r --lda 1024 --b_type bf16_r --ldb 2048 --c_type s --ldc 1024 --d_type s --ldd 1024 --compute_type s --alpha 1.1 --beta 1
# BSS batched
$ ./rocblas-bench -f gemm_batched_ex --transposeA N --transposeB T -m 1024 -n 2048 -k 512 --a_type bf16_r --lda 1024 --b_type bf16_r --ldb 2048 --c_type s --ldc 1024 --d_type s --ldd 1024 --compute_type s --alpha 1.1 --beta 1 --batch_count 5
# BSS strided batched
$ ./rocblas-bench -f gemm_strided_batched_ex --transposeA N --transposeB T -m 1024 -n 2048 -k 512 --a_type bf16_r --lda 1024 --stride_a 4096 --b_type bf16_r --ldb 2048 --stride_b 4096 --c_type s --ldc 1024 --stride_c 2097152 --d_type s --ldd 1024 --stride_d 2097152 --compute_type s --alpha 1.1 --beta 1 --batch_count 5

# I8II
$ ./rocblas-bench -f gemm_ex --transposeA N --transposeB T -m 1024 -n 2048 -k 512 --a_type i8_r --lda 1024 --b_type i8_r --ldb 2048 --c_type i32_r --ldc 1024 --d_type i32_r --ldd 1024 --compute_type i32_r --alpha 1.1 --beta 1
# I8II batched
$ ./rocblas-bench -f gemm_batched_ex --transposeA N --transposeB T -m 1024 -n 2048 -k 512 --a_type i8_r --lda 1024 --b_type i8_r --ldb 2048 --c_type i32_r --ldc 1024 --d_type i32_r --ldd 1024 --compute_type i32_r --alpha 1.1 --beta 1 --batch_count 5
# I8II strided batched
$ ./rocblas-bench -f gemm_strided_batched_ex --transposeA N --transposeB T -m 1024 -n 2048 -k 512 --a_type i8_r --lda 1024 --stride_a 4096 --b_type i8_r --ldb 2048 --stride_b 4096 --c_type i32_r --ldc 1024 --stride_c 2097152 --d_type i32_r --ldd 1024 --stride_d 2097152 --compute_type i32_r --alpha 1.1 --beta 1 --batch_count 5

How to set rocblas-bench parameters in a yaml file#

If you want to benchmark many sizes, it is recommended to use rocblas-bench with the batch call to eliminate the latency in loading the Tensile library which rocblas links to. The batch call takes a yaml file with a list of all problem sizes. You can have multiple sizes of different types in one yaml file. The benchmark setting is different from the direct call to the rocblas-bench. A sample setting for each function is listed below. Once you have the yaml file, you can benchmark the sizes as follows:

rocBLAS/build/release/clients/staging/rocblas-bench --yaml problem-sizes.yaml

Here are the configurations for each function:

Non-HPA cases (gemm)

# dgemm
- { rocblas_function: "rocblas_dgemm",         transA: "N", transB: "T", M:    1024, N:    2048, K:    512, lda:   1024, ldb:   2048, ldc:   1024,  ldd:   1024, cold_iters: 2, iters: 10  }
# dgemm batched
- { rocblas_function: "rocblas_dgemm_batched", transA: "N", transB: "T", M:    1024, N:    2048, K:    512, lda:   1024, ldb:   2048, ldc:   1024,  ldd:   1024, cold_iters: 2, iters: 10, batch_count: 5  }
# dgemm strided batched
- { rocblas_function: "rocblas_dgemm_strided_batched", transA: "N", transB: "T", M:    1024, N:    2048, K:    512, lda:   1024, ldb:   2048, ldc:   1024,  ldd:   1024, cold_iters: 2, iters: 10, batch_count: 5, stride_a: 4096, stride_b: 4096, stride_c: 2097152, stride_d: 2097152 }

# sgemm
- { rocblas_function: "rocblas_sgemm",         transA: "N", transB: "T", M:    1024, N:    2048, K:    512, lda:   1024, ldb:   2048, ldc:   1024,  ldd:   1024, cold_iters: 2, iters: 10  }
# sgemm batched
- { rocblas_function: "rocblas_sgemm_batched", transA: "N", transB: "T", M:    1024, N:    2048, K:    512, lda:   1024, ldb:   2048, ldc:   1024,  ldd:   1024, cold_iters: 2, iters: 10, batch_count: 5  }
# sgemm strided batched
- { rocblas_function: "rocblas_sgemm_strided_batched", transA: "N", transB: "T", M:    1024, N:    2048, K:    512, lda:   1024, ldb:   2048, ldc:   1024,  ldd:   1024, cold_iters: 2, iters: 10, batch_count: 5, stride_a: 4096, stride_b: 4096, stride_c: 2097152, stride_d: 2097152 }

