Sparse Level 1 Functions#
The sparse level 1 routines describe operations between a vector in sparse format and a vector in dense format. This section describes all hipSPARSE level 1 sparse linear algebra functions.
hipsparseXaxpyi()#
-
hipsparseStatus_t hipsparseSaxpyi(hipsparseHandle_t handle, int nnz, const float *alpha, const float *xVal, const int *xInd, float *y, hipsparseIndexBase_t idxBase)#
-
hipsparseStatus_t hipsparseDaxpyi(hipsparseHandle_t handle, int nnz, const double *alpha, const double *xVal, const int *xInd, double *y, hipsparseIndexBase_t idxBase)#
-
hipsparseStatus_t hipsparseCaxpyi(hipsparseHandle_t handle, int nnz, const hipComplex *alpha, const hipComplex *xVal, const int *xInd, hipComplex *y, hipsparseIndexBase_t idxBase)#
-
hipsparseStatus_t hipsparseZaxpyi(hipsparseHandle_t handle, int nnz, const hipDoubleComplex *alpha, const hipDoubleComplex *xVal, const int *xInd, hipDoubleComplex *y, hipsparseIndexBase_t idxBase)#
Scale a sparse vector and add it to a dense vector.
hipsparseXaxpyi
multiplies the sparse vector with scalar and adds the result to the dense vector , such thatfor(i = 0; i < nnz; ++i) { y[xInd[i]] = y[xInd[i]] + alpha * xVal[i]; }
- Example
// Number of non-zeros of the sparse vector int nnz = 3; // Sparse index vector int hxInd[3] = {0, 3, 5}; // Sparse value vector double hxVal[3] = {1.0, 2.0, 3.0}; // Dense vector double hy[9] = {1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0}; // Scalar alpha double alpha = 3.7; // Index base hipsparseIndexBase_t idxBase = HIPSPARSE_INDEX_BASE_ZERO; // Offload data to device int* dxInd; double* dxVal; double* dy; hipMalloc((void**)&dxInd, sizeof(int) * nnz); hipMalloc((void**)&dxVal, sizeof(double) * nnz); hipMalloc((void**)&dy, sizeof(double) * 9); hipMemcpy(dxInd, hxInd, sizeof(int) * nnz, hipMemcpyHostToDevice); hipMemcpy(dxVal, hxVal, sizeof(double) * nnz, hipMemcpyHostToDevice); hipMemcpy(dy, hy, sizeof(double) * 9, hipMemcpyHostToDevice); // hipSPARSE handle hipsparseHandle_t handle; hipsparseCreate(&handle); // Call daxpyi to perform y = y + alpha * x hipsparseDaxpyi(handle, nnz, &alpha, dxVal, dxInd, dy, idxBase); // Copy result back to host hipMemcpy(hy, dy, sizeof(double) * 9, hipMemcpyDeviceToHost); // Clear hipSPARSE hipsparseDestroy(handle); // Clear device memory hipFree(dxInd); hipFree(dxVal); hipFree(dy);
Note
This function is non blocking and executed asynchronously with respect to the host. It may return before the actual computation has finished.
hipsparseXdoti()#
-
hipsparseStatus_t hipsparseSdoti(hipsparseHandle_t handle, int nnz, const float *xVal, const int *xInd, const float *y, float *result, hipsparseIndexBase_t idxBase)#
-
hipsparseStatus_t hipsparseDdoti(hipsparseHandle_t handle, int nnz, const double *xVal, const int *xInd, const double *y, double *result, hipsparseIndexBase_t idxBase)#
-
hipsparseStatus_t hipsparseCdoti(hipsparseHandle_t handle, int nnz, const hipComplex *xVal, const int *xInd, const hipComplex *y, hipComplex *result, hipsparseIndexBase_t idxBase)#
-
hipsparseStatus_t hipsparseZdoti(hipsparseHandle_t handle, int nnz, const hipDoubleComplex *xVal, const int *xInd, const hipDoubleComplex *y, hipDoubleComplex *result, hipsparseIndexBase_t idxBase)#
Compute the dot product of a sparse vector with a dense vector.
