Preconditioner Functions#

This module holds all sparse preconditioners.

The sparse preconditioners describe manipulations on a matrix in sparse format to obtain a sparse preconditioner matrix.

hipsparseXbsrilu02_zeroPivot()#

hipsparseStatus_t hipsparseXbsrilu02_zeroPivot(hipsparseHandle_t handle, bsrilu02Info_t info, int *position)#

Incomplete LU factorization with 0 fill-ins and no pivoting using BSR storage format.

hipsparseXbsrilu02_zeroPivot returns HIPSPARSE_STATUS_ZERO_PIVOT, if either a structural or numerical zero has been found during hipsparseXbsrilu02_analysis() or hipsparseXbsrilu02() computation. The first zero pivot \(j\) at \(A_{j,j}\) is stored in position, using same index base as the BSR matrix.

position can be in host or device memory. If no zero pivot has been found, position is set to -1 and HIPSPARSE_STATUS_SUCCESS is returned instead.

Note

If a zero pivot is found, position \(=j\) means that either the diagonal block \(A_{j,j}\) is missing (structural zero) or the diagonal block \(A_{j,j}\) is not invertible (numerical zero).

Note

hipsparseXbsrilu02_zeroPivot is a blocking function. It might influence performance negatively.

hipsparseXbsrilu02_numericBoost()#

hipsparseStatus_t hipsparseSbsrilu02_numericBoost(hipsparseHandle_t handle, bsrilu02Info_t info, int enable_boost, double *tol, float *boost_val)#
hipsparseStatus_t hipsparseDbsrilu02_numericBoost(hipsparseHandle_t handle, bsrilu02Info_t info, int enable_boost, double *tol, double *boost_val)#
hipsparseStatus_t hipsparseCbsrilu02_numericBoost(hipsparseHandle_t handle, bsrilu02Info_t info, int enable_boost, double *tol, hipComplex *boost_val)#
hipsparseStatus_t hipsparseZbsrilu02_numericBoost(hipsparseHandle_t handle, bsrilu02Info_t info, int enable_boost, double *tol, hipDoubleComplex *boost_val)#

Incomplete LU factorization with 0 fill-ins and no pivoting using BSR storage format.

hipsparseXbsrilu02_numericBoost enables the user to replace a numerical value in an incomplete LU factorization. tol is used to determine whether a numerical value is replaced by boost_val, such that \(A_{j,j} = \text{boost_val}\) if \(\text{tol} \ge \left|A_{j,j}\right|\).

Note

The boost value is enabled by setting enable_boost to 1 or disabled by setting enable_boost to 0.

Note

tol and boost_val can be in host or device memory.

hipsparseXbsrilu02_bufferSize()#

hipsparseStatus_t hipsparseSbsrilu02_bufferSize(hipsparseHandle_t handle, hipsparseDirection_t dirA, int mb, int nnzb, const hipsparseMatDescr_t descrA, float *bsrSortedValA, const int *bsrSortedRowPtrA, const int *bsrSortedColIndA, int blockDim, bsrilu02Info_t info, int *pBufferSizeInBytes)#
hipsparseStatus_t hipsparseDbsrilu02_bufferSize(hipsparseHandle_t handle, hipsparseDirection_t dirA, int mb, int nnzb, const hipsparseMatDescr_t descrA, double *bsrSortedValA, const int *bsrSortedRowPtrA, const int *bsrSortedColIndA, int blockDim, bsrilu02Info_t info, int *pBufferSizeInBytes)#
hipsparseStatus_t hipsparseCbsrilu02_bufferSize(hipsparseHandle_t handle, hipsparseDirection_t dirA, int mb, int nnzb, const hipsparseMatDescr_t descrA, hipComplex *bsrSortedValA, const int *bsrSortedRowPtrA, const int *bsrSortedColIndA, int blockDim, bsrilu02Info_t info, int *pBufferSizeInBytes)#
hipsparseStatus_t hipsparseZbsrilu02_bufferSize(hipsparseHandle_t handle, hipsparseDirection_t dirA, int mb, int nnzb, const hipsparseMatDescr_t descrA, hipDoubleComplex *bsrSortedValA, const int *bsrSortedRowPtrA, const int *bsrSortedColIndA, int blockDim, bsrilu02Info_t info, int *pBufferSizeInBytes)#

Incomplete LU factorization with 0 fill-ins and no pivoting using BSR storage format.

hipsparseXbsrilu02_bufferSize returns the size of the temporary storage buffer in bytes that is required by hipsparseXbsrilu02_analysis() and hipsparseXbsrilu02(). The temporary storage buffer must be allocated by the user.

hipsparseXbsrilu02_analysis()#

hipsparseStatus_t hipsparseSbsrilu02_analysis(hipsparseHandle_t handle, hipsparseDirection_t dirA, int mb, int nnzb, const hipsparseMatDescr_t descrA, float *bsrSortedValA, const int *bsrSortedRowPtrA, const int *bsrSortedColIndA, int blockDim, bsrilu02Info_t info, hipsparseSolvePolicy_t policy, void *pBuffer)#
hipsparseStatus_t hipsparseDbsrilu02_analysis(hipsparseHandle_t handle, hipsparseDirection_t dirA, int mb, int nnzb, const hipsparseMatDescr_t descrA, double *bsrSortedValA, const int *bsrSortedRowPtrA, const int *bsrSortedColIndA, int blockDim, bsrilu02Info_t info, hipsparseSolvePolicy_t policy, void *pBuffer)#
hipsparseStatus_t hipsparseCbsrilu02_analysis(hipsparseHandle_t handle, hipsparseDirection_t dirA, int mb, int nnzb, const hipsparseMatDescr_t descrA, hipComplex *bsrSortedValA, const int *bsrSortedRowPtrA, const int *bsrSortedColIndA, int blockDim, bsrilu02Info_t info, hipsparseSolvePolicy_t policy, void *pBuffer)#
hipsparseStatus_t hipsparseZbsrilu02_analysis(hipsparseHandle_t handle, hipsparseDirection_t dirA, int mb, int nnzb, const hipsparseMatDescr_t descrA, hipDoubleComplex *bsrSortedValA, const int *bsrSortedRowPtrA, const int *bsrSortedColIndA, int blockDim, bsrilu02Info_t info, hipsparseSolvePolicy_t policy, void *pBuffer)#

Incomplete LU factorization with 0 fill-ins and no pivoting using BSR storage format.

hipsparseXbsrilu02_analysis performs the analysis step for hipsparseXbsrilu02().