# hgemm
- { rocblas_function: "rocblas_hgemm",         transA: "N", transB: "T", M:    1024, N:    2048, K:    512, lda:   1024, ldb:   2048, ldc:   1024,  ldd:   1024, cold_iters: 2, iters: 10  }
# hgemm batched
- { rocblas_function: "rocblas_hgemm_batched", transA: "N", transB: "T", M:    1024, N:    2048, K:    512, lda:   1024, ldb:   2048, ldc:   1024,  ldd:   1024, cold_iters: 2, iters: 10, batch_count: 5  }
# hgemm strided batched
- { rocblas_function: "rocblas_hgemm_strided_batched", transA: "N", transB: "T", M:    1024, N:    2048, K:    512, lda:   1024, ldb:   2048, ldc:   1024,  ldd:   1024, cold_iters: 2, iters: 10, batch_count: 5, stride_a: 4096, stride_b: 4096, stride_c: 2097152, stride_d: 2097152 }

# cgemm
- { rocblas_function: "rocblas_cgemm",         transA: "N", transB: "T", M:    1024, N:    2048, K:    512, lda:   1024, ldb:   2048, ldc:   1024,  ldd:   1024, cold_iters: 2, iters: 10  }
# cgemm batched
- { rocblas_function: "rocblas_cgemm_batched", transA: "N", transB: "T", M:    1024, N:    2048, K:    512, lda:   1024, ldb:   2048, ldc:   1024,  ldd:   1024, cold_iters: 2, iters: 10, batch_count: 5  }
# cgemm strided batched
- { rocblas_function: "rocblas_cgemm_strided_batched", transA: "N", transB: "T", M:    1024, N:    2048, K:    512, lda:   1024, ldb:   2048, ldc:   1024,  ldd:   1024, cold_iters: 2, iters: 10, batch_count: 5, stride_a: 4096, stride_b: 4096, stride_c: 2097152, stride_d: 2097152 }

# zgemm
- { rocblas_function: "rocblas_zgemm",         transA: "N", transB: "T", M:    1024, N:    2048, K:    512, lda:   1024, ldb:   2048, ldc:   1024,  ldd:   1024, cold_iters: 2, iters: 10  }
# zgemm batched
- { rocblas_function: "rocblas_zgemm_batched", transA: "N", transB: "T", M:    1024, N:    2048, K:    512, lda:   1024, ldb:   2048, ldc:   1024,  ldd:   1024, cold_iters: 2, iters: 10, batch_count: 5  }
# zgemm strided batched
- { rocblas_function: "rocblas_zgemm_strided_batched", transA: "N", transB: "T", M:    1024, N:    2048, K:    512, lda:   1024, ldb:   2048, ldc:   1024,  ldd:   1024, cold_iters: 2, iters: 10, batch_count: 5, stride_a: 4096, stride_b: 4096, stride_c: 2097152, stride_d: 2097152 }

# cgemm
- { rocblas_function: "rocblas_cgemm",         transA: "N", transB: "C", M:    1024, N:    2048, K:    512, lda:   1024, ldb:   2048, ldc:   1024,  ldd:   1024, cold_iters: 2, iters: 10  }
# cgemm batched
- { rocblas_function: "rocblas_cgemm_batched", transA: "N", transB: "C", M:    1024, N:    2048, K:    512, lda:   1024, ldb:   2048, ldc:   1024,  ldd:   1024, cold_iters: 2, iters: 10, batch_count: 5  }
# cgemm strided batched
- { rocblas_function: "rocblas_cgemm_strided_batched", transA: "N", transB: "C", M:    1024, N:    2048, K:    512, lda:   1024, ldb:   2048, ldc:   1024,  ldd:   1024, cold_iters: 2, iters: 10, batch_count: 5, stride_a: 4096, stride_b: 4096, stride_c: 2097152, stride_d: 2097152 }

HPA cases (gemm_ex)

# HHS
- { rocblas_function: "rocblas_gemm_ex", transA: "N", transB: "T", a_type: f16_r, b_type: f16_r, c_type: f16_r, d_type: f16_r, compute_type: f32_r, M:    1024, N:    2048, K:    512, lda:   1024, ldb:   2048, ldc:   1024,  ldd:   1024, cold_iters: 2, iters: 10  }
# HHS batched
- { rocblas_function: "rocblas_gemm_ex", transA: "N", transB: "T", a_type: f16_r, b_type: f16_r, c_type: f16_r, d_type: f16_r, compute_type: f32_r, M:    1024, N:    2048, K:    512, lda:   1024, ldb:   2048, ldc:   1024,  ldd:   1024, cold_iters: 2, iters: 10, batch_count: 5  }
# HHS strided batched
- { rocblas_function: "rocblas_gemm_ex", transA: "N", transB: "T", a_type: f16_r, b_type: f16_r, c_type: f16_r, d_type: f16_r, compute_type: f32_r, M:    1024, N:    2048, K:    512, lda:   1024, ldb:   2048, ldc:   1024,  ldd:   1024, cold_iters: 2, iters: 10, batch_count: 5, stride_a: 4096, stride_b: 4096, stride_c: 2097152, stride_d: 2097152 }

