Expand description
Inverted File Product Quantization
Example:
use hipvs::ivf_pq::{Index, IndexParams, SearchParams};
use hipvs::{ManagedTensor, Resources, Result};
use ndarray::s;
use ndarray_rand::rand_distr::Uniform;
use ndarray_rand::RandomExt;
fn ivf_pq_example() -> Result<()> {
let res = Resources::new()?;
// Create a new random dataset to index
let n_datapoints = 65536;
let n_features = 512;
let dataset =
ndarray::Array::<f32, _>::random((n_datapoints, n_features), Uniform::new(0., 1.0));
// build the ivf-pq index
let build_params = IndexParams::new()?;
let index = Index::build(&res, &build_params, &dataset)?;
println!(
"Indexed {}x{} datapoints into ivf-pq index",
n_datapoints, n_features
);
// use the first 4 points from the dataset as queries : will test that we get them back
// as their own nearest neighbor
let n_queries = 4;
let queries = dataset.slice(s![0..n_queries, ..]);
let k = 10;
// Ivf-Pq search API requires queries and outputs to be on device memory
// copy query data over, and allocate new device memory for the distances/ neighbors
// outputs
let queries = ManagedTensor::from(&queries).to_device(&res)?;
let mut neighbors_host = ndarray::Array::<u32, _>::zeros((n_queries, k));
let neighbors = ManagedTensor::from(&neighbors_host).to_device(&res)?;
let mut distances_host = ndarray::Array::<f32, _>::zeros((n_queries, k));
let distances = ManagedTensor::from(&distances_host).to_device(&res)?;
let search_params = SearchParams::new()?;
index.search(&res, &search_params, &queries, &neighbors, &distances)?;
// Copy back to host memory
distances.to_host(&res, &mut distances_host)?;
neighbors.to_host(&res, &mut neighbors_host)?;
// nearest neighbors should be themselves, since queries are from the
// dataset
println!("Neighbors {:?}", neighbors_host);
println!("Distances {:?}", distances_host);
Ok(())
}Structsยง
- Index
- Ivf-Pq ANN Index
- Index
Params - Search
Params - Supplemental parameters to search IvfPq index