Note

If the matrix sparsity pattern changes, the gathered information will become invalid.

Note

This function is non blocking and executed asynchronously with respect to the host. It may return before the actual computation has finished.

hipsparseXbsrilu02()#

hipsparseStatus_t hipsparseSbsrilu02(hipsparseHandle_t handle, hipsparseDirection_t dirA, int mb, int nnzb, const hipsparseMatDescr_t descrA, float *bsrSortedValA_valM, const int *bsrSortedRowPtrA, const int *bsrSortedColIndA, int blockDim, bsrilu02Info_t info, hipsparseSolvePolicy_t policy, void *pBuffer)#
hipsparseStatus_t hipsparseDbsrilu02(hipsparseHandle_t handle, hipsparseDirection_t dirA, int mb, int nnzb, const hipsparseMatDescr_t descrA, double *bsrSortedValA_valM, const int *bsrSortedRowPtrA, const int *bsrSortedColIndA, int blockDim, bsrilu02Info_t info, hipsparseSolvePolicy_t policy, void *pBuffer)#
hipsparseStatus_t hipsparseCbsrilu02(hipsparseHandle_t handle, hipsparseDirection_t dirA, int mb, int nnzb, const hipsparseMatDescr_t descrA, hipComplex *bsrSortedValA_valM, const int *bsrSortedRowPtrA, const int *bsrSortedColIndA, int blockDim, bsrilu02Info_t info, hipsparseSolvePolicy_t policy, void *pBuffer)#
hipsparseStatus_t hipsparseZbsrilu02(hipsparseHandle_t handle, hipsparseDirection_t dirA, int mb, int nnzb, const hipsparseMatDescr_t descrA, hipDoubleComplex *bsrSortedValA_valM, const int *bsrSortedRowPtrA, const int *bsrSortedColIndA, int blockDim, bsrilu02Info_t info, hipsparseSolvePolicy_t policy, void *pBuffer)#

Incomplete LU factorization with 0 fill-ins and no pivoting using BSR storage format.

hipsparseXbsrilu02 computes the incomplete LU factorization with 0 fill-ins and no pivoting of a sparse \(mb \times mb\) BSR matrix \(A\), such that

\[ A \approx LU \]

hipsparseXbsrilu02 requires a user allocated temporary buffer. Its size is returned by hipsparseXbsrilu02_bufferSize(). Furthermore, analysis meta data is required. It can be obtained by hipsparseXbsrilu02_analysis(). hipsparseXbsrilu02 reports the first zero pivot (either numerical or structural zero). The zero pivot status can be obtained by calling hipsparseXbsrilu02_zeroPivot().

Note

This function is non blocking and executed asynchronously with respect to the host. It may return before the actual computation has finished.

hipsparseXcsrilu02_zeroPivot()#

hipsparseStatus_t hipsparseXcsrilu02_zeroPivot(hipsparseHandle_t handle, csrilu02Info_t info, int *position)#

Incomplete LU factorization with 0 fill-ins and no pivoting using CSR storage format.

hipsparseXcsrilu02_zeroPivot returns HIPSPARSE_STATUS_ZERO_PIVOT, if either a structural or numerical zero has been found during hipsparseXcsrilu02() computation. The first zero pivot \(j\) at \(A_{j,j}\) is stored in position, using same index base as the CSR matrix.

position can be in host or device memory. If no zero pivot has been found, position is set to -1 and HIPSPARSE_STATUS_SUCCESS is returned instead.

Note

hipsparseXcsrilu02_zeroPivot is a blocking function. It might influence performance negatively.

hipsparseXcsrilu02_numericBoost()#

hipsparseStatus_t hipsparseScsrilu02_numericBoost(hipsparseHandle_t handle, csrilu02Info_t info, int enable_boost, double *tol, float *boost_val)#
hipsparseStatus_t hipsparseDcsrilu02_numericBoost(hipsparseHandle_t handle, csrilu02Info_t info, int enable_boost, double *tol, double *boost_val)#
hipsparseStatus_t hipsparseCcsrilu02_numericBoost(hipsparseHandle_t handle, csrilu02Info_t info, int enable_boost, double *tol, hipComplex *boost_val)#
hipsparseStatus_t hipsparseZcsrilu02_numericBoost(hipsparseHandle_t handle, csrilu02Info_t info, int enable_boost, double *tol, hipDoubleComplex *boost_val)#

Incomplete LU factorization with 0 fill-ins and no pivoting using CSR storage format.

hipsparseXcsrilu02_numericBoost enables the user to replace a numerical value in an incomplete LU factorization. tol is used to determine whether a numerical value is replaced by boost_val, such that \(A_{j,j} = \text{boost_val}\) if \(\text{tol} \ge \left|A_{j,j}\right|\).

Note

The boost value is enabled by setting enable_boost to 1 or disabled by setting enable_boost to 0.