hipsparseXdoti
computes the dot product of the sparse vector with the dense vector , such thatresult = 0 for(i = 0; i < nnz; ++i) { result += xVal[i] * y[xInd[i]]; }
- Example
// Number of non-zeros of the sparse vector int nnz = 3; // Sparse index vector int hxInd[3] = {0, 3, 5}; // Sparse value vector float hxVal[3] = {1.0f, 2.0f, 3.0f}; // Dense vector float hy[9] = {1.0f, 2.0f, 3.0f, 4.0f, 5.0f, 6.0f, 7.0f, 8.0f, 9.0f}; // Index base hipsparseIndexBase_t idxBase = HIPSPARSE_INDEX_BASE_ZERO; // Offload data to device int* dxInd; float* dxVal; float* dy; hipMalloc((void**)&dxInd, sizeof(int) * nnz); hipMalloc((void**)&dxVal, sizeof(float) * nnz); hipMalloc((void**)&dy, sizeof(float) * 9); hipMemcpy(dxInd, hxInd, sizeof(int) * nnz, hipMemcpyHostToDevice); hipMemcpy(dxVal, hxVal, sizeof(float) * nnz, hipMemcpyHostToDevice); hipMemcpy(dy, hy, sizeof(float) * 9, hipMemcpyHostToDevice); // hipSPARSE handle hipsparseHandle_t handle; hipsparseCreate(&handle); // Call sdoti to compute the dot product float dot; hipsparseSdoti(handle, nnz, dxVal, dxInd, dy, &dot, idxBase); // Clear hipSPARSE hipsparseDestroy(handle); // Clear device memory hipFree(dxInd); hipFree(dxVal); hipFree(dy);
Note
This function is non blocking and executed asynchronously with respect to the host. It may return before the actual computation has finished.
hipsparseXdotci()#
-
hipsparseStatus_t hipsparseCdotci(hipsparseHandle_t handle, int nnz, const hipComplex *xVal, const int *xInd, const hipComplex *y, hipComplex *result, hipsparseIndexBase_t idxBase)#
-
hipsparseStatus_t hipsparseZdotci(hipsparseHandle_t handle, int nnz, const hipDoubleComplex *xVal, const int *xInd, const hipDoubleComplex *y, hipDoubleComplex *result, hipsparseIndexBase_t idxBase)#
Compute the dot product of a complex conjugate sparse vector with a dense vector.
hipsparseXdotci
computes the dot product of the complex conjugate sparse vector with the dense vector , such thatresult = 0 for(i = 0; i < nnz; ++i) { result += conj(xVal[i]) * y[xInd[i]]; }
Note
This function is non blocking and executed asynchronously with respect to the host. It may return before the actual computation has finished.
hipsparseXgthr()#
-
hipsparseStatus_t hipsparseSgthr(hipsparseHandle_t handle, int nnz, const float *y, float *xVal, const int *xInd, hipsparseIndexBase_t idxBase)#
-
hipsparseStatus_t hipsparseDgthr(hipsparseHandle_t handle, int nnz, const double *y, double *xVal, const int *xInd, hipsparseIndexBase_t idxBase)#
-
hipsparseStatus_t hipsparseCgthr(hipsparseHandle_t handle, int nnz, const hipComplex *y, hipComplex *xVal, const int *xInd, hipsparseIndexBase_t idxBase)#
-
hipsparseStatus_t hipsparseZgthr(hipsparseHandle_t handle, int nnz, const hipDoubleComplex *y, hipDoubleComplex *xVal, const int *xInd, hipsparseIndexBase_t idxBase)#
Gather elements from a dense vector and store them into a sparse vector.
