rocBLAS programming guide#
This topic covers internal details that are required to program with rocBLAS. It includes a discussion of the source code organization, stream and device management, device memory allocation, and other technical considerations.
Source code organization#
The rocBLAS code can be found in the rocBLAS folder of the rocm-libraries GitHub. It is split into three major parts:
The
library
directory contains all the source code for the library.The
clients
directory contains all the test code and code to build clients.Infrastructure such as
docs
andcmake
to support the library.
The library directory#
Here is the structure of the library
directory, which contains the following content for rocBLAS.
library/include#
This directory contains C98 include files for the external API. These files also contain Doxygen comments that document the API.
library/src/blas[1,2,3]#
This includes source code for Level 1, 2, and 3 BLAS functions in .cpp
and .hpp
files.
The
*.cpp
files contain the following:External C functions that call or instantiate templated functions with an
_impl
extension.The
_impl
functions, which have argument checking and logging. In turn, they call functions with a_template
extension.
The
*_imp.hpp
files contain:_template
functions that can be exported to rocSOLVER. They usually call the_launcher
functions.API implementations that can be instantiated for the original APIs with integer arguments using
rocblas_int
and again for the ILP64 API with integer arguments asint64_t
.
The
*_kernels.cpp
files contain:_launcher
functions that invoke or launch kernels usingROCBLAS_LAUNCH_KERNEL
or related macros._kernel
functions that run on the device.
library/src/blas_ex#
This contains the source code for mixed-precision BLAS.
library/src/src64#
This directory contains the ILP64 source code for Level 1, 2, and 3 BLAS and mixed-precision functions in blas_ex
.
The files normally end with _64
before the file type extension, for example, _64.cpp
.
The API integers are int64_t
instead of rocblas_int
.
The function behavior is kept identical at the higher level by instantiable macros and C++ templates.
Only at the kernel dispatch level does the code diverge by
providing a _64
version, in which the invocation is controlled using the ROCBLAS_API
macro.
The directory structure mirrors the level organization used for the parent directory library/src
.
Device kernel code#
Most BLAS device functions (kernels) are C++ templated functions based on the data type.
In C++ host code, any duplicate instantiations of templates can be handled by the linker
and the duplicates are ignored. LLVM device code instantiations, however, are not handled this way,
so you must avoid duplicate instantiations in multiple code units.
Kernel templates should therefore only be provided as C++ template prototypes in the include files
unless they must be instantiated. Try to instantiate all forms in a single
unit, for example, in a .cpp
file, and expose a launcher C++ interface to invoke the device calls where possible.
This is especially important for ILP64 implementations where it’s best to
reuse the LP64 instantiations without any duplication to avoid bloating the library size.
library/src/blas3/Tensile#
This includes code for calling Tensile from rocBLAS and YAML files with Tensile tuning configurations.
library/src/include#
This includes the internal include files for:
Handle-related code
Device memory allocation
Logging
Numerical checking
Utility code
The clients directory#
The clients
directory contains all test code and code to build clients.
clients/gtest#
Code for the rocblas-test client. This client is used to test rocBLAS.
clients/benchmarks#
Code for the rocblas-benchmark client. This client is used to benchmark rocBLAS functions.
clients/include#
This contains code for testing and benchmarking individual rocBLAS functions and utility code for testing.
The test harness functions are templated by data type and are defined in separate files for
each function form: non-batched, batched, and strided_batched.
When a function also supports the ILP64 API, then both forms can be tested by the same
template and are controlled by the Arguments
API member variable.
This follows the pattern for Fortran API testing and includes FORTRAN_64
for the ILP64 format.
The code for benchmarking gemm_ex
(in testing_gemm_ex.hpp
) using rocblas-bench tries to reuse device memory between consecutive calls.
To get the best memory reuse, leading to better performance, the larger GEMMs should be listed first in the YAML input file.
Device memory is only reused between consecutive calls with the same precision, so GEMM operations should be grouped by their precisions.
clients/common#
This folder includes common code used by both rocblas-benchmark and rocblas-test.
clients/samples#
This directory contains sample code for calling the rocBLAS functions.
Infrastructure#
CMake is used to build and package rocBLAS. There are
CMakeLists.txt
files throughout the code.Doxygen, Breathe, Sphinx, and ReadTheDocs are used to produce the documentation. The content for the documentation is taken from these sources:
Doxygen comments in the include files in the directory
library/include
Files in the
docs
folder.
Jenkins is used to automate continuous integration (CI) testing.
clang-format is used to format the C++ code.
Handle, stream, and device management#
This section covers handles, streams, and devices, including multiple streams and devices.
Handle#
You must create a rocBLAS_handle
, as shown below, before calling any other rocBLAS functions:
rocblas_handle handle;
if(rocblas_create_handle(&handle) != rocblas_status_success) return EXIT_FAILURE;
After you have finished calling the rocBLAS functions, destroy the handle:
if(rocblas_destroy_handle(handle) != rocblas_status_success) return EXIT_FAILURE;
The handle you create uses the default stream and device. To use a non-default stream and non-default device, follow this approach:
int deviceId = non_default_device_id;
if(hipSetDevice(deviceId) != hipSuccess) return EXIT_FAILURE;
//optional call to rocblas_initialize
rocblas_initialize();
// note the order, call hipSetDevice before hipStreamCreate
hipStream_t stream;
if(hipStreamCreate(&stream) != hipSuccess) return EXIT_FAILURE;
rocblas_handle handle;
if(rocblas_create_handle(&handle) != rocblas_status_success) return EXIT_FAILURE;
if(rocblas_set_stream(handle, stream) != rocblas_status_success) return EXIT_FAILURE;
To use the library with a non-default device within a host thread, the device must be set using hipSetDevice()
before creating the handle.
The device in the host thread must not be changed between hipStreamCreate
and hipStreamDestroy
.
If the device in the host thread is changed between creating and destroying the stream, then the behavior is undefined.
If you create a non-default stream, it is your responsibility to synchronize the old non-default stream and update the rocBLAS handle with the default or new non-default stream before destroying the old non-default stream.
// Synchronize the non-default stream before destroying it
if(hipStreamSynchronize(stream) != hipSuccess) return EXIT_FAILURE;
// Reset the stream reference in the handle to either default or new non-default
if(rocblas_set_stream(handle, 0) != rocblas_status_success) return EXIT_FAILURE;
if(hipStreamDestroy(stream) != hipSuccess) return EXIT_FAILURE;
Note
It is essential to reset the rocBLAS handle stream reference to avoid a hipErrorContextIsDestroyed
error, which is handled internally.
If this step is skipped, you might encounter this error with AMD_LOG_LEVEL
logging or when using hipPeekAtLastError( )
.
When switching from one non-default stream to another, you must complete
all rocBLAS operations previously submitted with this handle on the old stream using
the hipStreamSynchronize(old_stream)
API before setting the new stream.
// Synchronize the old stream
if(hipStreamSynchronize(old_stream) != hipSuccess) return EXIT_FAILURE;
// Create a new stream (this step can be done before the steps above)
if(hipStreamCreate(&new_stream) != hipSuccess) return EXIT_FAILURE;
// Set the handle to use the new stream (must come after synchronization & before deletion of old stream)
if(rocblas_set_stream(handle, new_stream) != rocblas_status_success) return EXIT_FAILURE;
// Destroy the old stream (this step is optional but must come after synchronization)
if(hipStreamDestroy(old_stream) != hipSuccess) return EXIT_FAILURE;
The call to hipStreamSynchronize
above is necessary because the rocBLAS_handle
contains allocated device
memory that must not be shared by multiple asynchronous streams at the same time.
If either the old or new stream is the default or NULL
stream, it is not necessary to
synchronize the old stream before destroying it, or before setting the new stream,
because the synchronization is implicit.
Note
You can switch from one non-default stream to another without calling hipStreamSynchronize()
by enabling stream-order memory allocation.
For more information, see Stream-ordered memory allocation.
Creating the handle incurs a startup cost. There is an additional startup cost for
GEMM functions to load GEMM kernels for a specific device. You can shift the
GEMM startup cost to occur later after setting the device by calling rocblas_initialize()
after calling hipSetDevice()
. This needs to happen once for each device.
If you have two rocBLAS handles which use the same device, then you only need to call rocblas_initialize()
once. If rocblas_initialize()
is not called, then the first GEMM call incurs
the startup cost.
The rocBLAS_handle
stores the following information:
Stream
Logging mode
Pointer mode
Atomics mode
Stream and device management#
HIP kernels are launched in a queue, which is also known as a stream. A stream represents a queue of work on a particular device.
A rocBLAS_handle
always has one stream, while a stream is always associated with one device.
The rocBLAS_handle
is passed as an argument to all rocBLAS functions that launch kernels. These kernels are
launched in the handle’s stream to run on that stream’s device.
If you do not create a stream, the rocBLAS_handle
uses the default or NULL
stream, which is maintained by the system. You cannot create or destroy the default
stream. However, you can create a new non-default stream and bind it to the rocBLAS_handle
using the
commands hipStreamCreate()
and rocblas_set_stream()
.
rocBLAS supports non-blocking streams for functions requiring synchronization to guarantee results on the host.
For functions like rocblas_Xnrm2
, the scalar result is copied from device to host when rocblas_pointer_mode == rocblas_pointer_mode_host
.
This is accomplished by using hipMemcpyAsync()
, followed by hipStreamSynchronize()
.
The stream in the rocBLAS_handle
is synchronized.
Note
The rocBLAS functions rocblas_set_vector()
, rocblas_get_vector()
, rocblas_set_matrix()
, and rocblas_get_matrix()
block on the default stream and are exceptions to the pattern above.
If you create a stream, you are responsible for destroying it using hipStreamDestroy()
. If the handle
has to switch from one non-default stream to another, then the old stream needs to be synchronized.
After that, you need to create and set the new non-default stream using hipStreamCreate()
and rocblas_set_stream()
, respectively.
Then you can optionally destroy the old stream.
HIP has two important device management functions:
hipSetDevice()
: Sets the default device to be used for subsequent HIP API calls from the thread.hipGetDevice()
: Returns the default device ID for the calling host thread.
The device which was set using hipSetDevice()
when hipStreamCreate()
was called
is the one that is associated with a stream. If the device was not set using hipSetDevice()
, then the default device is used.
You cannot switch the device in a stream between hipStreamCreate()
and hipStreamDestroy()
.
To use another device, create another stream.
rocBLAS never sets a device. It only queries the device using hipGetDevice()
. If rocBLAS does not see a
valid device, it returns an error message.
Multiple streams and multiple devices#
If a machine has num
GPU devices, they have the deviceID
numbers 0, 1, 2, and so forth, which are equivalent to num - 1
. The
default device has deviceID == 0
. Each rocBLAS_handle
can only be used with a single device,
but you can run <num>
handles on <num>
devices concurrently.
Device memory allocation#
This section presents the requirements and design details for rocBLAS device memory allocation, along with a series of examples.
Requirements#
The following list of requirements motivate the design implementation for device memory allocation.
Some rocBLAS functions require temporary device memory.
Allocating and deallocating device memory is expensive and needs synchronizing.
Temporary device memory should be recycled across multiple rocBLAS function calls using the same
rocblas_handle
.The following schemes need to be supported:
Default: Functions allocate required device memory automatically. This has the disadvantage that allocation is a synchronizing event.