Note

tol and boost_val can be in host or device memory.

hipsparseXcsrilu02_bufferSize()#

hipsparseStatus_t hipsparseScsrilu02_bufferSize(hipsparseHandle_t handle, int m, int nnz, const hipsparseMatDescr_t descrA, float *csrSortedValA, const int *csrSortedRowPtrA, const int *csrSortedColIndA, csrilu02Info_t info, int *pBufferSizeInBytes)#
hipsparseStatus_t hipsparseDcsrilu02_bufferSize(hipsparseHandle_t handle, int m, int nnz, const hipsparseMatDescr_t descrA, double *csrSortedValA, const int *csrSortedRowPtrA, const int *csrSortedColIndA, csrilu02Info_t info, int *pBufferSizeInBytes)#
hipsparseStatus_t hipsparseCcsrilu02_bufferSize(hipsparseHandle_t handle, int m, int nnz, const hipsparseMatDescr_t descrA, hipComplex *csrSortedValA, const int *csrSortedRowPtrA, const int *csrSortedColIndA, csrilu02Info_t info, int *pBufferSizeInBytes)#
hipsparseStatus_t hipsparseZcsrilu02_bufferSize(hipsparseHandle_t handle, int m, int nnz, const hipsparseMatDescr_t descrA, hipDoubleComplex *csrSortedValA, const int *csrSortedRowPtrA, const int *csrSortedColIndA, csrilu02Info_t info, int *pBufferSizeInBytes)#

Incomplete LU factorization with 0 fill-ins and no pivoting using CSR storage format.

hipsparseXcsrilu02_bufferSize returns the size of the temporary storage buffer in bytes that is required by hipsparseXcsrilu02_analysis() and hipsparseXcsrilu02_solve(). The temporary storage buffer must be allocated by the user.

hipsparseXcsrilu02_bufferSizeExt()#

hipsparseStatus_t hipsparseScsrilu02_bufferSizeExt(hipsparseHandle_t handle, int m, int nnz, const hipsparseMatDescr_t descrA, float *csrSortedValA, const int *csrSortedRowPtrA, const int *csrSortedColIndA, csrilu02Info_t info, size_t *pBufferSizeInBytes)#
hipsparseStatus_t hipsparseDcsrilu02_bufferSizeExt(hipsparseHandle_t handle, int m, int nnz, const hipsparseMatDescr_t descrA, double *csrSortedValA, const int *csrSortedRowPtrA, const int *csrSortedColIndA, csrilu02Info_t info, size_t *pBufferSizeInBytes)#
hipsparseStatus_t hipsparseCcsrilu02_bufferSizeExt(hipsparseHandle_t handle, int m, int nnz, const hipsparseMatDescr_t descrA, hipComplex *csrSortedValA, const int *csrSortedRowPtrA, const int *csrSortedColIndA, csrilu02Info_t info, size_t *pBufferSizeInBytes)#
hipsparseStatus_t hipsparseZcsrilu02_bufferSizeExt(hipsparseHandle_t handle, int m, int nnz, const hipsparseMatDescr_t descrA, hipDoubleComplex *csrSortedValA, const int *csrSortedRowPtrA, const int *csrSortedColIndA, csrilu02Info_t info, size_t *pBufferSizeInBytes)#

Incomplete LU factorization with 0 fill-ins and no pivoting using CSR storage format.

hipsparseXcsrilu02_bufferSizeExt returns the size of the temporary storage buffer in bytes that is required by hipsparseXcsrilu02_analysis() and hipsparseXcsrilu02_solve(). The temporary storage buffer must be allocated by the user.

hipsparseXcsrilu02_analysis()#

hipsparseStatus_t hipsparseScsrilu02_analysis(hipsparseHandle_t handle, int m, int nnz, const hipsparseMatDescr_t descrA, const float *csrSortedValA, const int *csrSortedRowPtrA, const int *csrSortedColIndA, csrilu02Info_t info, hipsparseSolvePolicy_t policy, void *pBuffer)#
hipsparseStatus_t hipsparseDcsrilu02_analysis(hipsparseHandle_t handle, int m, int nnz, const hipsparseMatDescr_t descrA, const double *csrSortedValA, const int *csrSortedRowPtrA, const int *csrSortedColIndA, csrilu02Info_t info, hipsparseSolvePolicy_t policy, void *pBuffer)#
hipsparseStatus_t hipsparseCcsrilu02_analysis(hipsparseHandle_t handle, int m, int nnz, const hipsparseMatDescr_t descrA, const hipComplex *csrSortedValA, const int *csrSortedRowPtrA, const int *csrSortedColIndA, csrilu02Info_t info, hipsparseSolvePolicy_t policy, void *pBuffer)#
hipsparseStatus_t hipsparseZcsrilu02_analysis(hipsparseHandle_t handle, int m, int nnz, const hipsparseMatDescr_t descrA, const hipDoubleComplex *csrSortedValA, const int *csrSortedRowPtrA, const int *csrSortedColIndA, csrilu02Info_t info, hipsparseSolvePolicy_t policy, void *pBuffer)#

Incomplete LU factorization with 0 fill-ins and no pivoting using CSR storage format.

hipsparseXcsrilu02_analysis performs the analysis step for hipsparseXcsrilu02().

Note

If the matrix sparsity pattern changes, the gathered information will become invalid.

Note

This function is non blocking and executed asynchronously with respect to the host. It may return before the actual computation has finished.

hipsparseXcsrilu02()#

hipsparseStatus_t hipsparseScsrilu02(hipsparseHandle_t handle, int m, int nnz, const hipsparseMatDescr_t descrA, float *csrSortedValA_valM, const int *csrSortedRowPtrA, const int *csrSortedColIndA, csrilu02Info_t info, hipsparseSolvePolicy_t policy, void *pBuffer)#
hipsparseStatus_t hipsparseDcsrilu02(hipsparseHandle_t handle, int m, int nnz, const hipsparseMatDescr_t descrA, double *csrSortedValA_valM, const int *csrSortedRowPtrA, const int *csrSortedColIndA, csrilu02Info_t info, hipsparseSolvePolicy_t policy, void *pBuffer)#
hipsparseStatus_t hipsparseCcsrilu02(hipsparseHandle_t handle, int m, int nnz, const hipsparseMatDescr_t descrA, hipComplex *csrSortedValA_valM, const int *csrSortedRowPtrA, const int *csrSortedColIndA, csrilu02Info_t info, hipsparseSolvePolicy_t policy, void *pBuffer)#
hipsparseStatus_t hipsparseZcsrilu02(hipsparseHandle_t handle, int m, int nnz, const hipsparseMatDescr_t descrA, hipDoubleComplex *csrSortedValA_valM, const int *csrSortedRowPtrA, const int *csrSortedColIndA, csrilu02Info_t info, hipsparseSolvePolicy_t policy, void *pBuffer)#

Incomplete LU factorization with 0 fill-ins and no pivoting using CSR storage format.

hipsparseXcsrilu02 computes the incomplete LU factorization with 0 fill-ins and no pivoting of a sparse \(m \times m\) CSR matrix \(A\), such that

\[ A \approx LU \]

hipsparseXcsrilu02 requires a user allocated temporary buffer. Its size is returned by hipsparseXcsrilu02_bufferSize() or hipsparseXcsrilu02_bufferSizeExt(). Furthermore, analysis meta data is required. It can be obtained by hipsparseXcsrilu02_analysis(). hipsparseXcsrilu02 reports the first zero pivot (either numerical or structural zero). The zero pivot status can be obtained by calling hipsparseXcsrilu02_zeroPivot().