# HSS
- { rocblas_function: "rocblas_gemm_ex", transA: "N", transB: "T", a_type: f16_r, b_type: f16_r, c_type: f16_r, d_type: f16_r, compute_type: f32_r, M:    1024, N:    2048, K:    512, lda:   1024, ldb:   2048, ldc:   1024,  ldd:   1024, cold_iters: 2, iters: 10  }
# HSS batched
- { rocblas_function: "rocblas_gemm_ex", transA: "N", transB: "T", a_type: f16_r, b_type: f16_r, c_type: f32_r, d_type: f32_r, compute_type: f32_r, M:    1024, N:    2048, K:    512, lda:   1024, ldb:   2048, ldc:   1024,  ldd:   1024, cold_iters: 2, iters: 10, batch_count: 5  }
# HSS strided batched
- { rocblas_function: "rocblas_gemm_ex", transA: "N", transB: "T", a_type: f16_r, b_type: f16_r, c_type: f32_r, d_type: f32_r, compute_type: f32_r, M:    1024, N:    2048, K:    512, lda:   1024, ldb:   2048, ldc:   1024,  ldd:   1024, cold_iters: 2, iters: 10, batch_count: 5, stride_a: 4096, stride_b: 4096, stride_c: 2097152, stride_d: 2097152 }

# BBS
- { rocblas_function: "rocblas_gemm_ex", transA: "N", transB: "T", a_type: bf16_r, b_type: bf16_r, c_type: bf16_r, d_type: bf16_r, compute_type: f32_r, M:    1024, N:    2048, K:    512, lda:   1024, ldb:   2048, ldc:   1024,  ldd:   1024, cold_iters: 2, iters: 10  }
# BBS batched
- { rocblas_function: "rocblas_gemm_ex", transA: "N", transB: "T", a_type: bf16_r, b_type: bf16_r, c_type: bf16_r, d_type: bf16_r, compute_type: f32_r, M:    1024, N:    2048, K:    512, lda:   1024, ldb:   2048, ldc:   1024,  ldd:   1024, cold_iters: 2, iters: 10, batch_count: 5  }
# BBS strided batched
- { rocblas_function: "rocblas_gemm_ex", transA: "N", transB: "T", a_type: bf16_r, b_type: bf16_r, c_type: bf16_r, d_type: bf16_r, compute_type: f32_r, M:    1024, N:    2048, K:    512, lda:   1024, ldb:   2048, ldc:   1024,  ldd:   1024, cold_iters: 2, iters: 10, batch_count: 5, stride_a: 4096, stride_b: 4096, stride_c: 2097152, stride_d: 2097152 }

# BSS
- { rocblas_function: "rocblas_gemm_ex", transA: "N", transB: "T", a_type: bf16_r, b_type: bf16_r, c_type: f32_r, d_type: f32_r, compute_type: f32_r, M:    1024, N:    2048, K:    512, lda:   1024, ldb:   2048, ldc:   1024,  ldd:   1024, cold_iters: 2, iters: 10  }
# BSS batched
- { rocblas_function: "rocblas_gemm_ex", transA: "N", transB: "T", a_type: bf16_r, b_type: bf16_r, c_type: f32_r, d_type: f32_r, compute_type: f32_r, M:    1024, N:    2048, K:    512, lda:   1024, ldb:   2048, ldc:   1024,  ldd:   1024, cold_iters: 2, iters: 10, batch_count: 5  }
# BSS strided batched
- { rocblas_function: "rocblas_gemm_ex", transA: "N", transB: "T", a_type: bf16_r, b_type: bf16_r, c_type: f32_r, d_type: f32_r, compute_type: f32_r, M:    1024, N:    2048, K:    512, lda:   1024, ldb:   2048, ldc:   1024,  ldd:   1024, cold_iters: 2, iters: 10, batch_count: 5, stride_a: 4096, stride_b: 4096, stride_c: 2097152, stride_d: 2097152 }

# I8II
- { rocblas_function: "rocblas_gemm_ex", transA: "N", transB: "T", a_type: i8_r, b_type: i8_r, c_type: i32_r, d_type: i32_r, compute_type: i32_r, M:    1024, N:    2048, K:    512, lda:   1024, ldb:   2048, ldc:   1024,  ldd:   1024, cold_iters: 2, iters: 10  }
# I8II batched
- { rocblas_function: "rocblas_gemm_ex", transA: "N", transB: "T", a_type: i8_r, b_type: i8_r, c_type: i32_r, d_type: i32_r, compute_type: i32_r, M:    1024, N:    2048, K:    512, lda:   1024, ldb:   2048, ldc:   1024,  ldd:   1024, cold_iters: 2, iters: 10, batch_count: 5  }
# I8II strided batched
- { rocblas_function: "rocblas_gemm_ex", transA: "N", transB: "T", a_type: i8_r, b_type: i8_r, c_type: i32_r, d_type: i32_r, compute_type: i32_r, M:    1024, N:    2048, K:    512, lda:   1024, ldb:   2048, ldc:   1024,  ldd:   1024, cold_iters: 2, iters: 10, batch_count: 5, stride_a: 4096, stride_b: 4096, stride_c: 2097152, stride_d: 2097152 }