Preallocate: Query all the functions called using a
rocblas_handle
to find out how much device memory is needed. Preallocate the required device memory when therocblas_handle
is created. There are no more synchronizing allocations or deallocations.Manual: Query a function to find out how much device memory is required. Allocate and deallocate the device memory before and after the function calls. This allows the user to control where the synchronizing allocation and deallocation occur.
In all of the above schemes, temporary device memory needs to be held by the rocblas_handle
and recycled if a subsequent function using the handle needs it.
Design#
rocBLAS uses per-handle device memory allocation with out-of-band management.
The state of the device memory is stored in the
rocblas_handle
.For the rocBLAS user:
Functions are provided to query how much device memory a function needs.
An environment variable is provided to preallocate when the
rocblas_handle
is created.Functions are provided to manually allocate and deallocate after the
rocblas_handle
is created.The following two values are added to the
rocblas_status
enum to indicate how a rocBLAS function is changing the state of the temporary device memory in therocblas_handle
:rocblas_status_size_unchanged
rocblas_status_size_increased
For the rocBLAS developer:
Functions are provided to answer device memory size queries.
Functions are provided to allocate temporary device memory.
Opaque RAII objects are used to hold the temporary device memory. Allocated memory is returned to the handle automatically when it is no longer needed.
The functions for the rocBLAS user are described in the rocBLAS API reference. The functions for the rocBLAS developer are described below.
Answering device memory size queries in functions that need memory#
Functions should contain code like the sample below to answer a query on how much temporary device memory is required.
In this case, m * n * sizeof(T)
bytes of memory is required.
Here is an example:
rocblas_status rocblas_function(rocblas_handle handle, ...)
{
if(!handle) return rocblas_status_invalid_handle;
if (handle->is_device_memory_size_query())
{
size_t size = m * n * sizeof(T);
return handle->set_optimal_device_memory_size(size);
}
// rest of function
}
is_device_memory_size_query function#
bool _rocblas_handle::is_device_memory_size_query() const
Indicates if the current function call is collecting information about the optimal device memory allocation size.
Return value:
true: Information is being collected
false: Information is not being collected
set_optimal_device_memory_size function#
rocblas_status _rocblas_handle::set_optimal_device_memory_size(size...)
Sets the optimal sizes of device memory buffers in bytes for this function. The sizes are rounded up to the next multiple of 64 (or some other chunk size), and the running maximum is updated.
Return value:
rocblas_status_size_unchanged: The maximum optimal device memory size did not change. This is the case where the function does not use device memory.
rocblas_satus_size_increased: The maximum optimal device memory size increased.
rocblas_status_internal_error: This function is not supposed to be collecting size information.
rocblas_sizeof_datatype function#
size_t rocblas_sizeof_datatype(rocblas_datatype type)
Returns the size of a rocBLAS data type.
Answering device memory size queries in functions that do not need memory#
Here is an example:
rocblas_status rocblas_function(rocblas_handle handle, ...)
{
if(!handle) return rocblas_status_invalid_handle;
RETURN_ZERO_DEVICE_MEMORY_SIZE_IF_QUERIED(handle);
// rest of function
}
RETURN_ZERO_DEVICE_MEMORY_SIZE_IF_QUERIED macro#
RETURN_ZERO_DEVICE_MEMORY_SIZE_IF_QUERIED(handle)
This is a convenience macro that returns rocblas_status_size_unchanged
if the function call is a memory size query.
rocBLAS kernel device memory allocation#
Device memory can be allocated for n
floats using device_malloc
as in this example:
auto workspace = handle->device_malloc(n * sizeof(float));
if (!workspace) return rocblas_status_memory_error;
float* ptr = static_cast<float*>(workspace);
Example#
To allocate multiple buffers:
size_t size1 = m * n;
size_t size2 = m * k;
auto workspace = handle->device_malloc(size1, size2);
if (!workspace) return rocblas_status_memory_error;
void * w_buf1, * w_buf2;
w_buf1 = workspace[0];
w_buf2 = workspace[1];
device_malloc function#
auto workspace = handle->device_malloc(size...)
Returns an opaque RAII object lending allocated device memory to a particular rocBLAS function.
The object returned is convertible to
void *
or other pointer types if only one size is specified.The individual pointers can be accessed using the subscript
operator[]
.The lifetime of the returned object is the lifetime of the borrowed device memory (RAII).
To simplify and optimize the code, only one successful allocation object can be alive at a time.
If the handle’s device memory is currently being managed by rocBLAS, as in the default scheme, it is expanded in size as necessary.
If the user allocated (or pre-allocated) an explicit size of device memory, then that size is used as the limit, and no resizing or synchronization ever occurs.
Parameters:
size: The size in bytes of memory to be allocated.
Return value:
On success: Returns an opaque RAII object that evaluates to
true
when converted tobool
.On failure: Returns an opaque RAII object that evaluates to
false
when converted tobool
.
Performance degradation#
The rocblas_status
enum value rocblas_status_perf_degraded
indicates that a slower algorithm was used because of insufficient device memory for the optimal algorithm.
Example#
rocblas_status ret = rocblas_status_success;
size_t size_for_optimal_algorithm = m + n + k;
size_t size_for_degraded_algorithm = m;
auto workspace_optimal = handle->device_malloc(size_for_optimal_algorithm);
if (workspace_optimal)
{
// Algorithm using larger optimal memory
}
else
{
auto workspace_degraded = handle->device_malloc(size_for_degraded_algorithm);
if (workspace_degraded)
{
// Algorithm using smaller degraded memory
ret = rocblas_status_perf_degraded;
}
else
{
// Not enough device memory for either optimal or degraded algorithm
ret = rocblas_status_memory_error;
}
}
return ret;
Thread-safe logging#
rocBLAS has thread-safe logging. This prevents garbled output when multiple threads are writing to the same file.
Thread-safe logging is achieved by using rocblas_internal_ostream
, a class that can be used similarly to std::ostream
.
It provides standardized methods for formatted output to either strings or files.
The default constructor for rocblas_internal_ostream
writes to strings, which are thread safe because they are owned by the calling thread.
There are also rocblas_internal_ostream
constructors for writing to files.
The rocblas_internal_ostream::yaml_on
and rocblas_internal_ostream::yaml_off
I/O modifiers turn YAML formatting mode on and off.
rocblas_cout
and rocblas_cerr
are the thread-safe versions of std::cout
and std::cerr
.
Many output identifiers have been marked “poisoned” in rocblas-test and rocblas-bench, to detect the use of non-thread-safe I/O.
These include std::cout
, std::cerr
, printf
, fprintf
, fputs
, puts
, and others.
The poisoning is not turned on in the library itself or in the samples
to avoid imposing restrictions on the use of these symbols on outside users.
rocblas_handle
contains three rocblas_internal_ostream
pointers for logging output:
static rocblas_internal_ostream* log_trace_os
static rocblas_internal_ostream* log_bench_os
static rocblas_internal_ostream* log_profile_os
The user can also create rocblas_internal_ostream
pointers and objects outside the handle.
The following usage notes apply to rocblas_internal_ostream
:
Each
rocblas_internal_ostream
associated with a file points to a singlerocblas_internal_ostream::worker
with astd::shared_ptr
for writing to the file. The worker is mapped from the device ID andinode
corresponding to the file. More than onerocblas_internal_ostream
can point to the same worker.This means that if more than one
rocblas_internal_ostream
is writing to a single output file, they will share the samerocblas_internal_ostream::worker
.The
<<
operator forrocblas_internal_ostream
is overloaded. Output is first accumulated inrocblas_internal_ostream::os
, astd::ostringstream
buffer. Eachrocblas_internal_ostream
has its ownos
std::ostringstream
buffer, so strings inos
are not garbled.When
rocblas_internal_ostream.os
is flushed with either astd::endl
or an explicit flush ofrocblas_internal_ostream
, thenrocblas_internal_ostream::worker::send
pushes the string contents ofrocblas_internal_ostream.os
and a promise, which together are called a task, ontorocblas_internal_ostream.worker.queue
.The
send
function uses the promise to asynchronously transfer data fromrocblas_internal_ostream.os
torocblas_internal_ostream.worker.queue
and wait for the worker to finish writing the string to the file. It also locks a mutex to ensure pushing the task onto the queue is atomic.The
ostream.worker.queue
contains a number of tasks. Whenrocblas_internal_ostream
is destroyed, all thetasks.string
inrocblas_internal_ostream.worker.queue
are printed to therocblas_internal_ostream
file and thestd::shared_ptr
to theostream.worker
is destroyed. If the reference count to the worker becomes0
, the worker’s thread is sent a zero-length string telling it to exit.
rocBLAS numerical checking#
rocBLAS provides the environment variable ROCBLAS_CHECK_NUMERICS
, which allows users to debug numerical abnormalities.
Setting a value for ROCBLAS_CHECK_NUMERICS
enables checks on the input and the output vectors/matrices
of the rocBLAS functions for NaN (not-a-number), zero, infinity, and denormal/subnormal values.
Numerical checking is available for the input and the output vectors for all level-1 and level-2 functions.
In level 2 functions, only the general (ge) type input and the output matrix can be checked for numerical abnormalities.
In level 3, GEMM is the only function to have numerical checking.
Note
Performance degrades when numerical checking is enabled.
ROCBLAS_CHECK_NUMERICS
is a bitwise OR of zero or more bit masks with the following possible values:
ROCBLAS_CHECK_NUMERICS = 0
: The variable is not set, so there is no numerical checking.ROCBLAS_CHECK_NUMERICS = 1
: Prints a fully informative message to the console. Indicates whether the input and the output Matrices/Vectors have a NaN, zero, infinity, or denormal value.ROCBLAS_CHECK_NUMERICS = 2
: Prints the result of numerical checking only if the input and the output Matrices/Vectors have a NaN, infinity, or denormal value.ROCBLAS_CHECK_NUMERICS = 4
: Returnsrocblas_status_check_numeric_fail
status if there is a NaN, infinity, or denormal value.ROCBLAS_CHECK_NUMERICS = 8
: Ignores denormal values if there are no NaN or infinity values present.
Here is an example showing how to use ROCBLAS_CHECK_NUMERICS
:
ROCBLAS_CHECK_NUMERICS=4 ./rocblas-bench -f gemm -i 1 -j 0
This command returns rocblas_status_check_numeric_fail
if the input and the output matrices
of a BLAS level-3 GEMM function have a NaN, infinity, or denormal value.
If there are no numerical abnormalities, then rocblas_status_success
is returned.
Note
In stream capture mode, all numerical checking is skipped and rocblas_status_success
is returned.
rocBLAS order of argument checking and logging#
Argument checking differs between legacy BLAS and rocBLAS.
Legacy BLAS#
Legacy BLAS has two types of argument checking:
Error-return for an incorrect argument. Legacy BLAS implements this with a call to the function
XERBLA
.Quick-return-success when an argument allows for the subprogram to be a no-operation or a constant result.
Level-2 and Level-3 BLAS subprograms have both error-return and quick-return-success. Level-1 BLAS subprograms have only quick-return-success.
rocBLAS#
For a full list of error return codes, see the rocblas_status
enumeration in rocBLAS datatypes.
rocblas_status_invalid_handle
: If the handle is a NULL pointer.rocblas_status_invalid_size
: For an invalid size, increment, or leading dimension argument.rocblas_status_invalid_value
: For unsupported enum values.rocblas_status_success
: For quick-return-success.rocblas_status_invalid_pointer
: For NULL argument pointers.