Note

The sparse CSR matrix has to be sorted. This can be achieved by calling hipsparseXcsrsort().

Note

This function is non blocking and executed asynchronously with respect to the host. It may return before the actual computation has finished.

hipsparseXbsric02_zeroPivot()#

hipsparseStatus_t hipsparseXbsric02_zeroPivot(hipsparseHandle_t handle, bsric02Info_t info, int *position)#

Incomplete Cholesky factorization with 0 fill-ins and no pivoting using BSR storage format.

hipsparseXbsric02_zeroPivot returns HIPSPARSE_STATUS_ZERO_PIVOT, if either a structural or numerical zero has been found during hipsparseXbsric02_analysis() or hipsparseXbsric02() computation. The first zero pivot \(j\) at \(A_{j,j}\) is stored in position, using same index base as the BSR matrix.

position can be in host or device memory. If no zero pivot has been found, position is set to -1 and HIPSPARSE_STATUS_SUCCESS is returned instead.

Note

If a zero pivot is found, position=j means that either the diagonal block A(j,j) is missing (structural zero) or the diagonal block A(j,j) is not positive definite (numerical zero).

Note

hipsparseXbsric02_zeroPivot is a blocking function. It might influence performance negatively.

hipsparseXbsric02_bufferSize()#

hipsparseStatus_t hipsparseSbsric02_bufferSize(hipsparseHandle_t handle, hipsparseDirection_t dirA, int mb, int nnzb, const hipsparseMatDescr_t descrA, float *bsrValA, const int *bsrRowPtrA, const int *bsrColIndA, int blockDim, bsric02Info_t info, int *pBufferSizeInBytes)#
hipsparseStatus_t hipsparseDbsric02_bufferSize(hipsparseHandle_t handle, hipsparseDirection_t dirA, int mb, int nnzb, const hipsparseMatDescr_t descrA, double *bsrValA, const int *bsrRowPtrA, const int *bsrColIndA, int blockDim, bsric02Info_t info, int *pBufferSizeInBytes)#
hipsparseStatus_t hipsparseCbsric02_bufferSize(hipsparseHandle_t handle, hipsparseDirection_t dirA, int mb, int nnzb, const hipsparseMatDescr_t descrA, hipComplex *bsrValA, const int *bsrRowPtrA, const int *bsrColIndA, int blockDim, bsric02Info_t info, int *pBufferSizeInBytes)#
hipsparseStatus_t hipsparseZbsric02_bufferSize(hipsparseHandle_t handle, hipsparseDirection_t dirA, int mb, int nnzb, const hipsparseMatDescr_t descrA, hipDoubleComplex *bsrValA, const int *bsrRowPtrA, const int *bsrColIndA, int blockDim, bsric02Info_t info, int *pBufferSizeInBytes)#

Incomplete Cholesky factorization with 0 fill-ins and no pivoting using BSR storage format.

hipsparseXbsric02_bufferSize returns the size of the temporary storage buffer in bytes that is required by hipsparseXbsric02_analysis() and hipsparseXbsric02(). The temporary storage buffer must be allocated by the user.

hipsparseXbsric02_analysis()#

hipsparseStatus_t hipsparseSbsric02_analysis(hipsparseHandle_t handle, hipsparseDirection_t dirA, int mb, int nnzb, const hipsparseMatDescr_t descrA, const float *bsrValA, const int *bsrRowPtrA, const int *bsrColIndA, int blockDim, bsric02Info_t info, hipsparseSolvePolicy_t policy, void *pBuffer)#
hipsparseStatus_t hipsparseDbsric02_analysis(hipsparseHandle_t handle, hipsparseDirection_t dirA, int mb, int nnzb, const hipsparseMatDescr_t descrA, const double *bsrValA, const int *bsrRowPtrA, const int *bsrColIndA, int blockDim, bsric02Info_t info, hipsparseSolvePolicy_t policy, void *pBuffer)#
hipsparseStatus_t hipsparseCbsric02_analysis(hipsparseHandle_t handle, hipsparseDirection_t dirA, int mb, int nnzb, const hipsparseMatDescr_t descrA, const hipComplex *bsrValA, const int *bsrRowPtrA, const int *bsrColIndA, int blockDim, bsric02Info_t info, hipsparseSolvePolicy_t policy, void *pBuffer)#
hipsparseStatus_t hipsparseZbsric02_analysis(hipsparseHandle_t handle, hipsparseDirection_t dirA, int mb, int nnzb, const hipsparseMatDescr_t descrA, const hipDoubleComplex *bsrValA, const int *bsrRowPtrA, const int *bsrColIndA, int blockDim, bsric02Info_t info, hipsparseSolvePolicy_t policy, void *pBuffer)#

Incomplete Cholesky factorization with 0 fill-ins and no pivoting using BSR storage format.

hipsparseXbsric02_analysis performs the analysis step for hipsparseXbsric02().

Note

If the matrix sparsity pattern changes, the gathered information will become invalid.