For example, the performance of sgemm using rocblas-bench on a vega20 machine returns:

./rocblas-bench -f gemm -r f32_r --transposeA N --transposeB N -m 4096 -n 4096 -k 4096 --alpha 1 --lda 4096 --ldb 4096 --beta 0 --ldc 4096
transA,transB,M,N,K,alpha,lda,ldb,beta,ldc,rocblas-Gflops,us
N,N,4096,4096,4096,1,4096,4096,0,4096,11941.5,11509.4

A useful way of finding the parameters that can be used with ./rocblas-bench -f gemm is to turn on logging by setting environment variable ROCBLAS_LAYER=2. For example if the user runs:

ROCBLAS_LAYER=2 ./rocblas-bench -f gemm -i 1 -j 0

The above command will log:

./rocblas-bench -f gemm -r f32_r --transposeA N --transposeB N -m 128 -n 128 -k 128 --alpha 1 --lda 128 --ldb 128 --beta 0 --ldc 128

The user can copy and change the above command. For example, to change the datatype to IEEE-64 bit and the size to 2048:

./rocblas-bench -f gemm -r f64_r --transposeA N --transposeB N -m 2048 -n 2048 -k 2048 --alpha 1 --lda 2048 --ldb 2048 --beta 0 --ldc 2048

To measure performance on the ILP64 API functions, when they exist, add the argument --api 1 rather than changing the function name set in -f. Logging affects performance, so only use it to log the command to copy and change, then run the command without logging to measure performance.

Note that rocblas-bench also has the flag -v 1 for correctness checks.

How to benchmark the performance of special case gemv_batched and gemv_strided_batched functions for mixed precision (HSH, HSS, TST, TSS) using rocblas-bench#

The command to execute rocblas-bench for rocblas_hshgemv_batched with half-precision input, single precision compute, and half-precision output (HSH):

./rocblas-bench -f gemv_batched --a_type f16_r --c_type f16_r --compute_type f32_r --transposeA N -m 128 -n 128 --alpha 1  --lda 128  --incx 1 --beta 1 --incy 1  --batch_count 2

For the above command, instead of using the -r to specify the precision, we need to pass three additional arguments (a_type, c_type, and compute_type) to resolve the ambiguity of using mixed precision compute.

This mixed-precision support is only available for gemv_batched, gemv_strided_batched, and rocBLAS extension functions (e.g, axpy_ex, scal_ex, gemm_ex, etc.). For further information, refer to the rocBLAS API Reference.

rocblas-gemm-tune#

rocblas-gemm-tune is used to find the best performing GEMM kernel for each of a given set of GEMM problems.

It has a command line interface, which mimics the --yaml input used by rocblas-bench (see above section for details).

To generate the expected --yaml input, profile logging can be used, by setting environment variable ROCBLAS_LAYER=4.

For more information on rocBLAS logging, see Logging in rocBLAS, in the rocBLAS API Reference.

An example input file:

- {'rocblas_function': 'gemm_ex', 'transA': 'N', 'transB': 'N', 'M': 320, 'N': 588, 'K': 4096, 'alpha': 1, 'a_type': 'f32_r', 'lda': 320, 'b_type': 'f32_r', 'ldb': 6144, 'beta': 0, 'c_type': 'f32_r', 'ldc': 320, 'd_type': 'f32_r', 'ldd': 320, 'compute_type': 'f32_r', 'device': 0}
- {'rocblas_function': 'gemm_ex', 'transA': 'N', 'transB': 'N', 'M': 512, 'N': 3096, 'K': 512, 'alpha': 1, 'a_type': 'f16_r', 'lda': 512, 'b_type': 'f16_r', 'ldb': 512, 'beta': 0, 'c_type': 'f16_r', 'ldc': 512, 'd_type': 'f16_r', 'ldd': 512, 'compute_type': 'f32_r', 'device': 0}

Expected output (note selected GEMM idx may differ):

transA,transB,M,N,batch_count,K,alpha,beta,lda,ldb,ldc,input_type,output_type,compute_type,solution_index
N,N,320,588,1,4096,1,0,320,6144,320,f32_r,f32_r,f32_r,3788
N,N,512,3096,1,512,1,0,512,512,512,f16_r,f16_r,f32_r,4546

Where the far right values (solution_index) are the indices of the best performing kernels for those GEMMs in the rocBLAS kernel library. These indices can be directly used in future GEMM calls, but please note that these indices cannot be reused across library releases or across different device architectures.