Differences between rocBLAS and legacy BLAS#
rocBLAS has the following differences from legacy BLAS:
It has a C API, returning a
rocblas_status
type indicating the success of the call.In rocBLAS, a pointer to a scalar return value is passed as the last argument. In legacy BLAS, the following functions return a scalar result:
dot
,nrm2
,asum
,amax
, andamin
.The first argument is a
rocblas_handle
argument. This is an opaque pointer to rocBLAS resources, corresponding to a single HIP stream.Scalar arguments like alpha and beta are pointers on either the host or device, controlled by the pointer mode of the rocBLAS handle. In cases where the other arguments do not dictate an early return, if the alpha and beta pointers are
NULL
, the function returnsrocblas_status_invalid_pointer
.Vector and matrix arguments are always pointers to device memory.
When
rocblas_pointer_mode == rocblas_pointer_mode_host
, the alpha and beta values are inspected. Based on their values, a decision is made regarding which vector and matrix pointers must be dereferenced. If any of the dereferenced pointers is a NULL pointer,rocblas_status_invalid_pointer
is returned.If
rocblas_pointer_mode == rocblas_pointer_mode_device
, rocBLAS does NOT check if the vector or matrix pointers will dereference a NULL pointer. This is to avoid slowing down execution to fetch and inspect alpha and beta values.The
ROCBLAS_LAYER
environment variable controls the option to log argument values.rocBLAS has added functionality, including the following:
batched
strided_batched
mixed precision in
gemm_ex
,gemm_batched_ex
, andgemm_strided_batched_ex
The following changes were made to accommodate the new features:
Changes to the logging functionality. See the Logging section below for more details.
For batched and strided_batched L2 and L3 functions, there is a quick-return-success for
batch_count == 0
and an invalid-size error forbatch_count < 0
.For batched and strided_batched L1 functions, there is a quick-return-success for
batch_count <= 0
.When
rocblas_pointer_mode == rocblas_pointer_mode_device
, alpha and beta are not copied from the device to host for quick-return-success checks. In this case, the quick-return-success checks are omitted. This still provides a correct result, but the operation is slower.For strided_batched functions, there is no argument checking for the stride. To access elements in a strided_batched_matrix, for example, the C matrix in GEMM, the zero-based index is calculated as
i1 + i2 * ldc + i3 * stride_c
, wherei1 = 0, 1, 2, ..., m-1
,i2 = 0, 1, 2, ..., n-1
, andi3 = 0, 1, 2, ..., batch_count -1
. An incorrect stride can result in a core dump due a segmentation fault. It can also produce an indeterminate result if there is a memory overlap in the output matrix between different values ofi3
.
Device memory size queries#
The following details apply when performing queries on the memory size:
When
handle->is_device_memory_size_query()
istrue
, the call is a device memory size query, not a normal call.No logging should be performed during device memory size queries.
If the rocBLAS kernel doesn’t require temporary device memory, the macro
RETURN_ZERO_DEVICE_MEMORY_SIZE_IF_QUERIED(handle)
can be called after checking thathandle != nullptr
.If the rocBLAS kernel requires temporary device memory, then it should be set, and the kernel returned, by calling
return handle->set_optimal_device_memory_size(size...)
, wheresize...
is a list of one or more sizes for different sub-problems. The sizes are rounded up and added.
Logging#
There is logging before a quick-return-success or error-return, except under these circumstances:
When
handle == nullptr
, it returnsrocblas_status_invalid_handle
.When
handle->is_device_memory_size_query()
, it returnstrue
.
Vectors and matrices are logged with their addresses and are always on device memory. Scalar values in device memory are logged
as their addresses. Scalar values in host memory are logged as their values, with a nullptr
logged
as NaN
(std::numeric_limits<T>::quiet_NaN()
).
rocBLAS control flow#
If
handle == nullptr
, then returnrocblas_status_invalid_handle
.If the function does not require temporary device memory, then call the macro
RETURN_ZERO_DEVICE_MEMORY_SIZE_IF_QUERIED(handle);
.If the function requires temporary device memory and
handle->is_device_memory_size_query()
istrue
, then validate any pointers and arguments required to determine the optimal size of temporary device memory. Returnrocblas_status_invalid_pointer
orrocblas_status_invalid_size
if the arguments are invalid. Otherwise returnhandle->set_optimal_device_memory_size(size...);
, wheresize...
is a list of one or more sizes of temporary buffers, which are allocated later usinghandle->device_malloc(size...)
.Perform logging if it is enabled, ensuring not to dereference
nullptr
arguments.Check for unsupported enum values. Return
rocblas_status_invalid_value
if an enum value is invalid.Check for invalid sizes. Return
rocblas_status_invalid_size
if the size arguments are invalid.Return
rocblas_status_invalid_pointer
if any pointers used to determine quick return conditions areNULL
.If the quick return conditions are met:
If there is no return value, return
rocblas_status_success
.If there is a return value:
If the return value pointer argument is a
NULL
pointer, returnrocblas_status_invalid_pointer
.Otherwise, return
rocblas_status_success
If any pointers not checked in step 7 are
NULL
but must be dereferenced, returnrocblas_status_invalid_pointer
. Only whenrocblas_pointer_mode == rocblas_pointer_mode_host
can it be efficiently determined whether some vector/matrix arguments must be dereferenced.(Optional) Allocate device memory, returning
rocblas_status_memory_error
if the allocation fails.If all the checks above pass, launch the kernel and return
rocblas_status_success
.
Legacy L1 BLAS “single vector”#
Below are four code snippets from NETLIB for “single vector” legacy Level-1 BLAS. They have quick-return-success for
(n <= 0) || (incx <= 0)
:
DOUBLE PRECISION FUNCTION DASUM(N,DX,INCX)
IF (N.LE.0 .OR. INCX.LE.0) RETURN
DOUBLE PRECISION FUNCTION DNRM2(N,X,INCX)
IF (N.LT.1 .OR. INCX.LT.1) THEN
return = ZERO
SUBROUTINE DSCAL(N,DA,DX,INCX)
IF (N.LE.0 .OR. INCX.LE.0) RETURN
INTEGER FUNCTION IDAMAX(N,DX,INCX)
IDAMAX = 0
IF (N.LT.1 .OR. INCX.LE.0) RETURN
IDAMAX = 1
IF (N.EQ.1) RETURN
Legacy L1 BLAS “two vector”#
Below are seven legacy Level-1 BLAS codes from NETLIB. They have quick-return-success for (n <= 0)
.
In addition, for DAXPY
, there is quick-return-success for (alpha == 0)
:
SUBROUTINE DAXPY(N,alpha,DX,INCX,DY,INCY)
IF (N.LE.0) RETURN
IF (alpha.EQ.0.0d0) RETURN
SUBROUTINE DCOPY(N,DX,INCX,DY,INCY)
IF (N.LE.0) RETURN
DOUBLE PRECISION FUNCTION DDOT(N,DX,INCX,DY,INCY)
IF (N.LE.0) RETURN
SUBROUTINE DROT(N,DX,INCX,DY,INCY,C,S)
IF (N.LE.0) RETURN
SUBROUTINE DSWAP(N,DX,INCX,DY,INCY)
IF (N.LE.0) RETURN
DOUBLE PRECISION FUNCTION DSDOT(N,SX,INCX,SY,INCY)
IF (N.LE.0) RETURN
SUBROUTINE DROTM(N,DX,INCX,DY,INCY,DPARAM)
DFLAG = DPARAM(1)
IF (N.LE.0 .OR. (DFLAG+TWO.EQ.ZERO)) RETURN
Legacy L2 BLAS#
Below are the code snippets from NETLIB for legacy Level-2 BLAS. They have both argument checking and quick-return-success:
SUBROUTINE DGER(M,N,ALPHA,X,INCX,Y,INCY,A,LDA)
INFO = 0
IF (M.LT.0) THEN
INFO = 1
ELSE IF (N.LT.0) THEN
INFO = 2
ELSE IF (INCX.EQ.0) THEN
INFO = 5
ELSE IF (INCY.EQ.0) THEN
INFO = 7
ELSE IF (LDA.LT.MAX(1,M)) THEN
INFO = 9
END IF
IF (INFO.NE.0) THEN
CALL XERBLA('DGER ',INFO)
RETURN
END IF
IF ((M.EQ.0) .OR. (N.EQ.0) .OR. (ALPHA.EQ.ZERO)) RETURN
SUBROUTINE DSYR(UPLO,N,ALPHA,X,INCX,A,LDA)
INFO = 0
IF (.NOT.LSAME(UPLO,'U') .AND. .NOT.LSAME(UPLO,'L')) THEN
INFO = 1
ELSE IF (N.LT.0) THEN
INFO = 2
ELSE IF (INCX.EQ.0) THEN
INFO = 5
ELSE IF (LDA.LT.MAX(1,N)) THEN
INFO = 7
END IF
IF (INFO.NE.0) THEN
CALL XERBLA('DSYR ',INFO)
RETURN
END IF
IF ((N.EQ.0) .OR. (ALPHA.EQ.ZERO)) RETURN
SUBROUTINE DGEMV(TRANS,M,N,ALPHA,A,LDA,X,INCX,BETA,Y,INCY)
INFO = 0
IF (.NOT.LSAME(TRANS,'N') .AND. .NOT.LSAME(TRANS,'T') .AND. .NOT.LSAME(TRANS,'C')) THEN
INFO = 1
ELSE IF (M.LT.0) THEN
INFO = 2
ELSE IF (N.LT.0) THEN
INFO = 3
ELSE IF (LDA.LT.MAX(1,M)) THEN
INFO = 6
ELSE IF (INCX.EQ.0) THEN
INFO = 8
ELSE IF (INCY.EQ.0) THEN
INFO = 11
END IF
IF (INFO.NE.0) THEN
CALL XERBLA('DGEMV ',INFO)
RETURN
END IF
IF ((M.EQ.0) .OR. (N.EQ.0) .OR. ((ALPHA.EQ.ZERO).AND. (BETA.EQ.ONE))) RETURN
SUBROUTINE DTRSV(UPLO,TRANS,DIAG,N,A,LDA,X,INCX)
INFO = 0
IF (.NOT.LSAME(UPLO,'U') .AND. .NOT.LSAME(UPLO,'L')) THEN
INFO = 1
ELSE IF (.NOT.LSAME(TRANS,'N') .AND. .NOT.LSAME(TRANS,'T') .AND. .NOT.LSAME(TRANS,'C')) THEN
INFO = 2
ELSE IF (.NOT.LSAME(DIAG,'U') .AND. .NOT.LSAME(DIAG,'N')) THEN
INFO = 3
ELSE IF (N.LT.0) THEN
INFO = 4
ELSE IF (LDA.LT.MAX(1,N)) THEN
INFO = 6
ELSE IF (INCX.EQ.0) THEN
INFO = 8
END IF
IF (INFO.NE.0) THEN
CALL XERBLA('DTRSV ',INFO)
RETURN
END IF
IF (N.EQ.0) RETURN
Legacy L3 BLAS#
Below is a code snippet from NETLIB for legacy Level-3 BLAS dgemm. It has both argument checking and quick-return-success:
SUBROUTINE DGEMM(TRANSA,TRANSB,M,N,K,ALPHA,A,LDA,B,LDB,BETA,C,LDC)
NOTA = LSAME(TRANSA,'N')
NOTB = LSAME(TRANSB,'N')
IF (NOTA) THEN
NROWA = M
NCOLA = K
ELSE
NROWA = K
NCOLA = M
END IF
IF (NOTB) THEN
NROWB = K
ELSE
NROWB = N
END IF
// Test the input parameters.