Note

This function is non blocking and executed asynchronously with respect to the host. It may return before the actual computation has finished.

hipsparseXbsric02()#

hipsparseStatus_t hipsparseSbsric02(hipsparseHandle_t handle, hipsparseDirection_t dirA, int mb, int nnzb, const hipsparseMatDescr_t descrA, float *bsrValA, const int *bsrRowPtrA, const int *bsrColIndA, int blockDim, bsric02Info_t info, hipsparseSolvePolicy_t policy, void *pBuffer)#
hipsparseStatus_t hipsparseDbsric02(hipsparseHandle_t handle, hipsparseDirection_t dirA, int mb, int nnzb, const hipsparseMatDescr_t descrA, double *bsrValA, const int *bsrRowPtrA, const int *bsrColIndA, int blockDim, bsric02Info_t info, hipsparseSolvePolicy_t policy, void *pBuffer)#
hipsparseStatus_t hipsparseCbsric02(hipsparseHandle_t handle, hipsparseDirection_t dirA, int mb, int nnzb, const hipsparseMatDescr_t descrA, hipComplex *bsrValA, const int *bsrRowPtrA, const int *bsrColIndA, int blockDim, bsric02Info_t info, hipsparseSolvePolicy_t policy, void *pBuffer)#
hipsparseStatus_t hipsparseZbsric02(hipsparseHandle_t handle, hipsparseDirection_t dirA, int mb, int nnzb, const hipsparseMatDescr_t descrA, hipDoubleComplex *bsrValA, const int *bsrRowPtrA, const int *bsrColIndA, int blockDim, bsric02Info_t info, hipsparseSolvePolicy_t policy, void *pBuffer)#

Incomplete Cholesky factorization with 0 fill-ins and no pivoting using BSR storage format.

hipsparseXbsric02 computes the incomplete Cholesky factorization with 0 fill-ins and no pivoting of a sparse \(mb \times mb\) BSR matrix \(A\), such that

\[ A \approx LL^T \]

hipsparseXbsric02 requires a user allocated temporary buffer. Its size is returned by hipsparseXbsric02_bufferSize(). Furthermore, analysis meta data is required. It can be obtained by hipsparseXbsric02_analysis(). hipsparseXbsric02 reports the first zero pivot (either numerical or structural zero). The zero pivot status can be obtained by calling hipsparseXbsric02_zeroPivot().

Note

This function is non blocking and executed asynchronously with respect to the host. It may return before the actual computation has finished.

hipsparseXcsric02_zeroPivot()#

hipsparseStatus_t hipsparseXcsric02_zeroPivot(hipsparseHandle_t handle, csric02Info_t info, int *position)#

Incomplete Cholesky factorization with 0 fill-ins and no pivoting using CSR storage format.

hipsparseXcsric02_zeroPivot returns HIPSPARSE_STATUS_ZERO_PIVOT, if either a structural or numerical zero has been found during hipsparseXcsric02_analysis() or hipsparseXcsric02() computation. The first zero pivot \(j\) at \(A_{j,j}\) is stored in position, using same index base as the CSR matrix.

position can be in host or device memory. If no zero pivot has been found, position is set to -1 and HIPSPARSE_STATUS_SUCCESS is returned instead.

Note

hipsparseXcsric02_zeroPivot is a blocking function. It might influence performance negatively.

hipsparseXcsric02_bufferSize()#

hipsparseStatus_t hipsparseScsric02_bufferSize(hipsparseHandle_t handle, int m, int nnz, const hipsparseMatDescr_t descrA, float *csrSortedValA, const int *csrSortedRowPtrA, const int *csrSortedColIndA, csric02Info_t info, int *pBufferSizeInBytes)#
hipsparseStatus_t hipsparseDcsric02_bufferSize(hipsparseHandle_t handle, int m, int nnz, const hipsparseMatDescr_t descrA, double *csrSortedValA, const int *csrSortedRowPtrA, const int *csrSortedColIndA, csric02Info_t info, int *pBufferSizeInBytes)#
hipsparseStatus_t hipsparseCcsric02_bufferSize(hipsparseHandle_t handle, int m, int nnz, const hipsparseMatDescr_t descrA, hipComplex *csrSortedValA, const int *csrSortedRowPtrA, const int *csrSortedColIndA, csric02Info_t info, int *pBufferSizeInBytes)#
hipsparseStatus_t hipsparseZcsric02_bufferSize(hipsparseHandle_t handle, int m, int nnz, const hipsparseMatDescr_t descrA, hipDoubleComplex *csrSortedValA, const int *csrSortedRowPtrA, const int *csrSortedColIndA, csric02Info_t info, int *pBufferSizeInBytes)#

Incomplete Cholesky factorization with 0 fill-ins and no pivoting using CSR storage format.

hipsparseXcsric02_bufferSize returns the size of the temporary storage buffer in bytes that is required by hipsparseXcsric02_analysis() and hipsparseXcsric02().

hipsparseXcsric02_bufferSizeExt()#

hipsparseStatus_t hipsparseScsric02_bufferSizeExt(hipsparseHandle_t handle, int m, int nnz, const hipsparseMatDescr_t descrA, float *csrSortedValA, const int *csrSortedRowPtrA, const int *csrSortedColIndA, csric02Info_t info, size_t *pBufferSizeInBytes)#
hipsparseStatus_t hipsparseDcsric02_bufferSizeExt(hipsparseHandle_t handle, int m, int nnz, const hipsparseMatDescr_t descrA, double *csrSortedValA, const int *csrSortedRowPtrA, const int *csrSortedColIndA, csric02Info_t info, size_t *pBufferSizeInBytes)#
hipsparseStatus_t hipsparseCcsric02_bufferSizeExt(hipsparseHandle_t handle, int m, int nnz, const hipsparseMatDescr_t descrA, hipComplex *csrSortedValA, const int *csrSortedRowPtrA, const int *csrSortedColIndA, csric02Info_t info, size_t *pBufferSizeInBytes)#
hipsparseStatus_t hipsparseZcsric02_bufferSizeExt(hipsparseHandle_t handle, int m, int nnz, const hipsparseMatDescr_t descrA, hipDoubleComplex *csrSortedValA, const int *csrSortedRowPtrA, const int *csrSortedColIndA, csric02Info_t info, size_t *pBufferSizeInBytes)#