See example_user_driven_tuning.cpp for sample code of directly using kernels via their indices.

If the output is stored in a file, the results can be used to override default kernel selection with the kernels found, by setting the environment variable ROCBLAS_TENSILE_GEMM_OVERRIDE_PATH=<path>, where <path> points to the stored file.

rocblas-test#

rocblas-test is used in performing rocBLAS unit tests and it uses Googletest framework.

The tests are in five categories:

  • quick

  • pre_checkin

  • nightly

  • stress

  • known_bug

To run the quick tests:

./rocblas-test --gtest_filter=*quick*

The other tests can also be run using the above command by replacing *quick* with *pre_checkin*, *nightly*, and *known_bug*.

The pattern for --gtest_filter is:

--gtest_filter=POSTIVE_PATTERNS[-NEGATIVE_PATTERNS]

gtest_filter can also be used to run tests for a particular function, and a particular set of input parameters. For example, to run all quick tests for the function rocblas_saxpy:

./rocblas-test --gtest_filter=*quick*axpy*f32_r*

The default verbosity shows test category totals and specific test failure details, matching an implicit environment variable setting of GTEST_LISTENER=NO_PASS_LINE_IN_LOG. To get an output listing of each individual test that is run, use:

GTEST_LISTENER=PASS_LINE_IN_LOG ./rocblas-test --gtest_filter=*quick*

rocblas-test can be driven by tests specified in a yaml file using the --yaml argument. As the test categories pre_checkin and nightly can require hours to run, a short smoke test set is provided in a yaml file. This rocblas_smoke.yaml test set should only require a few minutes to test a few small problem sizes for every function:

./rocblas-test --yaml rocblas_smoke.yaml
  • yaml extension for lock step multiple variable scanning

Both rocblas-test and rocblas-bench can use an extension added to scan over multiple variables in lock step implemented by the Arguments class. For this purpose set the Arugments member variable scan to the range to scan over and use *c_scan_value to retrieve the values. This can be used to avoid all combinations of yaml variable values that are normally generated. For example, - { scan: [32..256..32], M: *c_scan_value, N: *c_scan_value, lda: *c_scan_value }

  • large memory tests (stress category)

Some tests in the stress category may attempt to allocate more RAM than available. While these tests should automatically get skipped, in some cases, such as running in a docker container, they may instead result in process termination. You can limit the peak RAM allocations in GB using the environment variable:

ROCBLAS_CLIENT_RAM_GB_LIMIT=32 ./rocblas-test --gtest_filter=*stress*
  • long-running tests

The rocblas-test process will be terminated if a single test takes longer than a timeout. Change the timeout with the environment variable ROCBLAS_TEST_TIMEOUT, whose value is in seconds (default is 600 seconds):

ROCBLAS_TEST_TIMEOUT=900 ./rocblas-test --gtest_filter=*stress*
  • debugging rocblas-test

The rocblas-test process will catch signals internally which may interfere with debugger use. To defeat this set the environment variable ROCBLAS_TEST_NO_SIGACTION:

ROCBLAS_TEST_NO_SIGACTION=1 rocgdb ./rocblas-test --gtest_filter=*stress*

Add New rocBLAS Unit Test#

To add new data-driven tests to the rocBLAS Google Test Framework:

I. Create a C++ header file with the name testing_<function>.hpp in the include subdirectory, with templated functions for a specific rocBLAS routine. Examples:

testing_gemm.hpp
testing_gemm_ex.hpp

In this testing_*.hpp file, create a templated function which returns void and accepts a const Arguments& parameter. Example:

template<typename Ti, typename To, typename Tc>
void testing_gemm_ex(const Arguments& arg)
{
// ...
}

This function is used for yaml file driven argument testing. It will be invoked by the dispatch code for each permutation of the yaml driven parameters. Additionally a template function for bad argument handling tests should be created. Example:

template <typename T>
void testing_gemv_bad_arg(const Arguments& arg)
{
// ...
}

These bad_arg test function templates should be used to set arguments programmatically where it is simpler than the yaml approach, for example to pass NULL pointers. It is expected that member variable values in the Arguments parameter will not be utilized with the common exception of api member variable of Arguments which can drive selection of C, FORTRAN, C_64, or FORTRAN_64 API bad argument tests.

All functions should be generalized with template parameters as much as possible, to avoid copy-and-paste code.