INFO = 0
IF ((.NOT.NOTA) .AND. (.NOT.LSAME(TRANSA,'C')) .AND.
+ (.NOT.LSAME(TRANSA,'T'))) THEN
INFO = 1
ELSE IF ((.NOT.NOTB) .AND. (.NOT.LSAME(TRANSB,'C')) .AND.
+ (.NOT.LSAME(TRANSB,'T'))) THEN
INFO = 2
ELSE IF (M.LT.0) THEN
INFO = 3
ELSE IF (N.LT.0) THEN
INFO = 4
ELSE IF (K.LT.0) THEN
INFO = 5
ELSE IF (LDA.LT.MAX(1,NROWA)) THEN
INFO = 8
ELSE IF (LDB.LT.MAX(1,NROWB)) THEN
INFO = 10
ELSE IF (LDC.LT.MAX(1,M)) THEN
INFO = 13
END IF
IF (INFO.NE.0) THEN
CALL XERBLA('DGEMM ',INFO)
RETURN
END IF
// Quick return if possible.
IF ((M.EQ.0) .OR. (N.EQ.0) .OR. (((ALPHA.EQ.ZERO).OR. (K.EQ.0)).AND. (BETA.EQ.ONE))) RETURN
rocBLAS benchmarking and testing#
There are three client executables that can be used with rocBLAS. They are:
rocblas-bench
rocblas-gemm-tune
rocblas-test
To build these clients, follow the instructions in the Installing and building on Linux or Installing and building on Microsoft Windows guides.
After the build, the rocBLAS clients can be found in the rocBLAS/build/release/clients/staging
directory.
Note
The rocblas-bench
and rocblas-test
executables use AMD’s ILP64 version of AOCL-BLAS 4.2 as the host
reference BLAS to verify correctness. However, there is a known issue with multiple threads
in AOCL-BLAS that can cause these executables to hang.
If the number of threads matches the total number of CPU threads, thread oversubscription can occur, which causes the process to hang.
To prevent this issue, the number of threads used the AOCL-BLAS library should be smaller than the number of available CPU cores.
You can configure this setting using the OMP_NUM_THREADS
environment variable.
For example, on a server with 32 cores, limit the number of threads to 28 by setting export OMP_NUM_THREADS=28
.
The next three sections provide a brief explanation of each rocBLAS client and how to use it.
rocblas-bench#
rocblas-bench is used to measure performance and verify the correctness of rocBLAS functions.
It includes a command line interface. For more information, run this command:
rocBLAS/build/release/clients/staging/rocblas-bench --help
The following table lists all the data types in rocBLAS:
Data type |
acronym |
---|---|
Real 16-bit brain floating point |
bf16_r |
Real half |
f16_r (h) |
Real float |
f32_r (s) |
Real double |
f64_r (d) |
Complex float |
f32_c (c) |
Complex double |
f64_c (z) |
Integer 32 |
i32_r |
Integer 8 |
i8_r |
All options for problem types in rocBLAS for GEMM are shown here:
N: Not transposed
T: Transposed
C: Complex conjugate (for a real data type, C is the same as T)
Problem types |
problem_type |
Data type |
---|---|---|
NN |
Cijk_Ailk_Bljk |
real/complex |
NT |
Cijk_Ailk_Bjlk |
real/complex |
TN |
Cijk_Alik_Bljk |
real/complex |
TT |
Cijk_Alik_Bjlk |
real/complex |
NC |
Cijk_Ailk_BjlkC |
complex |
CN |
Cijk_AlikC_Bljk |
complex |
CC |
Cijk_AlikC_BjlkC |
complex |
TC |
Cijk_Alik_BjlkC |
complex |
CT |
Cijk_AlikC_Bjlk |
complex |
For example, NT means A * BT.
GEMM functions can be divided into two main categories.
HPA functions (HighPrecisionAccumulate) where the compute data type is different from the input data type (A/B): All HPA functions must be called using the
gemm_ex
API in rocblas-bench (and notgemm
). Thegemm_ex
function name consists of three letters: A/B data type, C/D data type, and compute data type.Non-HPA functions where the input (A/B), output (C/D), and compute data types are all the same: Non-HPA cases can be called using
gemm
orgemm_ex
butgemm
is recommended.
The following table shows all possible GEMM functions in rocBLAS.
Function |
Kernel name |
A/B data type |
C/D data type |
Compute data type |
---|---|---|---|---|
hgemm |
<arch>_<problem_type>_HB |
f16_r |
f16_r |
f16_r |
hgemm_batched |
<arch>_<problem_type>_HB_GB |
f16_r |
f16_r |
f16_r |
hgemm_strided_batched |
<arch>_<problem_type>_HB |
f16_r |
f16_r |
f16_r |
sgemm |
<arch>_<problem_type>_SB |
f32_r |
f32_r |
f32_r |
sgemm_batched |
<arch>_<problem_type>_SB_GB |
f32_r |
f32_r |
f32_r |
sgemm_strided_batched |
<arch>_<problem_type>_SB |
f32_r |
f32_r |
f32_r |
dgemm |
<arch>_<problem_type>_DB |
f64_r |
f64_r |
f64_r |
dgemm_batched |
<arch>_<problem_type>_DB_GB |
f64_r |
f64_r |
f64_r |
dgemm_strided_batched |
<arch>_<problem_type>_DB |
f64_r |
f64_r |
f64_r |
cgemm |
<arch>_<problem_type>_CB |
f32_c |
f32_c |
f32_c |
cgemm_batched |
<arch>_<problem_type>_CB_GB |
f32_c |
f32_c |
f32_c |
cgemm_strided_batched |
<arch>_<problem_type>_CB |
f32_c |
f32_c |
f32_c |
zgemm |
<arch>_<problem_type>_ZB |
f64_c |
f64_c |
f64_c |
zgemm_batched |
<arch>_<problem_type>_ZB_GB |
f64_c |
f64_c |
f64_c |
zgemm_strided_batched |
<arch>_<problem_type>_ZB |
f64_c |
f64_c |
f64_c |
HHS |
<arch>_<problem_type>_HHS_BH |
f16_r |
f16_r |
f32_r |
HHS_batched |
<arch>_<problem_type>_HHS_BH_GB |
f16_r |
f16_r |
f32_r |
HHS_strided_batched |
<arch>_<problem_type>_HHS_BH |
f16_r |
f16_r |
f32_r |
HSS |
<arch>_<problem_type>_HSS_BH |
f16_r |
f32_r |
f32_r |
HSS_batched |
<arch>_<problem_type>_HSS_BH_GB |
f16_r |
f32_r |
f32_r |
HSS_strided_batched |
<arch>_<problem_type>_HSS_BH |
f16_r |
f32_r |
f32_r |
BBS |
<arch>_<problem_type>_BBS_BH |
bf16_r |
bf16_r |
f32_r |
BBS_batched |
<arch>_<problem_type>_BBS_BH_GB |
bf16_r |
bf16_r |
f32_r |
BBS_strided_batched |
<arch>_<problem_type>_BBS_BH |
bf16_r |
bf16_r |
f32_r |
BSS |
<arch>_<problem_type>_BSS_BH |
bf16_r |
f32_r |
f32_r |
BSS_batched |
<arch>_<problem_type>_BSS_BH_GB |
bf16_r |
f32_r |
f32_r |
BSS_strided_batched |
<arch>_<problem_type>_BSS_BH |
bf16_r |
f32_r |
f32_r |
I8II |
<arch>_<problem_type>_I8II_BH |
I8 |
I |
I |
I8II_batched |
<arch>_<problem_type>_I8II_BH_GB |
I8 |
I |
I |
I8II_strided_batched |
<arch>_<problem_type>_I8II_BH |
I8 |
I |
I |
Benchmarking the performance of a GEMM function using rocblas-bench#
This method is only recommended to test a few sizes. Otherwise, refer to the next section. The following listing shows how to configure rocblas-bench to call each of the GEMM functions:
Non-HPA cases (gemm
)
#dgemm
$ ./rocblas-bench -f gemm --transposeA N --transposeB T -m 1024 -n 2048 -k 512 -r d --lda 1024 --ldb 2048 --ldc 1024 --ldd 1024 --alpha 1.1 --beta 1.0
# dgemm batched
$ ./rocblas-bench -f gemm_batched --transposeA N --transposeB T -m 1024 -n 2048 -k 512 -r d --lda 1024 --ldb 2048 --ldc 1024 --ldd 1024 --alpha 1.1 --beta 1 --batch_count 5
# dgemm strided batched
$ ./rocblas-bench -f gemm_strided_batched --transposeA N --transposeB T -m 1024 -n 2048 -k 512 -r d --lda 1024 --stride_a 4096 --ldb 2048 --stride_b 4096 --ldc 1024 --stride_c 2097152 --ldd 1024 --stride_d 2097152 --alpha 1.1 --beta 1 --batch_count 5
# sgemm
$ ./rocblas-bench -f gemm --transposeA N --transposeB T -m 1024 -n 2048 -k 512 -r s --lda 1024 --ldb 2048 --ldc 1024 --ldd 1024 --alpha 1.1 --beta 1
# sgemm batched
$ ./rocblas-bench -f gemm_batched --transposeA N --transposeB T -m 1024 -n 2048 -k 512 -r s --lda 1024 --ldb 2048 --ldc 1024 --ldd 1024 --alpha 1.1 --beta 1 --batch_count 5
# sgemm strided batched
$ ./rocblas-bench -f gemm_strided_batched --transposeA N --transposeB T -m 1024 -n 2048 -k 512 -r s --lda 1024 --stride_a 4096 --ldb 2048 --stride_b 4096 --ldc 1024 --stride_c 2097152 --ldd 1024 --stride_d 2097152 --alpha 1.1 --beta 1 --batch_count 5
# hgemm (this function is not really very fast. Use HHS instead, which is faster and more accurate)
$ ./rocblas-bench -f gemm --transposeA N --transposeB T -m 1024 -n 2048 -k 512 -r h --lda 1024 --ldb 2048 --ldc 1024 --ldd 1024 --alpha 1.1 --beta 1
# hgemm batched
$ ./rocblas-bench -f gemm_batched --transposeA N --transposeB T -m 1024 -n 2048 -k 512 -r h --lda 1024 --ldb 2048 --ldc 1024 --ldd 1024 --alpha 1.1 --beta 1 --batch_count 5
# hgemm strided batched
$ ./rocblas-bench -f gemm_strided_batched --transposeA N --transposeB T -m 1024 -n 2048 -k 512 -r h --lda 1024 --stride_a 4096 --ldb 2048 --stride_b 4096 --ldc 1024 --stride_c 2097152 --ldd 1024 --stride_d 2097152 --alpha 1.1 --beta 1 --batch_count 5
# cgemm
$ ./rocblas-bench -f gemm --transposeA N --transposeB T -m 1024 -n 2048 -k 512 -r c --lda 1024 --ldb 2048 --ldc 1024 --ldd 1024 --alpha 1.1 --beta 1
# cgemm batched
$ ./rocblas-bench -f gemm_batched --transposeA N --transposeB T -m 1024 -n 2048 -k 512 -r c --lda 1024 --ldb 2048 --ldc 1024 --ldd 1024 --alpha 1.1 --beta 1 --batch_count 5