Incomplete Cholesky factorization with 0 fill-ins and no pivoting using CSR storage format.

hipsparseXcsric02_bufferSizeExt returns the size of the temporary storage buffer in bytes that is required by hipsparseXcsric02_analysis() and hipsparseXcsric02().

hipsparseXcsric02_analysis()#

hipsparseStatus_t hipsparseScsric02_analysis(hipsparseHandle_t handle, int m, int nnz, const hipsparseMatDescr_t descrA, const float *csrSortedValA, const int *csrSortedRowPtrA, const int *csrSortedColIndA, csric02Info_t info, hipsparseSolvePolicy_t policy, void *pBuffer)#
hipsparseStatus_t hipsparseDcsric02_analysis(hipsparseHandle_t handle, int m, int nnz, const hipsparseMatDescr_t descrA, const double *csrSortedValA, const int *csrSortedRowPtrA, const int *csrSortedColIndA, csric02Info_t info, hipsparseSolvePolicy_t policy, void *pBuffer)#
hipsparseStatus_t hipsparseCcsric02_analysis(hipsparseHandle_t handle, int m, int nnz, const hipsparseMatDescr_t descrA, const hipComplex *csrSortedValA, const int *csrSortedRowPtrA, const int *csrSortedColIndA, csric02Info_t info, hipsparseSolvePolicy_t policy, void *pBuffer)#
hipsparseStatus_t hipsparseZcsric02_analysis(hipsparseHandle_t handle, int m, int nnz, const hipsparseMatDescr_t descrA, const hipDoubleComplex *csrSortedValA, const int *csrSortedRowPtrA, const int *csrSortedColIndA, csric02Info_t info, hipsparseSolvePolicy_t policy, void *pBuffer)#

Incomplete Cholesky factorization with 0 fill-ins and no pivoting using CSR storage format.

hipsparseXcsric02_analysis performs the analysis step for hipsparseXcsric02().

Note

If the matrix sparsity pattern changes, the gathered information will become invalid.

Note

This function is non blocking and executed asynchronously with respect to the host. It may return before the actual computation has finished.

hipsparseXcsric02()#

hipsparseStatus_t hipsparseScsric02(hipsparseHandle_t handle, int m, int nnz, const hipsparseMatDescr_t descrA, float *csrSortedValA_valM, const int *csrSortedRowPtrA, const int *csrSortedColIndA, csric02Info_t info, hipsparseSolvePolicy_t policy, void *pBuffer)#
hipsparseStatus_t hipsparseDcsric02(hipsparseHandle_t handle, int m, int nnz, const hipsparseMatDescr_t descrA, double *csrSortedValA_valM, const int *csrSortedRowPtrA, const int *csrSortedColIndA, csric02Info_t info, hipsparseSolvePolicy_t policy, void *pBuffer)#
hipsparseStatus_t hipsparseCcsric02(hipsparseHandle_t handle, int m, int nnz, const hipsparseMatDescr_t descrA, hipComplex *csrSortedValA_valM, const int *csrSortedRowPtrA, const int *csrSortedColIndA, csric02Info_t info, hipsparseSolvePolicy_t policy, void *pBuffer)#
hipsparseStatus_t hipsparseZcsric02(hipsparseHandle_t handle, int m, int nnz, const hipsparseMatDescr_t descrA, hipDoubleComplex *csrSortedValA_valM, const int *csrSortedRowPtrA, const int *csrSortedColIndA, csric02Info_t info, hipsparseSolvePolicy_t policy, void *pBuffer)#

Incomplete Cholesky factorization with 0 fill-ins and no pivoting using CSR storage format.

hipsparseXcsric02 computes the incomplete Cholesky factorization with 0 fill-ins and no pivoting of a sparse \(m \times m\) CSR matrix \(A\), such that

\[ A \approx LL^T \]

hipsparseXcsric02 requires a user allocated temporary buffer. Its size is returned by hipsparseXcsric02_bufferSize() or hipsparseXcsric02_bufferSizeExt(). Furthermore, analysis meta data is required. It can be obtained by hipsparseXcsric02_analysis(). hipsparseXcsric02 reports the first zero pivot (either numerical or structural zero). The zero pivot status can be obtained by calling hipsparseXcsric02_zeroPivot().

Note

The sparse CSR matrix has to be sorted. This can be achieved by calling hipsparseXcsrsort().

Note

This function is non blocking and executed asynchronously with respect to the host. It may return before the actual computation has finished.

hipsparseXgtsv2_bufferSizeExt()#

hipsparseStatus_t hipsparseSgtsv2_bufferSizeExt(hipsparseHandle_t handle, int m, int n, const float *dl, const float *d, const float *du, const float *B, int ldb, size_t *pBufferSizeInBytes)#
hipsparseStatus_t hipsparseDgtsv2_bufferSizeExt(hipsparseHandle_t handle, int m, int n, const double *dl, const double *d, const double *du, const double *B, int db, size_t *pBufferSizeInBytes)#
hipsparseStatus_t hipsparseCgtsv2_bufferSizeExt(hipsparseHandle_t handle, int m, int n, const hipComplex *dl, const hipComplex *d, const hipComplex *du, const hipComplex *B, int ldb, size_t *pBufferSizeInBytes)#
hipsparseStatus_t hipsparseZgtsv2_bufferSizeExt(hipsparseHandle_t handle, int m, int n, const hipDoubleComplex *dl, const hipDoubleComplex *d, const hipDoubleComplex *du, const hipDoubleComplex *B, int ldb, size_t *pBufferSizeInBytes)#

Tridiagonal solver with pivoting.

hipsparseXgtsv2_bufferSize returns the size of the temporary storage buffer in bytes that is required by hipsparseXgtsv2(). The temporary storage buffer must be allocated by the user.

hipsparseXgtsv2()#

hipsparseStatus_t hipsparseSgtsv2(hipsparseHandle_t handle, int m, int n, const float *dl, const float *d, const float *du, float *B, int ldb, void *pBuffer)#
hipsparseStatus_t hipsparseDgtsv2(hipsparseHandle_t handle, int m, int n, const double *dl, const double *d, const double *du, double *B, int ldb, void *pBuffer)#
hipsparseStatus_t hipsparseCgtsv2(hipsparseHandle_t handle, int m, int n, const hipComplex *dl, const hipComplex *d, const hipComplex *du, hipComplex *B, int ldb, void *pBuffer)#
hipsparseStatus_t hipsparseZgtsv2(hipsparseHandle_t handle, int m, int n, const hipDoubleComplex *dl, const hipDoubleComplex *d, const hipDoubleComplex *du, hipDoubleComplex *B, int ldb, void *pBuffer)#

Tridiagonal solver with pivoting.

hipsparseXgtsv2 solves a tridiagonal system for multiple right hand sides using pivoting.