In this function, use the following macros and functions to check results:

HIP_CHECK_ERROR             Verifies that a HIP call returns success
ROCBLAS_CHECK_ERROR         Verifies that a rocBLAS call returns success
EXPECT_ROCBLAS_STATUS       Verifies that a rocBLAS call returns a certain status
unit_check_general          Check that two answers agree (see unit.hpp)
near_check_general          Check that two answers are close (see near.hpp)
DAPI_CHECK                  Verifies either LP64 or ILP64 function form returns success (based on Arguments member variable api)
DAPI_EXPECT                 Verifies either LP64 or ILP64 function form returns a certain status
DAPI_DISPATCH               Invoke either LP64 or ILP64 function form

In addition, you can use Google Test Macros such as the below, as long as they are guarded by #ifdef GOOGLE_TEST:

EXPECT_EQ
ASSERT_EQ
EXPECT_TRUE
ASSERT_TRUE
...

Note: The device_vector template allocates memory on the device. You must check whether converting the device_vector to bool returns false, and if so, report a HIP memory error and then exit the current function. Example:

// allocate memory on device
device_vector<T> dx(size_x);
device_vector<T> dy(size_y);
if(!dx || !dy)
{
    CHECK_HIP_ERROR(hipErrorOutOfMemory);
    return;
}

The general outline of the function should be:

  1. Convert any scalar arguments (e.g., alpha and beta) to double.

  2. If the problem size arguments are invalid, use a safe_size to allocate arrays, call the rocBLAS routine with the original arguments, and verify that it returns rocblas_status_invalid_size. Return.

  3. Set up host and device arrays (see rocblas_vector.hpp and rocblas_init.hpp).

  4. Call a CBLAS or other reference implementation on the host arrays.

  5. Call rocBLAS using both device pointer mode and host pointer mode, verifying that every rocBLAS call is successful by wrapping it in ROCBLAS_CHECK_ERROR().

  6. If arg.unit_check is enabled, use unit_check_general or near_check_general to validate results.

  7. (Deprecated) If arg.norm_check is enabled, calculate and print out norms.

  8. If arg.timing is enabled, perform benchmarking (currently under refactoring).

II. Create a C++ file with the name <function>_gtest.cpp in the gtest subdirectory, where <function> is a non-type-specific shorthand for the function(s) being tested. Example:

gemm_gtest.cpp
trsm_gtest.cpp
blas1_gtest.cpp

In the C++ file, follow these steps:

A. Include the header files related to the tests, as well as type_dispatch.hpp. Example:

#include "testing_syr.hpp"
#include "type_dispatch.hpp"
  1. Wrap the body with an anonymous namespace, to minimize namespace collisions:

namespace {
  1. Create a templated class which accepts any number of type parameters followed by one anonymous trailing type parameter defaulted to void (to be used with enable_if).

Choose the number of type parameters based on how likely in the future that the function will support a mixture of that many different types, e.g. Input type (Ti), Output type (To), Compute type (Tc). If the function will never support more than 1-2 type parameters, then that many can be used. But if the function may be expanded later to support mixed types, then those should be planned for ahead of time and placed in the template parameters.

Unless the number of type parameters is greater than one and is always fixed, then later type parameters should default to earlier ones, so that a subset of type arguments can used, and so that code which works for functions which take one type parameter may be used for functions which take one or more type parameters. Example:

template< typename Ti, typename To = Ti, typename Tc = To, typename = void>

Make the primary definition of this class template derive from the rocblas_test_invalid class. Example:

template <typename T, typename = void>
struct syr_testing : rocblas_test_invalid
{
};
  1. Create one or more partial specializations of the class template conditionally enabled by the type parameters matching legal combinations of types.

If the first type argument is void, then these partial specializations must not apply, so that the default based on rocblas_test_invalid can perform the correct behavior when void is passed to indicate failure.

In the partial specialization(s), derive from the rocblas_test_valid class.

In the partial specialization(s), create a functional operator() which takes a const Arguments& parameter and calls templated test functions (usually in include/testing_*.hpp) with the specialization’s template arguments when the arg.function string matches the function name. If arg.function does not match any function related to this test, mark it as a test failure. Example:

 template <typename T>
 struct syr_testing<T,
                   std::enable_if_t<std::is_same_v<T, float> || std::is_same_v<T, double>>
                   > : rocblas_test_valid
{
    void operator()(const Arguments& arg)
    {
        if(!strcmp(arg.function, "syr"))
            testing_syr<T>(arg);
        else
            FAIL() << "Internal error: Test called with unknown function: "
                   << arg.function;
    }
};
  1. If necessary, create a type dispatch function for this function (or group of functions it belongs to) in include/type_dispatch.hpp. If possible, use one of the existing dispatch functions, even if it covers a superset of allowable types. The purpose of type_dispatch.hpp is to perform runtime type dispatch in a single place, rather than copying it across several test files.

The type dispatch function takes a template template parameter of template<typename...> class and a function parameter of type const Arguments&. It looks at the runtime type values in Arguments, and instantiates the template with one or more static type arguments, corresponding to the dynamic runtime type arguments.

It treats the passed template as a functor, passing the Arguments argument to a particular instantiation of it.