# cgemm strided batched
$ ./rocblas-bench -f gemm_strided_batched --transposeA N --transposeB T -m 1024 -n 2048 -k 512 -r c --lda 1024 --stride_a 4096 --ldb 2048 --stride_b 4096 --ldc 1024 --stride_c 2097152 --ldd 1024 --stride_d 2097152 --alpha 1.1 --beta 1 --batch_count 5
# zgemm
$ ./rocblas-bench -f gemm --transposeA N --transposeB T -m 1024 -n 2048 -k 512 -r z --lda 1024 --ldb 2048 --ldc 1024 --ldd 1024 --alpha 1.1 --beta 1
# zgemm batched
$ ./rocblas-bench -f gemm_batched --transposeA N --transposeB T -m 1024 -n 2048 -k 512 -r z --lda 1024 --ldb 2048 --ldc 1024 --ldd 1024 --alpha 1.1 --beta 1 --batch_count 5
# zgemm strided batched
$ ./rocblas-bench -f gemm_strided_batched --transposeA N --transposeB T -m 1024 -n 2048 -k 512 -r z --lda 1024 --stride_a 4096 --ldb 2048 --stride_b 4096 --ldc 1024 --stride_c 2097152 --ldd 1024 --stride_d 2097152 --alpha 1.1 --beta 1 --batch_count 5
# cgemm (NC)
$ ./rocblas-bench -f gemm --transposeA N --transposeB C -m 1024 -n 2048 -k 512 -r c --lda 1024 --ldb 2048 --ldc 1024 --ldd 1024 --alpha 1.1 --beta 1
# cgemm batched (NC)
$ ./rocblas-bench -f gemm_batched --transposeA N --transposeB C -m 1024 -n 2048 -k 512 -r c --lda 1024 --ldb 2048 --ldc 1024 --ldd 1024 --alpha 1.1 --beta 1 --batch_count 5
# cgemm strided batched (NC)
$ ./rocblas-bench -f gemm_strided_batched --transposeA N --transposeB C -m 1024 -n 2048 -k 512 -r c --lda 1024 --stride_a 4096 --ldb 2048 --stride_b 4096 --ldc 1024 --stride_c 2097152 --ldd 1024 --stride_d 2097152 --alpha 1.1 --beta 1 --batch_count 5
HPA cases (gemm_ex
)
# HHS
$ ./rocblas-bench -f gemm_ex --transposeA N --transposeB T -m 1024 -n 2048 -k 512 --a_type h --lda 1024 --b_type h --ldb 2048 --c_type h --ldc 1024 --d_type h --ldd 1024 --compute_type s --alpha 1.1 --beta 1
# HHS batched
$ ./rocblas-bench -f gemm_batched_ex --transposeA N --transposeB T -m 1024 -n 2048 -k 512 --a_type h --lda 1024 --b_type h --ldb 2048 --c_type h --ldc 1024 --d_type h --ldd 1024 --compute_type s --alpha 1.1 --beta 1 --batch_count 5
# HHS strided batched
$ ./rocblas-bench -f gemm_strided_batched_ex --transposeA N --transposeB T -m 1024 -n 2048 -k 512 --a_type h --lda 1024 --stride_a 4096 --b_type h --ldb 2048 --stride_b 4096 --c_type h --ldc 1024 --stride_c 2097152 --d_type h --ldd 1024 --stride_d 2097152 --compute_type s --alpha 1.1 --beta 1 --batch_count 5
# HSS
$ ./rocblas-bench -f gemm_ex --transposeA N --transposeB T -m 1024 -n 2048 -k 512 --a_type h --lda 1024 --b_type h --ldb 2048 --c_type s --ldc 1024 --d_type s --ldd 1024 --compute_type s --alpha 1.1 --beta 1
# HSS batched
$ ./rocblas-bench -f gemm_batched_ex --transposeA N --transposeB T -m 1024 -n 2048 -k 512 --a_type h --lda 1024 --b_type h --ldb 2048 --c_type s --ldc 1024 --d_type s --ldd 1024 --compute_type s --alpha 1.1 --beta 1 --batch_count 5
# HSS strided batched
$ ./rocblas-bench -f gemm_strided_batched_ex --transposeA N --transposeB T -m 1024 -n 2048 -k 512 --a_type h --lda 1024 --stride_a 4096 --b_type h --ldb 2048 --stride_b 4096 --c_type s --ldc 1024 --stride_c 2097152 --d_type s --ldd 1024 --stride_d 2097152 --compute_type s --alpha 1.1 --beta 1 --batch_count 5
# BBS
$ ./rocblas-bench -f gemm_ex --transposeA N --transposeB T -m 1024 -n 2048 -k 512 --a_type bf16_r --lda 1024 --b_type bf16_r --ldb 2048 --c_type bf16_r --ldc 1024 --d_type bf16_r --ldd 1024 --compute_type s --alpha 1.1 --beta 1
# BBS batched
$ ./rocblas-bench -f gemm_batched_ex --transposeA N --transposeB T -m 1024 -n 2048 -k 512 --a_type bf16_r --lda 1024 --b_type bf16_r --ldb 2048 --c_type bf16_r --ldc 1024 --d_type bf16_r --ldd 1024 --compute_type s --alpha 1.1 --beta 1 --batch_count 5
# BBS strided batched
$ ./rocblas-bench -f gemm_strided_batched_ex --transposeA N --transposeB T -m 1024 -n 2048 -k 512 --a_type bf16_r --lda 1024 --stride_a 4096 --b_type bf16_r --ldb 2048 --stride_b 4096 --c_type bf16_r --ldc 1024 --stride_c 2097152 --d_type bf16_r --ldd 1024 --stride_d 2097152 --compute_type s --alpha 1.1 --beta 1 --batch_count 5
# BSS
$ ./rocblas-bench -f gemm_ex --transposeA N --transposeB T -m 1024 -n 2048 -k 512 --a_type bf16_r --lda 1024 --b_type bf16_r --ldb 2048 --c_type s --ldc 1024 --d_type s --ldd 1024 --compute_type s --alpha 1.1 --beta 1
# BSS batched
$ ./rocblas-bench -f gemm_batched_ex --transposeA N --transposeB T -m 1024 -n 2048 -k 512 --a_type bf16_r --lda 1024 --b_type bf16_r --ldb 2048 --c_type s --ldc 1024 --d_type s --ldd 1024 --compute_type s --alpha 1.1 --beta 1 --batch_count 5
# BSS strided batched
$ ./rocblas-bench -f gemm_strided_batched_ex --transposeA N --transposeB T -m 1024 -n 2048 -k 512 --a_type bf16_r --lda 1024 --stride_a 4096 --b_type bf16_r --ldb 2048 --stride_b 4096 --c_type s --ldc 1024 --stride_c 2097152 --d_type s --ldd 1024 --stride_d 2097152 --compute_type s --alpha 1.1 --beta 1 --batch_count 5
# I8II
$ ./rocblas-bench -f gemm_ex --transposeA N --transposeB T -m 1024 -n 2048 -k 512 --a_type i8_r --lda 1024 --b_type i8_r --ldb 2048 --c_type i32_r --ldc 1024 --d_type i32_r --ldd 1024 --compute_type i32_r --alpha 1.1 --beta 1
# I8II batched
$ ./rocblas-bench -f gemm_batched_ex --transposeA N --transposeB T -m 1024 -n 2048 -k 512 --a_type i8_r --lda 1024 --b_type i8_r --ldb 2048 --c_type i32_r --ldc 1024 --d_type i32_r --ldd 1024 --compute_type i32_r --alpha 1.1 --beta 1 --batch_count 5
# I8II strided batched
$ ./rocblas-bench -f gemm_strided_batched_ex --transposeA N --transposeB T -m 1024 -n 2048 -k 512 --a_type i8_r --lda 1024 --stride_a 4096 --b_type i8_r --ldb 2048 --stride_b 4096 --c_type i32_r --ldc 1024 --stride_c 2097152 --d_type i32_r --ldd 1024 --stride_d 2097152 --compute_type i32_r --alpha 1.1 --beta 1 --batch_count 5
Setting rocblas-bench parameters in a YAML file#
To benchmark many sizes, it is recommended to use rocblas-bench with the batch call to eliminate the latency involved with loading the GEMM library that rocBLAS links to. The batch call takes a YAML file with a list of all problem sizes. You can have multiple sizes of different types in one YAML file. The benchmark setting is different from the direct call to rocblas-bench. A sample setting for each function is listed below. After you have created the YAML file, benchmark the sizes as follows:
rocBLAS/build/release/clients/staging/rocblas-bench --yaml problem-sizes.yaml
Here are the configurations for each function:
Non-HPA cases (gemm
)
# dgemm
- { rocblas_function: "rocblas_dgemm", transA: "N", transB: "T", M: 1024, N: 2048, K: 512, lda: 1024, ldb: 2048, ldc: 1024, ldd: 1024, cold_iters: 2, iters: 10 }
# dgemm batched
- { rocblas_function: "rocblas_dgemm_batched", transA: "N", transB: "T", M: 1024, N: 2048, K: 512, lda: 1024, ldb: 2048, ldc: 1024, ldd: 1024, cold_iters: 2, iters: 10, batch_count: 5 }
# dgemm strided batched
- { rocblas_function: "rocblas_dgemm_strided_batched", transA: "N", transB: "T", M: 1024, N: 2048, K: 512, lda: 1024, ldb: 2048, ldc: 1024, ldd: 1024, cold_iters: 2, iters: 10, batch_count: 5, stride_a: 4096, stride_b: 4096, stride_c: 2097152, stride_d: 2097152 }
# sgemm
- { rocblas_function: "rocblas_sgemm", transA: "N", transB: "T", M: 1024, N: 2048, K: 512, lda: 1024, ldb: 2048, ldc: 1024, ldd: 1024, cold_iters: 2, iters: 10 }
# sgemm batched
- { rocblas_function: "rocblas_sgemm_batched", transA: "N", transB: "T", M: 1024, N: 2048, K: 512, lda: 1024, ldb: 2048, ldc: 1024, ldd: 1024, cold_iters: 2, iters: 10, batch_count: 5 }
# sgemm strided batched
- { rocblas_function: "rocblas_sgemm_strided_batched", transA: "N", transB: "T", M: 1024, N: 2048, K: 512, lda: 1024, ldb: 2048, ldc: 1024, ldd: 1024, cold_iters: 2, iters: 10, batch_count: 5, stride_a: 4096, stride_b: 4096, stride_c: 2097152, stride_d: 2097152 }
# hgemm
- { rocblas_function: "rocblas_hgemm", transA: "N", transB: "T", M: 1024, N: 2048, K: 512, lda: 1024, ldb: 2048, ldc: 1024, ldd: 1024, cold_iters: 2, iters: 10 }
# hgemm batched
- { rocblas_function: "rocblas_hgemm_batched", transA: "N", transB: "T", M: 1024, N: 2048, K: 512, lda: 1024, ldb: 2048, ldc: 1024, ldd: 1024, cold_iters: 2, iters: 10, batch_count: 5 }