Note

This function is non blocking and executed asynchronously with respect to the host. It may return before the actual computation has finished.

hipsparseXgtsv2_nopivot_bufferSizeExt()#

hipsparseStatus_t hipsparseSgtsv2_nopivot_bufferSizeExt(hipsparseHandle_t handle, int m, int n, const float *dl, const float *d, const float *du, const float *B, int ldb, size_t *pBufferSizeInBytes)#
hipsparseStatus_t hipsparseDgtsv2_nopivot_bufferSizeExt(hipsparseHandle_t handle, int m, int n, const double *dl, const double *d, const double *du, const double *B, int db, size_t *pBufferSizeInBytes)#
hipsparseStatus_t hipsparseCgtsv2_nopivot_bufferSizeExt(hipsparseHandle_t handle, int m, int n, const hipComplex *dl, const hipComplex *d, const hipComplex *du, const hipComplex *B, int ldb, size_t *pBufferSizeInBytes)#
hipsparseStatus_t hipsparseZgtsv2_nopivot_bufferSizeExt(hipsparseHandle_t handle, int m, int n, const hipDoubleComplex *dl, const hipDoubleComplex *d, const hipDoubleComplex *du, const hipDoubleComplex *B, int ldb, size_t *pBufferSizeInBytes)#

Tridiagonal solver (no pivoting)

hipsparseXgtsv2_nopivot_bufferSizeExt returns the size of the temporary storage buffer in bytes that is required by hipsparseXgtsv2_nopivot(). The temporary storage buffer must be allocated by the user.

hipsparseXgtsv2_nopivot()#

hipsparseStatus_t hipsparseSgtsv2_nopivot(hipsparseHandle_t handle, int m, int n, const float *dl, const float *d, const float *du, float *B, int ldb, void *pBuffer)#
hipsparseStatus_t hipsparseDgtsv2_nopivot(hipsparseHandle_t handle, int m, int n, const double *dl, const double *d, const double *du, double *B, int ldb, void *pBuffer)#
hipsparseStatus_t hipsparseCgtsv2_nopivot(hipsparseHandle_t handle, int m, int n, const hipComplex *dl, const hipComplex *d, const hipComplex *du, hipComplex *B, int ldb, void *pBuffer)#
hipsparseStatus_t hipsparseZgtsv2_nopivot(hipsparseHandle_t handle, int m, int n, const hipDoubleComplex *dl, const hipDoubleComplex *d, const hipDoubleComplex *du, hipDoubleComplex *B, int ldb, void *pBuffer)#

Tridiagonal solver (no pivoting)

hipsparseXgtsv2_nopivot solves a tridiagonal linear system for multiple right-hand sides

Note

This function is non blocking and executed asynchronously with respect to the host. It may return before the actual computation has finished.

hipsparseXgtsv2StridedBatch_bufferSizeExt()#

hipsparseStatus_t hipsparseSgtsv2StridedBatch_bufferSizeExt(hipsparseHandle_t handle, int m, const float *dl, const float *d, const float *du, const float *x, int batchCount, int batchStride, size_t *pBufferSizeInBytes)#
hipsparseStatus_t hipsparseDgtsv2StridedBatch_bufferSizeExt(hipsparseHandle_t handle, int m, const double *dl, const double *d, const double *du, const double *x, int batchCount, int batchStride, size_t *pBufferSizeInBytes)#
hipsparseStatus_t hipsparseCgtsv2StridedBatch_bufferSizeExt(hipsparseHandle_t handle, int m, const hipComplex *dl, const hipComplex *d, const hipComplex *du, const hipComplex *x, int batchCount, int batchStride, size_t *pBufferSizeInBytes)#
hipsparseStatus_t hipsparseZgtsv2StridedBatch_bufferSizeExt(hipsparseHandle_t handle, int m, const hipDoubleComplex *dl, const hipDoubleComplex *d, const hipDoubleComplex *du, const hipDoubleComplex *x, int batchCount, int batchStride, size_t *pBufferSizeInBytes)#

Strided Batch tridiagonal solver (no pivoting)

hipsparseXgtsv2StridedBatch_bufferSizeExt returns the size of the temporary storage buffer in bytes that is required by hipsparseXgtsv2StridedBatch(). The temporary storage buffer must be allocated by the user.

hipsparseXgtsv2StridedBatch()#

hipsparseStatus_t hipsparseSgtsv2StridedBatch(hipsparseHandle_t handle, int m, const float *dl, const float *d, const float *du, float *x, int batchCount, int batchStride, void *pBuffer)#
hipsparseStatus_t hipsparseDgtsv2StridedBatch(hipsparseHandle_t handle, int m, const double *dl, const double *d, const double *du, double *x, int batchCount, int batchStride, void *pBuffer)#
hipsparseStatus_t hipsparseCgtsv2StridedBatch(hipsparseHandle_t handle, int m, const hipComplex *dl, const hipComplex *d, const hipComplex *du, hipComplex *x, int batchCount, int batchStride, void *pBuffer)#
hipsparseStatus_t hipsparseZgtsv2StridedBatch(hipsparseHandle_t handle, int m, const hipDoubleComplex *dl, const hipDoubleComplex *d, const hipDoubleComplex *du, hipDoubleComplex *x, int batchCount, int batchStride, void *pBuffer)#