The combinations of types handled by this “runtime type to template type instantiation mapping” function can be general, because the type combinations which do not apply to a particular test case will have the template argument set to derive from rocblas_test_invalid, which will not create any unresolved instantiations. If unresolved instantiation compile or link errors occur, then the enable_if<> condition in step D needs to be refined to be false for type combinations which do not apply.

The return type of this function needs to be auto, picking up the return type of the functor.

If the runtime type combinations do not apply, then this function should return TEST<void>{}(arg), where TEST is the template parameter. However, this is less important than step D above in excluding invalid type combinations with enable_if, since this only excludes them at run-time, and they need to be excluded by step D at compile-time in order to avoid unresolved references or invalid instantiations. Example:

template <template <typename...> class TEST>
auto rocblas_simple_dispatch(const Arguments& arg)
{
    switch(arg.a_type)
    {
      case rocblas_datatype_f16_r: return TEST<rocblas_half>{}(arg);
      case rocblas_datatype_f32_r: return TEST<float>{}(arg);
      case rocblas_datatype_f64_r: return TEST<double>{}(arg);
      case rocblas_datatype_bf16_r: return TEST<rocblas_bfloat16>{}(arg);
      case rocblas_datatype_f16_c: return TEST<rocblas_half_complex>{}(arg);
      case rocblas_datatype_f32_c: return TEST<rocblas_float_complex>{}(arg);
      case rocblas_datatype_f64_c: return TEST<rocblas_double_complex>{}(arg);
      default: return TEST<void>{}(arg);
    }
}
  1. Create a (possibly-templated) test implementation class which derives from the RocBLAS_Test template class, passing itself to RocBLAS_Test (the CRTP pattern) as well as the template class defined above. Example:

struct syr : RocBLAS_Test<syr, syr_testing>
{
    // ...
};

In this class, implement three static functions:

static bool type_filter(const Arguments& arg) returns true if the types described by *_type in the Arguments structure, match a valid type combination.

This is usually implemented simply by calling the dispatch function in step E, passing it the helper type_filter_functor template class defined in RocBLAS_Test. This functor uses the same runtime type checks as are used to instantiate test functions with particular type arguments, but instead, this returns true or false depending on whether a function would have been called. It is used to filter out tests whose runtime parameters do not match a valid test.

Since RocBLAS_Test is a dependent base class if this test implementation class is templated, you may need to use a fully-qualified name (A::B) to resolve type_filter_functor, and in the last part of this name, the keyword template needs to precede type_filter_functor. The first half of the fullyqualified name can be this class itself, or the full instantation of RocBLAS_Test<...>. Example:

static bool type_filter(const Arguments& arg)
{
    return rocblas_blas1_dispatch<
        blas1_test_template::template type_filter_functor>(arg);
}

static bool function_filter(const Arguments& arg) returns true if the function name in Arguments matches one of the functions handled by this test. Example:

// Filter for which functions apply to this suite
static bool function_filter(const Arguments& arg)
{
  return !strcmp(arg.function, "ger") || !strcmp(arg.function, "ger_bad_arg");
}

static std::string name_suffix(const Arguments& arg) returns a string which will be used as the Google Test name’s suffix. It will provide an alphanumeric representation of the test’s arguments.

Use the RocBLAS_TestName helper class template to create the name. It accepts ostream output (like std::cout), and can be automatically converted to std::string after all of the text of the name has been streamed to it.

The RocBLAS_TestName helper class constructor accepts a string argument which will be included in the test name. It is generally passed the Arguments structure’s name member.

The RocBLAS_TestName helper class template should be passed the name of this test implementation class (including any implicit template arguments) as a template argument, so that every instantiation of this test implementation class creates a unique instantiation of RocBLAS_TestName. RocBLAS_TestName has some static data that needs to be kept local to each test.

RocBLAS_TestName converts non-alphanumeric characters into suitable replacements, and disambiguates test names when the same arguments appear more than once.

Since the conversion of the stream into a std::string is a destructive one-time operation, the RocBLAS_TestName value converted to std::string needs to be an rvalue. Example:

static std::string name_suffix(const Arguments& arg)
{
    // Okay: rvalue RocBLAS_TestName object streamed to and returned
    return RocBLAS_TestName<syr>() << rocblas_datatype2string(arg.a_type)
        << '_' << (char) std::toupper(arg.uplo) << '_' << arg.N
        << '_' << arg.alpha << '_' << arg.incx << '_' << arg.lda;
}