# hgemm strided batched
- { rocblas_function: "rocblas_hgemm_strided_batched", transA: "N", transB: "T", M: 1024, N: 2048, K: 512, lda: 1024, ldb: 2048, ldc: 1024, ldd: 1024, cold_iters: 2, iters: 10, batch_count: 5, stride_a: 4096, stride_b: 4096, stride_c: 2097152, stride_d: 2097152 }
# cgemm
- { rocblas_function: "rocblas_cgemm", transA: "N", transB: "T", M: 1024, N: 2048, K: 512, lda: 1024, ldb: 2048, ldc: 1024, ldd: 1024, cold_iters: 2, iters: 10 }
# cgemm batched
- { rocblas_function: "rocblas_cgemm_batched", transA: "N", transB: "T", M: 1024, N: 2048, K: 512, lda: 1024, ldb: 2048, ldc: 1024, ldd: 1024, cold_iters: 2, iters: 10, batch_count: 5 }
# cgemm strided batched
- { rocblas_function: "rocblas_cgemm_strided_batched", transA: "N", transB: "T", M: 1024, N: 2048, K: 512, lda: 1024, ldb: 2048, ldc: 1024, ldd: 1024, cold_iters: 2, iters: 10, batch_count: 5, stride_a: 4096, stride_b: 4096, stride_c: 2097152, stride_d: 2097152 }
# zgemm
- { rocblas_function: "rocblas_zgemm", transA: "N", transB: "T", M: 1024, N: 2048, K: 512, lda: 1024, ldb: 2048, ldc: 1024, ldd: 1024, cold_iters: 2, iters: 10 }
# zgemm batched
- { rocblas_function: "rocblas_zgemm_batched", transA: "N", transB: "T", M: 1024, N: 2048, K: 512, lda: 1024, ldb: 2048, ldc: 1024, ldd: 1024, cold_iters: 2, iters: 10, batch_count: 5 }
# zgemm strided batched
- { rocblas_function: "rocblas_zgemm_strided_batched", transA: "N", transB: "T", M: 1024, N: 2048, K: 512, lda: 1024, ldb: 2048, ldc: 1024, ldd: 1024, cold_iters: 2, iters: 10, batch_count: 5, stride_a: 4096, stride_b: 4096, stride_c: 2097152, stride_d: 2097152 }
# cgemm
- { rocblas_function: "rocblas_cgemm", transA: "N", transB: "C", M: 1024, N: 2048, K: 512, lda: 1024, ldb: 2048, ldc: 1024, ldd: 1024, cold_iters: 2, iters: 10 }
# cgemm batched
- { rocblas_function: "rocblas_cgemm_batched", transA: "N", transB: "C", M: 1024, N: 2048, K: 512, lda: 1024, ldb: 2048, ldc: 1024, ldd: 1024, cold_iters: 2, iters: 10, batch_count: 5 }
# cgemm strided batched
- { rocblas_function: "rocblas_cgemm_strided_batched", transA: "N", transB: "C", M: 1024, N: 2048, K: 512, lda: 1024, ldb: 2048, ldc: 1024, ldd: 1024, cold_iters: 2, iters: 10, batch_count: 5, stride_a: 4096, stride_b: 4096, stride_c: 2097152, stride_d: 2097152 }
HPA cases (gemm_ex
)
# HHS
- { rocblas_function: "rocblas_gemm_ex", transA: "N", transB: "T", a_type: f16_r, b_type: f16_r, c_type: f16_r, d_type: f16_r, compute_type: f32_r, M: 1024, N: 2048, K: 512, lda: 1024, ldb: 2048, ldc: 1024, ldd: 1024, cold_iters: 2, iters: 10 }
# HHS batched
- { rocblas_function: "rocblas_gemm_ex", transA: "N", transB: "T", a_type: f16_r, b_type: f16_r, c_type: f16_r, d_type: f16_r, compute_type: f32_r, M: 1024, N: 2048, K: 512, lda: 1024, ldb: 2048, ldc: 1024, ldd: 1024, cold_iters: 2, iters: 10, batch_count: 5 }
# HHS strided batched
- { rocblas_function: "rocblas_gemm_ex", transA: "N", transB: "T", a_type: f16_r, b_type: f16_r, c_type: f16_r, d_type: f16_r, compute_type: f32_r, M: 1024, N: 2048, K: 512, lda: 1024, ldb: 2048, ldc: 1024, ldd: 1024, cold_iters: 2, iters: 10, batch_count: 5, stride_a: 4096, stride_b: 4096, stride_c: 2097152, stride_d: 2097152 }
# HSS
- { rocblas_function: "rocblas_gemm_ex", transA: "N", transB: "T", a_type: f16_r, b_type: f16_r, c_type: f16_r, d_type: f16_r, compute_type: f32_r, M: 1024, N: 2048, K: 512, lda: 1024, ldb: 2048, ldc: 1024, ldd: 1024, cold_iters: 2, iters: 10 }
# HSS batched
- { rocblas_function: "rocblas_gemm_ex", transA: "N", transB: "T", a_type: f16_r, b_type: f16_r, c_type: f32_r, d_type: f32_r, compute_type: f32_r, M: 1024, N: 2048, K: 512, lda: 1024, ldb: 2048, ldc: 1024, ldd: 1024, cold_iters: 2, iters: 10, batch_count: 5 }
# HSS strided batched
- { rocblas_function: "rocblas_gemm_ex", transA: "N", transB: "T", a_type: f16_r, b_type: f16_r, c_type: f32_r, d_type: f32_r, compute_type: f32_r, M: 1024, N: 2048, K: 512, lda: 1024, ldb: 2048, ldc: 1024, ldd: 1024, cold_iters: 2, iters: 10, batch_count: 5, stride_a: 4096, stride_b: 4096, stride_c: 2097152, stride_d: 2097152 }
# BBS
- { rocblas_function: "rocblas_gemm_ex", transA: "N", transB: "T", a_type: bf16_r, b_type: bf16_r, c_type: bf16_r, d_type: bf16_r, compute_type: f32_r, M: 1024, N: 2048, K: 512, lda: 1024, ldb: 2048, ldc: 1024, ldd: 1024, cold_iters: 2, iters: 10 }
# BBS batched
- { rocblas_function: "rocblas_gemm_ex", transA: "N", transB: "T", a_type: bf16_r, b_type: bf16_r, c_type: bf16_r, d_type: bf16_r, compute_type: f32_r, M: 1024, N: 2048, K: 512, lda: 1024, ldb: 2048, ldc: 1024, ldd: 1024, cold_iters: 2, iters: 10, batch_count: 5 }
# BBS strided batched
- { rocblas_function: "rocblas_gemm_ex", transA: "N", transB: "T", a_type: bf16_r, b_type: bf16_r, c_type: bf16_r, d_type: bf16_r, compute_type: f32_r, M: 1024, N: 2048, K: 512, lda: 1024, ldb: 2048, ldc: 1024, ldd: 1024, cold_iters: 2, iters: 10, batch_count: 5, stride_a: 4096, stride_b: 4096, stride_c: 2097152, stride_d: 2097152 }
# BSS
- { rocblas_function: "rocblas_gemm_ex", transA: "N", transB: "T", a_type: bf16_r, b_type: bf16_r, c_type: f32_r, d_type: f32_r, compute_type: f32_r, M: 1024, N: 2048, K: 512, lda: 1024, ldb: 2048, ldc: 1024, ldd: 1024, cold_iters: 2, iters: 10 }
# BSS batched
- { rocblas_function: "rocblas_gemm_ex", transA: "N", transB: "T", a_type: bf16_r, b_type: bf16_r, c_type: f32_r, d_type: f32_r, compute_type: f32_r, M: 1024, N: 2048, K: 512, lda: 1024, ldb: 2048, ldc: 1024, ldd: 1024, cold_iters: 2, iters: 10, batch_count: 5 }
# BSS strided batched
- { rocblas_function: "rocblas_gemm_ex", transA: "N", transB: "T", a_type: bf16_r, b_type: bf16_r, c_type: f32_r, d_type: f32_r, compute_type: f32_r, M: 1024, N: 2048, K: 512, lda: 1024, ldb: 2048, ldc: 1024, ldd: 1024, cold_iters: 2, iters: 10, batch_count: 5, stride_a: 4096, stride_b: 4096, stride_c: 2097152, stride_d: 2097152 }
# I8II
- { rocblas_function: "rocblas_gemm_ex", transA: "N", transB: "T", a_type: i8_r, b_type: i8_r, c_type: i32_r, d_type: i32_r, compute_type: i32_r, M: 1024, N: 2048, K: 512, lda: 1024, ldb: 2048, ldc: 1024, ldd: 1024, cold_iters: 2, iters: 10 }
# I8II batched
- { rocblas_function: "rocblas_gemm_ex", transA: "N", transB: "T", a_type: i8_r, b_type: i8_r, c_type: i32_r, d_type: i32_r, compute_type: i32_r, M: 1024, N: 2048, K: 512, lda: 1024, ldb: 2048, ldc: 1024, ldd: 1024, cold_iters: 2, iters: 10, batch_count: 5 }
# I8II strided batched
- { rocblas_function: "rocblas_gemm_ex", transA: "N", transB: "T", a_type: i8_r, b_type: i8_r, c_type: i32_r, d_type: i32_r, compute_type: i32_r, M: 1024, N: 2048, K: 512, lda: 1024, ldb: 2048, ldc: 1024, ldd: 1024, cold_iters: 2, iters: 10, batch_count: 5, stride_a: 4096, stride_b: 4096, stride_c: 2097152, stride_d: 2097152 }
For example, the performance of SGEMM using rocblas-bench on an AMD vega20 machine returns the following:
./rocblas-bench -f gemm -r f32_r --transposeA N --transposeB N -m 4096 -n 4096 -k 4096 --alpha 1 --lda 4096 --ldb 4096 --beta 0 --ldc 4096
transA,transB,M,N,K,alpha,lda,ldb,beta,ldc,rocblas-Gflops,us
N,N,4096,4096,4096,1,4096,4096,0,4096,11941.5,11509.4
A useful way of finding the parameters that can be used with ./rocblas-bench -f gemm
is to turn on logging
by setting the environment variable ROCBLAS_LAYER=2
. For example, if the user runs:
ROCBLAS_LAYER=2 ./rocblas-bench -f gemm -i 1 -j 0
The above command logs the following:
./rocblas-bench -f gemm -r f32_r --transposeA N --transposeB N -m 128 -n 128 -k 128 --alpha 1 --lda 128 --ldb 128 --beta 0 --ldc 128
The user can copy and change the above command. For example, to change the datatype to IEEE-64 bit and the size to 2048, use the following:
./rocblas-bench -f gemm -r f64_r --transposeA N --transposeB N -m 2048 -n 2048 -k 2048 --alpha 1 --lda 2048 --ldb 2048 --beta 0 --ldc 2048
To measure performance on the ILP64 API functions, when they exist, add the argument --api 1
rather
than changing the function name set in -f
.
Logging affects performance, so only use it to log the command under evaluation,
then run the command without logging to measure performance.
Note
rocblas-bench also has the flag -v 1
for correctness checks.
Benchmarking special case gemv_batched and gemv_strided_batched functions using rocblas-bench#
This covers how to benchmark the performance of special case gemv_batched
and gemv_strided_batched
functions
for mixed precision (HSH, HSS, TST, TSS).