Strided Batch tridiagonal solver (no pivoting)

hipsparseXgtsv2StridedBatch solves a batched tridiagonal linear system

Note

This function is non blocking and executed asynchronously with respect to the host. It may return before the actual computation has finished.

hipsparseXgtsvInterleavedBatch_bufferSizeExt()#

hipsparseStatus_t hipsparseSgtsvInterleavedBatch_bufferSizeExt(hipsparseHandle_t handle, int algo, int m, const float *dl, const float *d, const float *du, const float *x, int batchCount, size_t *pBufferSizeInBytes)#
hipsparseStatus_t hipsparseDgtsvInterleavedBatch_bufferSizeExt(hipsparseHandle_t handle, int algo, int m, const double *dl, const double *d, const double *du, const double *x, int batchCount, size_t *pBufferSizeInBytes)#
hipsparseStatus_t hipsparseCgtsvInterleavedBatch_bufferSizeExt(hipsparseHandle_t handle, int algo, int m, const hipComplex *dl, const hipComplex *d, const hipComplex *du, const hipComplex *x, int batchCount, size_t *pBufferSizeInBytes)#
hipsparseStatus_t hipsparseZgtsvInterleavedBatch_bufferSizeExt(hipsparseHandle_t handle, int algo, int m, const hipDoubleComplex *dl, const hipDoubleComplex *d, const hipDoubleComplex *du, const hipDoubleComplex *x, int batchCount, size_t *pBufferSizeInBytes)#

Interleaved Batch tridiagonal solver.

hipsparseXgtsvInterleavedBatch_bufferSizeExt returns the size of the temporary storage buffer in bytes that is required by hipsparseXgtsvInterleavedBatch(). The temporary storage buffer must be allocated by the user.

hipsparseXgtsvInterleavedBatch()#

hipsparseStatus_t hipsparseSgtsvInterleavedBatch(hipsparseHandle_t handle, int algo, int m, float *dl, float *d, float *du, float *x, int batchCount, void *pBuffer)#
hipsparseStatus_t hipsparseDgtsvInterleavedBatch(hipsparseHandle_t handle, int algo, int m, double *dl, double *d, double *du, double *x, int batchCount, void *pBuffer)#
hipsparseStatus_t hipsparseCgtsvInterleavedBatch(hipsparseHandle_t handle, int algo, int m, hipComplex *dl, hipComplex *d, hipComplex *du, hipComplex *x, int batchCount, void *pBuffer)#
hipsparseStatus_t hipsparseZgtsvInterleavedBatch(hipsparseHandle_t handle, int algo, int m, hipDoubleComplex *dl, hipDoubleComplex *d, hipDoubleComplex *du, hipDoubleComplex *x, int batchCount, void *pBuffer)#

Interleaved Batch tridiagonal solver.

hipsparseXgtsvInterleavedBatch solves a batched tridiagonal linear system

Note

This function is non blocking and executed asynchronously with respect to the host. It may return before the actual computation has finished.

hipsparseXgpsvInterleavedBatch_bufferSizeExt()#

hipsparseStatus_t hipsparseSgpsvInterleavedBatch_bufferSizeExt(hipsparseHandle_t handle, int algo, int m, const float *ds, const float *dl, const float *d, const float *du, const float *dw, const float *x, int batchCount, size_t *pBufferSizeInBytes)#
hipsparseStatus_t hipsparseDgpsvInterleavedBatch_bufferSizeExt(hipsparseHandle_t handle, int algo, int m, const double *ds, const double *dl, const double *d, const double *du, const double *dw, const double *x, int batchCount, size_t *pBufferSizeInBytes)#
hipsparseStatus_t hipsparseCgpsvInterleavedBatch_bufferSizeExt(hipsparseHandle_t handle, int algo, int m, const hipComplex *ds, const hipComplex *dl, const hipComplex *d, const hipComplex *du, const hipComplex *dw, const hipComplex *x, int batchCount, size_t *pBufferSizeInBytes)#
hipsparseStatus_t hipsparseZgpsvInterleavedBatch_bufferSizeExt(hipsparseHandle_t handle, int algo, int m, const hipDoubleComplex *ds, const hipDoubleComplex *dl, const hipDoubleComplex *d, const hipDoubleComplex *du, const hipDoubleComplex *dw, const hipDoubleComplex *x, int batchCount, size_t *pBufferSizeInBytes)#

Interleaved Batch pentadiagonal solver.

hipsparseXgpsvInterleavedBatch_bufferSizeExt returns the size of the temporary storage buffer in bytes that is required by hipsparseXgpsvInterleavedBatch(). The temporary storage buffer must be allocated by the user.

hipsparseXgpsvInterleavedBatch()#

hipsparseStatus_t hipsparseSgpsvInterleavedBatch(hipsparseHandle_t handle, int algo, int m, float *ds, float *dl, float *d, float *du, float *dw, float *x, int batchCount, void *pBuffer)#
hipsparseStatus_t hipsparseDgpsvInterleavedBatch(hipsparseHandle_t handle, int algo, int m, double *ds, double *dl, double *d, double *du, double *dw, double *x, int batchCount, void *pBuffer)#
hipsparseStatus_t hipsparseCgpsvInterleavedBatch(hipsparseHandle_t handle, int algo, int m, hipComplex *ds, hipComplex *dl, hipComplex *d, hipComplex *du, hipComplex *dw, hipComplex *x, int batchCount, void *pBuffer)#
hipsparseStatus_t hipsparseZgpsvInterleavedBatch(hipsparseHandle_t handle, int algo, int m, hipDoubleComplex *ds, hipDoubleComplex *dl, hipDoubleComplex *d, hipDoubleComplex *du, hipDoubleComplex *dw, hipDoubleComplex *x, int batchCount, void *pBuffer)#

Interleaved Batch pentadiagonal solver.

hipsparseXgpsvInterleavedBatch solves a batched pentadiagonal linear system

Note

This function is non blocking and executed asynchronously with respect to the host. It may return before the actual computation has finished.