static std::string name_suffix(const Arguments& arg)
{
    RocBLAS_TestName<gemm_test_template> name;
    name << rocblas_datatype2string(arg.a_type);
    if(GEMM_TYPE == GEMM_EX || GEMM_TYPE == GEMM_STRIDED_BATCHED_EX)
        name << rocblas_datatype2string(arg.b_type)
             << rocblas_datatype2string(arg.c_type)
             << rocblas_datatype2string(arg.d_type)
             << rocblas_datatype2string(arg.compute_type);
    name << '_' << (char) std::toupper(arg.transA)
                << (char) std::toupper(arg.transB) << '_' << arg.M
                << '_' << arg.N << '_' << arg.K << '_' << arg.alpha << '_'
                << arg.lda << '_' << arg.ldb << '_' << arg.beta << '_'
                << arg.ldc;
    // name is an lvalue: Must use std::move to convert it to rvalue.
    // name cannot be used after it's converted to a string, which is
    // why it must be "moved" to a string.
    return std::move(name);
}
  1. Choose a non-type-specific shorthand name for the test, which will be displayed as part of the test name in the Google Tests output (and hence will be stringified). Create a type alias for this name, unless the name is already the name of the class defined in step F, and it is not templated. For example, for a templated class defined in step F, create an alias for one of its instantiations:

using gemm = gemm_test_template<gemm_testing, GEMM>;
  1. Pass the name created in step G to the TEST_P macro, along with a broad test category name that this test belongs to (so that Google Test filtering can be used to select all tests in a category). The broad test category suffix should be _tensile if it requires Tensile.

In the body following this TEST_P macro, call the dispatch function from step E, passing it the class from step C as a template template argument, passing the result of GetParam() as an Arguments structure, and wrapping the call in the CATCH_SIGNALS_AND_EXCEPTIONS_AS_FAILURES() macro. Example:

TEST_P(gemm, blas3_tensile) { CATCH_SIGNALS_AND_EXCEPTIONS_AS_FAILURES(rocblas_gemm_dispatch<gemm_testing>(GetParam())); }

The CATCH_SIGNALS_AND_EXCEPTIONS_AS_FAILURES() macro detects signals such as SIGSEGV and uncaught C++ exceptions returned from rocBLAS C APIs as failures, without terminating the test program.

  1. Call the INSTANTIATE_TEST_CATEGORIES macro which instantiates the Google Tests across all test categories (quick, pre_checkin, nightly, known_bug), passing it the same test name as in steps G and H. Example:

INSTANTIATE_TEST_CATEGORIES(gemm);
  1. Don’t forget to close the anonymous namespace:

} // namespace

III. Create a <function>.yaml file with the same name as the C++ file, just with a .yaml extension.

In the YAML file, define tests with combinations of parameters.

The YAML files are organized as files which include: each other (an extension to YAML), define anchors for data types and data structures, list of test parameters or subsets thereof, and Tests which describe a combination of parameters including category and function.

category must be one of quick, pre_checkin, nightly, or known_bug. The category is automatically changed to known_bug if the test matches a test in known_bugs.yaml.

function must be one of the functions tested for and recognized in steps D-F.

The syntax and idioms of the YAML files is best described by looking at the existing *_gtest.yaml files as examples.

IV. Add the YAML file to rocblas_gtest.yaml, to be included. Examnple:

include: blas1_gtest.yaml

V. Add the YAML file to the list of dependencies for rocblas_gtest.data in CMakeLists.txt. Example:

add_custom_command( OUTPUT "${ROCBLAS_TEST_DATA}"
                    COMMAND ../common/rocblas_gentest.py -I ../include rocblas_gtest.yaml -o "${ROCBLAS_TEST_DATA}"
                    DEPENDS ../common/rocblas_gentest.py rocblas_gtest.yaml ../include/rocblas_common.yaml known_bugs.yaml blas1_gtest.yaml gemm_gtest.yaml gemm_batched_gtest.yaml gemm_strided_batched_gtest.yaml gemv_gtest.yaml symv_gtest.yaml syr_gtest.yaml ger_gtest.yaml trsm_gtest.yaml trtri_gtest.yaml geam_gtest.yaml set_get_vector_gtest.yaml set_get_matrix_gtest.yaml
                    WORKING_DIRECTORY "${CMAKE_CURRENT_SOURCE_DIR}" )

VI. Add the .cpp file to the list of sources for rocblas-test in CMakeLists.txt. Example:

set(rocblas_test_source
    rocblas_gtest_main.cpp
    ${Tensile_TEST_SRC}
    set_get_pointer_mode_gtest.cpp
    logging_mode_gtest.cpp
    set_get_vector_gtest.cpp
    set_get_matrix_gtest.cpp
    blas1_gtest.cpp
    gemv_gtest.cpp
    ger_gtest.cpp
    syr_gtest.cpp
    symv_gtest.cpp
    geam_gtest.cpp
    trtri_gtest.cpp
   )

VII. Aim for a function to have tests in each of the categories: quick, pre_checkin, nightly. Aim for tests for each function to have runtime in the table below:

quick

pre_checkin

nightly

Level 1

2 - 12 sec

20 - 36 sec

70 - 200 sec

Level 2

6 - 36 sec

35 - 100 sec

200 - 650 sec

Level 3

20 sec - 2 min

2 - 6 min

12 - 24 min

Many examples are available in gtest/*_gtest.{cpp,yaml}