The following command launches rocblas-bench for rocblas_hshgemv_batched
with half-precision input,
single-precision compute, and half-precision output (HSH):
./rocblas-bench -f gemv_batched --a_type f16_r --c_type f16_r --compute_type f32_r --transposeA N -m 128 -n 128 --alpha 1 --lda 128 --incx 1 --beta 1 --incy 1 --batch_count 2
For the above command, instead of using the -r
parameter to specify the precision, pass three additional arguments (a_type
, c_type
, and compute_type
) to resolve the ambiguity of using mixed-precision compute.
This mixed-precision support is only available for gemv_batched
, gemv_strided_batched
, and rocBLAS extension
functions (for example, axpy_ex
, scal_ex
, and gemm_ex
). For more information, see the rocBLAS API reference.
rocblas-gemm-tune#
rocblas-gemm-tune is used to find the best performing GEMM kernel for each of a given set of GEMM problems.
It has a command line interface, which mimics the --yaml
input used by rocblas-bench (see the section above for details).
To generate the expected --yaml
input, you can use profile logging by setting the environment variable ROCBLAS_LAYER=4
.
For more information on rocBLAS logging, see rocBLAS logging.
Here is an example input file:
- {'rocblas_function': 'gemm_ex', 'transA': 'N', 'transB': 'N', 'M': 320, 'N': 588, 'K': 4096, 'alpha': 1, 'a_type': 'f32_r', 'lda': 320, 'b_type': 'f32_r', 'ldb': 6144, 'beta': 0, 'c_type': 'f32_r', 'ldc': 320, 'd_type': 'f32_r', 'ldd': 320, 'compute_type': 'f32_r', 'device': 0}
- {'rocblas_function': 'gemm_ex', 'transA': 'N', 'transB': 'N', 'M': 512, 'N': 3096, 'K': 512, 'alpha': 1, 'a_type': 'f16_r', 'lda': 512, 'b_type': 'f16_r', 'ldb': 512, 'beta': 0, 'c_type': 'f16_r', 'ldc': 512, 'd_type': 'f16_r', 'ldd': 512, 'compute_type': 'f32_r', 'device': 0}
The expected output looks like this (the selected GEMM idx might differ):
transA,transB,M,N,batch_count,K,alpha,beta,lda,ldb,ldc,input_type,output_type,compute_type,solution_index
N,N,320,588,1,4096,1,0,320,6144,320,f32_r,f32_r,f32_r,3788
N,N,512,3096,1,512,1,0,512,512,512,f16_r,f16_r,f32_r,4546
Where the far right values (solution_index
) are the indices of the best performing kernels for those GEMMs in the rocBLAS kernel library.
These indices can be used directly in future GEMM calls but cannot be reused across library
releases or different device architectures.
See example_user_driven_tuning.cpp for sample code showing how to use kernels directly via their indices.
If the output is stored in a file, you can use the results to override the default kernel selection
by setting the environment variable ROCBLAS_TENSILE_GEMM_OVERRIDE_PATH=<path>
, where <path>
points to the file.
rocblas-test#
rocblas-test is used to perform rocBLAS unit tests. It uses the GoogleTest framework.
The tests are in five categories:
quick
pre_checkin
nightly
stress
known_bug
To run the quick tests, use the following command:
./rocblas-test --gtest_filter=*quick*
To run the other tests using the rocblas-test
command, replace *quick*
with *pre_checkin*
, *nightly*
, or *known_bug*
.
The pattern for --gtest_filter
is:
--gtest_filter=POSTIVE_PATTERNS[-NEGATIVE_PATTERNS]
gtest_filter
can also be used to run tests for a particular function and a particular set of input parameters.
For example, to run all quick tests for the function rocblas_saxpy
, use this example:
./rocblas-test --gtest_filter=*quick*axpy*f32_r*
The default verbosity shows test category totals and specific test failure details, matching an implicit environment
variable setting of GTEST_LISTENER=NO_PASS_LINE_IN_LOG
.
To generate output listing each individual test that runs, use the following command:
GTEST_LISTENER=PASS_LINE_IN_LOG ./rocblas-test --gtest_filter=*quick*
rocblas-test
can be driven by tests specified in a YAML file using the --yaml
argument.
As the pre_checkin and nightly test categories can require hours to run, a short smoke test set is provided using a YAML file.
This rocblas_smoke.yaml
test set only takes a few minutes to test a few small problem sizes for every function:
./rocblas-test --yaml rocblas_smoke.yaml
The following test situations require additional consideration:
YAML extension for lock-step multiple variable scanning
Both rocblas-test and rocblas-bench can use an extension to scan over multiple variables in lock step implemented by the
Arguments
class. For this purpose, set theArguments
member variablescan
to the range to scan over and use*c_scan_value
to retrieve the values. This can be used to avoid all combinations of YAML variable values that are normally generated, for example,- { scan: [32..256..32], M: *c_scan_value, N: *c_scan_value, lda: *c_scan_value }
.Large memory tests (stress category)
Some tests in the stress category might attempt to allocate more RAM than available. While these tests should automatically get skipped, in some cases, such as when running in a Docker container, they could result in a process termination. To limit the peak RAM allocation in GB, use this environment variable:
ROCBLAS_CLIENT_RAM_GB_LIMIT=32 ./rocblas-test --gtest_filter=*stress*
Long-running tests
The rocblas-test process will be terminated if a single test takes longer than the configured timeout. To change the timeout, use the environment variable
ROCBLAS_TEST_TIMEOUT
, which takes a value in seconds (with a default of 600 seconds):ROCBLAS_TEST_TIMEOUT=900 ./rocblas-test --gtest_filter=*stress*
Debugging rocblas-test
The rocblas-test process internally catches signals which might interfere with debugger use. To disable this feature, set the environment variable
ROCBLAS_TEST_NO_SIGACTION
:ROCBLAS_TEST_NO_SIGACTION=1 rocgdb ./rocblas-test --gtest_filter=*stress*
Adding a new rocBLAS unit test#
To add new data-driven tests to the rocBLAS GoogleTest Framework, follow these steps:
Create a C++ header file with the name
testing_<function>.hpp
in theinclude
subdirectory, with templated functions for a specific rocBLAS routine. Some examples include:testing_gemm.hpp
testing_gemm_ex.hpp
In the new
testing_*.hpp
file, create a templated function which returnsvoid
and accepts aconst Arguments&
parameter, for example:template<typename Ti, typename To, typename Tc> void testing_gemm_ex(const Arguments& arg) { // ... }
This function is used for a YAML file-driven argument testing. It will be invoked by the dispatch code for each permutation of the YAML-driven parameters. Additionally, a template function for tests that handle bad arguments should be created, as follows:
template <typename T> void testing_gemv_bad_arg(const Arguments& arg) { // ... }
These
bad_arg
test function templates can be used to set arguments programmatically when it is simpler than the YAML approach, for example, to pass NULL pointers. It is expected that the member variable values in theArguments
parameter will not be utilized with the common exception of theapi
member variable ofArguments
which can drive selection of C, FORTRAN, C_64, or FORTRAN_64 API bad argument tests.All functions should be generalized with template parameters as much as possible, to avoid copy-and-paste code.
In this function, use the following macros and functions to check results:
HIP_CHECK_ERROR Verifies that a HIP call returns success ROCBLAS_CHECK_ERROR Verifies that a rocBLAS call returns success EXPECT_ROCBLAS_STATUS Verifies that a rocBLAS call returns a certain status unit_check_general Check that two answers agree (see unit.hpp) near_check_general Check that two answers are close (see near.hpp)
DAPI_CHECK Verifies either LP64 or ILP64 function form returns success (based on Arguments member variable API) DAPI_EXPECT Verifies either LP64 or ILP64 function form returns a certain status DAPI_DISPATCH Invoke either LP64 or ILP64 function form
In addition, you can use GoogleTest macros such as the ones below, provided they are guarded by
#ifdef GOOGLE_TEST
:EXPECT_EQ ASSERT_EQ EXPECT_TRUE ASSERT_TRUE ...
Note
The
device_vector
template allocates memory on the device. You must check whether converting thedevice_vector
tobool
returnsfalse
. If so, report a HIP memory error and then exit the current function, following this example:// allocate memory on device device_vector<T> dx(size_x); device_vector<T> dy(size_y); if(!dx || !dy) { CHECK_HIP_ERROR(hipErrorOutOfMemory); return; }
The general outline of the function should be:
Convert any scalar arguments (for example,
alpha
andbeta
) todouble
.If the problem-size arguments are invalid, use a
safe_size
to allocate arrays, call the rocBLAS routine with the original arguments, and verify that it returnsrocblas_status_invalid_size
, then return.Set up the host and device arrays (see
rocblas_vector.hpp
androcblas_init.hpp
).Call a CBLAS or other reference implementation on the host arrays.
Call rocBLAS using both device pointer mode and host pointer mode, verifying that every rocBLAS call is successful by wrapping it in
ROCBLAS_CHECK_ERROR()
.If
arg.unit_check
is enabled, useunit_check_general
ornear_check_general
to validate the results.If
arg.norm_check
is enabled, calculate and print out norms. (This is now deprecated.)If
arg.timing
is enabled, perform benchmarking (currently under refactoring).
Create a C++ file with the name
<function>_gtest.cpp
in thegtest
subdirectory, where<function>
is a non-type-specific shorthand for the function(s) being tested. Here are some examples:gemm_gtest.cpp
trsm_gtest.cpp
blas1_gtest.cpp
In the C++ file, follow these steps:
Include the header files related to the tests, as well as
type_dispatch.hpp
, for example:#include "testing_syr.hpp" #include "type_dispatch.hpp"
Wrap the body with an anonymous namespace, to minimize namespace collisions:
namespace {
Create a templated class which accepts any number of type parameters followed by one anonymous trailing type parameter defaulted to
void
(to be used withenable_if
).Choose the number of type parameters based on how likely it is in the future that the function will support a mixture of that many different types, for example, input type (
Ti
), output type (To
), and compute type (Tc
). If the function will never support more than one or two type parameters, then that many can be used. If the function might be expanded later to support mixed types, then those should be planned for ahead of time and placed in the template parameters.Unless the number of type parameters is greater than one and is always fixed, later type parameters should default to earlier ones. This is so that a subset of type arguments can used and that code which works for functions that take one type parameter can be used for functions that take one or more type parameters. Here is an example:
template< typename Ti, typename To = Ti, typename Tc = To, typename = void>
Have the primary definition of this class template derive from the
rocblas_test_invalid
class, for example:template <typename T, typename = void> struct syr_testing : rocblas_test_invalid { };
Create one or more partial specializations of the class template conditionally enabled by the type parameters matching legal combinations of types.