hipsparseXgthr
gathers the elements that are listed inxInd
from the dense vector and stores them in the sparse vector .for(i = 0; i < nnz; ++i) { xVal[i] = y[xInd[i]]; }
- Example
// Number of non-zeros of the sparse vector int nnz = 3; // Sparse index vector int hxInd[3] = {0, 3, 5}; // Sparse value vector float hxVal[3]; // Dense vector float hy[9] = {1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0}; // Index base hipsparseIndexBase_t idxBase = HIPSPARSE_INDEX_BASE_ZERO; // Offload data to device int* dxInd; float* dxVal; float* dy; hipMalloc((void**)&dxInd, sizeof(int) * nnz); hipMalloc((void**)&dxVal, sizeof(float) * nnz); hipMalloc((void**)&dy, sizeof(float) * 9); hipMemcpy(dxInd, hxInd, sizeof(int) * nnz, hipMemcpyHostToDevice); hipMemcpy(dy, hy, sizeof(float) * 9, hipMemcpyHostToDevice); // hipSPARSE handle hipsparseHandle_t handle; hipsparseCreate(&handle); // Call sgthr hipsparseSgthr(handle, nnz, dy, dxVal, dxInd, idxBase); // Copy result back to host hipMemcpy(hxVal, dxVal, sizeof(float) * nnz, hipMemcpyDeviceToHost); // Clear hipSPARSE hipsparseDestroy(handle); // Clear device memory hipFree(dxInd); hipFree(dxVal); hipFree(dy);
Note
This function is non blocking and executed asynchronously with respect to the host. It may return before the actual computation has finished.
hipsparseXgthrz()#
-
hipsparseStatus_t hipsparseSgthrz(hipsparseHandle_t handle, int nnz, float *y, float *xVal, const int *xInd, hipsparseIndexBase_t idxBase)#
-
hipsparseStatus_t hipsparseDgthrz(hipsparseHandle_t handle, int nnz, double *y, double *xVal, const int *xInd, hipsparseIndexBase_t idxBase)#
-
hipsparseStatus_t hipsparseCgthrz(hipsparseHandle_t handle, int nnz, hipComplex *y, hipComplex *xVal, const int *xInd, hipsparseIndexBase_t idxBase)#
-
hipsparseStatus_t hipsparseZgthrz(hipsparseHandle_t handle, int nnz, hipDoubleComplex *y, hipDoubleComplex *xVal, const int *xInd, hipsparseIndexBase_t idxBase)#
Gather and zero out elements from a dense vector and store them into a sparse vector.
hipsparseXgthrz
gathers the elements that are listed inxInd
from the dense vector and stores them in the sparse vector . The gathered elements in are replaced by zero.for(i = 0; i < nnz; ++i) { xVal[i] = y[xInd[i]]; y[xInd[i]] = 0; }
Note
This function is non blocking and executed asynchronously with respect to the host. It may return before the actual computation has finished.
hipsparseXroti()#
-
hipsparseStatus_t hipsparseSroti(hipsparseHandle_t handle, int nnz, float *xVal, const int *xInd, float *y, const float *c, const float *s, hipsparseIndexBase_t idxBase)#
-
hipsparseStatus_t hipsparseDroti(hipsparseHandle_t handle, int nnz, double *xVal, const int *xInd, double *y, const double *c, const double *s, hipsparseIndexBase_t idxBase)#
Apply Givens rotation to a dense and a sparse vector.