If the first type argument is
void
, then these partial specializations must not apply. This is so the default based onrocblas_test_invalid
can behave correctly whenvoid
is passed to indicate failure.In the partial specializations, derive from the
rocblas_test_valid
class.In the partial specializations, create a functional
operator()
which takes aconst Arguments&
parameter and calls the templated test functions (usually ininclude/testing_*.hpp
) with the specialization’s template arguments when thearg.function
string matches the function name. Ifarg.function
does not match any function related to this test, mark it as a test failure. Follow this example:template <typename T> struct syr_testing<T, std::enable_if_t<std::is_same_v<T, float> || std::is_same_v<T, double>> > : rocblas_test_valid { void operator()(const Arguments& arg) { if(!strcmp(arg.function, "syr")) testing_syr<T>(arg); else FAIL() << "Internal error: Test called with unknown function: " << arg.function; } };
If necessary, create a type dispatch function for this function (or group of functions it belongs to) in
include/type_dispatch.hpp
. If possible, use one of the existing dispatch functions, even if it covers a superset of the allowable types. The purpose oftype_dispatch.hpp
is to perform runtime type dispatch in a single place, rather than copying it across several test files.The type dispatch function takes a
template
template parameter oftemplate<typename...> class
and a function parameter of typeconst Arguments&
. It looks at the runtime type values inArguments
and instantiates the template with one or more static type arguments, corresponding to the dynamic runtime type arguments.It treats the passed template as a functor, passing the
Arguments
argument to a particular instantiation of it.The combinations of types handled by this “runtime type to template type instantiation mapping” function can be general because the type combinations which do not apply to a particular test case will have the template argument set to derive from
rocblas_test_invalid
, which will not create any unresolved instantiations. If unresolved instantiation compile or link errors occur, then theenable_if<>
condition in step D needs to be reworked to indicatefalse
for type combinations which do not apply.The return type of this function needs to be
auto
, picking up the return type of the functor.If the runtime type combinations do not apply, then this function should return
TEST<void>{}(arg)
, whereTEST
is the template parameter. However, this is less important than step D above in excluding invalid type combinations withenable_if
, since this only excludes them at run-time and they need to be excluded at compile-time by step D to avoid unresolved references or invalid instantiations, for example:template <template <typename...> class TEST> auto rocblas_simple_dispatch(const Arguments& arg) { switch(arg.a_type) { case rocblas_datatype_f16_r: return TEST<rocblas_half>{}(arg); case rocblas_datatype_f32_r: return TEST<float>{}(arg); case rocblas_datatype_f64_r: return TEST<double>{}(arg); case rocblas_datatype_bf16_r: return TEST<rocblas_bfloat16>{}(arg); case rocblas_datatype_f16_c: return TEST<rocblas_half_complex>{}(arg); case rocblas_datatype_f32_c: return TEST<rocblas_float_complex>{}(arg); case rocblas_datatype_f64_c: return TEST<rocblas_double_complex>{}(arg); default: return TEST<void>{}(arg); } }
Create a (possibly-templated) test implementation class which derives from the
RocBLAS_Test
template class and passes itself toRocBLAS_Test
(the CRTP pattern) as well as the template class defined above, for example:struct syr : RocBLAS_Test<syr, syr_testing> { // ... };
In this class, implement three static functions:
static bool type_filter(const Arguments& arg)
: returnstrue
if the types described by*_type
in theArguments
structure match a valid type combination.This is usually implemented by calling the dispatch function in step E, passing it the helper
type_filter_functor
template class defined inRocBLAS_Test
. This functor uses the same runtime type checks that are used to instantiate test functions with particular type arguments, but it instead returnstrue
orfalse
depending on whether a function would have been called. It is used to filter out tests whose runtime parameters do not match a valid test.RocBLAS_Test
is a dependent base class if this test implementation class is templated, so you might need to use a fully-qualified name (A::B
) to resolvetype_filter_functor
. In the last part of this name, the keywordtemplate
needs to precedetype_filter_functor
. The first half of the fully qualified name can be this class itself, or the full instantiation ofRocBLAS_Test<...>
, for example:static bool type_filter(const Arguments& arg) { return rocblas_blas1_dispatch< blas1_test_template::template type_filter_functor>(arg); }
static bool function_filter(const Arguments& arg)
: returnstrue
if the function name inArguments
matches one of the functions handled by this test, for example:// Filter for which functions apply to this suite static bool function_filter(const Arguments& arg) { return !strcmp(arg.function, "ger") || !strcmp(arg.function, "ger_bad_arg"); }
static std::string name_suffix(const Arguments& arg)
: returns a string which is used as the suffix for the GoogleTest name. It provides an alphanumeric representation of the test arguments.Use the
RocBLAS_TestName
helper class template to create the name. It acceptsostream
output (likestd::cout
) and can be automatically converted tostd::string
after all the text of the name has been streamed to it.The
RocBLAS_TestName
helper class constructor accepts a string argument which is included in the test name. It is generally passed theArguments
structure’sname
member.The
RocBLAS_TestName
helper class template should be passed the name of this test implementation class, including any implicit template arguments, as a template argument, so that every instantiation of this test implementation class creates a unique instantiation ofRocBLAS_TestName
.RocBLAS_TestName
has some static data that needs to be kept local to each test.RocBLAS_TestName
converts non-alphanumeric characters into suitable replacements and disambiguates test names when the same arguments appear more than once.The conversion of the stream into a
std::string
is a destructive one-time operation, so theRocBLAS_TestName
value converted tostd::string
must be an rvalue, for example:static std::string name_suffix(const Arguments& arg) { // Okay: rvalue RocBLAS_TestName object streamed to and returned return RocBLAS_TestName<syr>() << rocblas_datatype2string(arg.a_type) << '_' << (char) std::toupper(arg.uplo) << '_' << arg.N << '_' << arg.alpha << '_' << arg.incx << '_' << arg.lda; } static std::string name_suffix(const Arguments& arg) { RocBLAS_TestName<gemm_test_template> name; name << rocblas_datatype2string(arg.a_type); if(GEMM_TYPE == GEMM_EX || GEMM_TYPE == GEMM_STRIDED_BATCHED_EX) name << rocblas_datatype2string(arg.b_type) << rocblas_datatype2string(arg.c_type) << rocblas_datatype2string(arg.d_type) << rocblas_datatype2string(arg.compute_type); name << '_' << (char) std::toupper(arg.transA) << (char) std::toupper(arg.transB) << '_' << arg.M << '_' << arg.N << '_' << arg.K << '_' << arg.alpha << '_' << arg.lda << '_' << arg.ldb << '_' << arg.beta << '_' << arg.ldc; // name is an lvalue: Must use std::move to convert it to rvalue. // name cannot be used after it's converted to a string, which is // why it must be "moved" to a string. return std::move(name); }
Choose a non-type-specific shorthand name for the test, which is displayed as part of the test name in the GoogleTest output and is stringified. Create a type alias for this name, unless the name is already the name of the class defined in step F and is not templated. For example, for a templated class defined in step F, create an alias for one of its instantiations:
using gemm = gemm_test_template<gemm_testing, GEMM>;
Pass the name created in step G to the
TEST_P
macro, along with a broad test category name for the test to belong to so that GoogleTest filtering can be used to select all tests in a category. The broad test category suffix should be_tensile
if it requires Tensile.In the body following this
TEST_P
macro, call the dispatch function from step E, passing it the class from step C as a template template argument, passing the result ofGetParam()
as anArguments
structure, and wrapping the call in theCATCH_SIGNALS_AND_EXCEPTIONS_AS_FAILURES()
macro. Here is an example:TEST_P(gemm, blas3_tensile) { CATCH_SIGNALS_AND_EXCEPTIONS_AS_FAILURES(rocblas_gemm_dispatch<gemm_testing>(GetParam())); }
The
CATCH_SIGNALS_AND_EXCEPTIONS_AS_FAILURES()
macro detects signals such asSIGSEGV
and uncaught C++ exceptions returned from rocBLAS C APIs as failures, without terminating the test program.Call the
INSTANTIATE_TEST_CATEGORIES
macro which instantiates the GoogleTests across all test categories (quick
,pre_checkin
,nightly
,known_bug
), passing it the same test name as in steps G and H, for example:INSTANTIATE_TEST_CATEGORIES(gemm);
Close the anonymous namespace:
} // namespace
Create a
<function>.yaml
file with the same name as the C++ file, but with a.yaml
extension.In the YAML file, define tests with combinations of parameters.
The YAML files are organized as files which include each other (an extension to YAML). Define anchors for the data types and data structures, list of test parameters or subsets thereof, and
Tests
, which describe a combination of parameters includingcategory
andfunction
.The
category
must be one ofquick
,pre_checkin
,nightly
, orknown_bug
. The category is automatically changed toknown_bug
if the test matches a test inknown_bugs.yaml
.The
function
must be one of the functions tested for and recognized in steps D-F.The syntax and idioms of the YAML files is best understood by looking at the existing
*_gtest.yaml
files as examples.Add the YAML file to
rocblas_gtest.yaml
to be included, for example:include: blas1_gtest.yaml
Add the YAML file to the list of dependencies for
rocblas_gtest.data
inCMakeLists.txt
, for example:add_custom_command( OUTPUT "${ROCBLAS_TEST_DATA}" COMMAND ../common/rocblas_gentest.py -I ../include rocblas_gtest.yaml -o "${ROCBLAS_TEST_DATA}" DEPENDS ../common/rocblas_gentest.py rocblas_gtest.yaml ../include/rocblas_common.yaml known_bugs.yaml blas1_gtest.yaml gemm_gtest.yaml gemm_batched_gtest.yaml gemm_strided_batched_gtest.yaml gemv_gtest.yaml symv_gtest.yaml syr_gtest.yaml ger_gtest.yaml trsm_gtest.yaml trtri_gtest.yaml geam_gtest.yaml set_get_vector_gtest.yaml set_get_matrix_gtest.yaml WORKING_DIRECTORY "${CMAKE_CURRENT_SOURCE_DIR}" )
Add the
.cpp
file to the list of sources forrocblas-test
inCMakeLists.txt
, for example:set(rocblas_test_source rocblas_gtest_main.cpp ${Tensile_TEST_SRC} set_get_pointer_mode_gtest.cpp logging_mode_gtest.cpp set_get_vector_gtest.cpp set_get_matrix_gtest.cpp blas1_gtest.cpp gemv_gtest.cpp ger_gtest.cpp syr_gtest.cpp symv_gtest.cpp geam_gtest.cpp trtri_gtest.cpp )
Aim for a function to have tests in each of the categories: quick, pre_checkin, and nightly. Aim for tests for each function to have the runtime fall within the parameters in the table below:
Level
quick
pre_checkin
nightly
Level 1
2 - 12 sec
20 - 36 sec
70 - 200 sec
Level 2
6 - 36 sec
35 - 100 sec
200 - 650 sec
Level 3
20 sec - 2 min
2 - 6 min
12 - 24 min
Many examples are available in
gtest/*_gtest.{cpp,yaml}
.
Testing during development#
ILP64 APIs require such large problem sizes that getting code coverage during tests is cost prohibitive.
Therefore, there are some hooks to help with early developer testing using smaller sizes.
You can compile with -DROCBLAS_DEV_TEST_ILP64
to test ILP64 code when it would otherwise not be invoked.
For example, a scal
implementation can call the original 32-bit API code when N
and incx
are less than c_ILP64_i32_max
.
c_ILP64_i32_max
is usually defined as std::numeric_limits<int32_t>::max()
,
but with ROCBLAS_DEV_TEST_ILP64
defined, then c_ILP64_i32_max
is defined as zero.
Therefore, for small sizes it branches and uses ILP64 support code instead of the 32-bit original API.
The specifics vary for each implementation and require a YAML configuration to test C_64
APIs with small sizes.
This is intended as a by-pass for when early detection of small sizes invokes the 32-bit APIs.
This is for developer testing only and should not be used for production code.
Test coverage during development should be much more exhaustive than the final versions of test sets. Test times are limited, so a trade-off between coverage and test duration must be made. During development, it is expected that the problem space will be covered in more depth to look for potential anomalies. Any special cases should be analyzed, reduced in scope, and represented in the final test category.