hipsparseXroti
applies the Givens rotation matrix to the sparse vector and the dense vector , wherefor(i = 0; i < nnz; ++i) { x_tmp = xVal[i]; y_tmp = y[xInd[i]]; xVal[i] = c * x_tmp + s * y_tmp; y[xInd[i]] = c * y_tmp - s * x_tmp; }
- Example
// Number of non-zeros of the sparse vector int nnz = 3; // Sparse index vector int hxInd[3] = {0, 3, 5}; // Sparse value vector float hxVal[3] = {1.0f, 2.0f, 3.0f}; // Dense vector float hy[9] = {1.0f, 2.0f, 3.0f, 4.0f, 5.0f, 6.0f, 7.0f, 8.0f, 9.0f}; // c and s float c = 3.7; float s = 1.3; // Index base hipsparseIndexBase_t idxBase = HIPSPARSE_INDEX_BASE_ZERO; // Offload data to device int* dxInd; float* dxVal; float* dy; hipMalloc((void**)&dxInd, sizeof(int) * nnz); hipMalloc((void**)&dxVal, sizeof(float) * nnz); hipMalloc((void**)&dy, sizeof(float) * 9); hipMemcpy(dxInd, hxInd, sizeof(int) * nnz, hipMemcpyHostToDevice); hipMemcpy(dxVal, hxVal, sizeof(float) * nnz, hipMemcpyHostToDevice); hipMemcpy(dy, hy, sizeof(float) * 9, hipMemcpyHostToDevice); // hipSPARSE handle hipsparseHandle_t handle; hipsparseCreate(&handle); // Call sroti hipsparseSroti(handle, nnz, dxVal, dxInd, dy, &c, &s, idxBase); // Copy result back to host hipMemcpy(hxVal, dxVal, sizeof(float) * nnz, hipMemcpyDeviceToHost); hipMemcpy(hy, dy, sizeof(float) * 9, hipMemcpyDeviceToHost); // Clear hipSPARSE hipsparseDestroy(handle); // Clear device memory hipFree(dxInd); hipFree(dxVal); hipFree(dy);
Note
This function is non blocking and executed asynchronously with respect to the host. It may return before the actual computation has finished.
hipsparseXsctr()#
-
hipsparseStatus_t hipsparseSsctr(hipsparseHandle_t handle, int nnz, const float *xVal, const int *xInd, float *y, hipsparseIndexBase_t idxBase)#
-
hipsparseStatus_t hipsparseDsctr(hipsparseHandle_t handle, int nnz, const double *xVal, const int *xInd, double *y, hipsparseIndexBase_t idxBase)#
-
hipsparseStatus_t hipsparseCsctr(hipsparseHandle_t handle, int nnz, const hipComplex *xVal, const int *xInd, hipComplex *y, hipsparseIndexBase_t idxBase)#
-
hipsparseStatus_t hipsparseZsctr(hipsparseHandle_t handle, int nnz, const hipDoubleComplex *xVal, const int *xInd, hipDoubleComplex *y, hipsparseIndexBase_t idxBase)#
Scatter elements from a dense vector across a sparse vector.
hipsparseXsctr
scatters the elements that are listed inxInd
from the sparse vector into the dense vector . Indices of that are not listed inxInd
remain unchanged.for(i = 0; i < nnz; ++i) { y[xInd[i]] = xVal[i]; }
- Example
// Number of non-zeros of the sparse vector int nnz = 3; // Sparse index vector int hxInd[3] = {0, 3, 5}; // Sparse value vector float hxVal[3] = {9.0, 2.0, 3.0}; // Dense vector float hy[9] = {1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0}; // Index base hipsparseIndexBase_t idxBase = HIPSPARSE_INDEX_BASE_ZERO; // Offload data to device int* dxInd; float* dxVal; float* dy; hipMalloc((void**)&dxInd, sizeof(int) * nnz); hipMalloc((void**)&dxVal, sizeof(float) * nnz); hipMalloc((void**)&dy, sizeof(float) * 9); hipMemcpy(dxInd, hxInd, sizeof(int) * nnz, hipMemcpyHostToDevice); hipMemcpy(dxVal, hxVal, sizeof(float) * nnz, hipMemcpyHostToDevice); hipMemcpy(dy, hy, sizeof(float) * 9, hipMemcpyHostToDevice); // hipSPARSE handle hipsparseHandle_t handle; hipsparseCreate(&handle); // Call ssctr hipsparseSsctr(handle, nnz, dxVal, dxInd, dy, idxBase); // Copy result back to host hipMemcpy(hy, dy, sizeof(float) * 9, hipMemcpyDeviceToHost); // Clear hipSPARSE hipsparseDestroy(handle); // Clear device memory hipFree(dxInd); hipFree(dxVal); hipFree(dy);
Note
This function is non blocking and executed asynchronously with respect to the host. It may return before the actual computation has finished.