Sparse Generic Functions#
This module holds all sparse generic routines.
The sparse generic routines describe operations that manipulate sparse matrices.
hipsparseAxpby()#
-
hipsparseStatus_t hipsparseAxpby(hipsparseHandle_t handle, const void *alpha, hipsparseConstSpVecDescr_t vecX, const void *beta, hipsparseDnVecDescr_t vecY)#
Description: Scale a sparse vector and add it to a scaled dense vector.
hipsparseAxpby multiplies the sparse vector
with scalar and adds the result to the dense vector that is multiplied with scalar , such thatfor(i = 0; i < nnz; ++i) { y[x_ind[i]] = alpha * x_val[i] + beta * y[x_ind[i]] }
- Example
// Number of non-zeros of the sparse vector int nnz = 3; // Size of sparse and dense vector int size = 9; // Sparse index vector std::vector<int> hx_ind = {0, 3, 5}; // Sparse value vector std::vector<float> hx_val = {1.0f, 2.0f, 3.0f}; // Dense vector std::vector<float> hy = {1.0f, 2.0f, 3.0f, 4.0f, 5.0f, 6.0f, 7.0f, 8.0f, 9.0f}; // Scalar alpha float alpha = 3.7f; // Scalar beta float beta = 1.2f; // Offload data to device int* dx_ind; float* dx_val; float* dy; hipMalloc((void**)&dx_ind, sizeof(int) * nnz); hipMalloc((void**)&dx_val, sizeof(float) * nnz); hipMalloc((void**)&dy, sizeof(float) * size); hipMemcpy(dx_ind, hx_ind.data(), sizeof(int) * nnz, hipMemcpyHostToDevice); hipMemcpy(dx_val, hx_val.data(), sizeof(float) * nnz, hipMemcpyHostToDevice); hipMemcpy(dy, hy.data(), sizeof(float) * size, hipMemcpyHostToDevice); hipsparseHandle_t handle; hipsparseCreate(&handle); // Create sparse vector X hipsparseSpVecDescr_t vecX; hipsparseCreateSpVec(&vecX, size, nnz, dx_ind, dx_val, HIPSPARSE_INDEX_32I, HIPSPARSE_INDEX_BASE_ZERO, HIP_R_32F); // Create dense vector Y hipsparseDnVecDescr_t vecY; hipsparseCreateDnVec(&vecY, size, dy, HIP_R_32F); // Call axpby to perform y = beta * y + alpha * x hipsparseAxpby(handle, &alpha, vecX, &beta, vecY); hipsparseDnVecGetValues(vecY, (void**)&dy); // Copy result back to host hipMemcpy(hy.data(), dy, sizeof(float) * size, hipMemcpyDeviceToHost); // Clear hipSPARSE hipsparseDestroySpVec(vecX); hipsparseDestroyDnVec(vecY); hipsparseDestroy(handle); // Clear device memory hipFree(dx_ind); hipFree(dx_val); hipFree(dy);
hipsparseGather()#
-
hipsparseStatus_t hipsparseGather(hipsparseHandle_t handle, hipsparseConstDnVecDescr_t vecY, hipsparseSpVecDescr_t vecX)#
Description: Gather elements from a dense vector and store them into a sparse vector.
hipsparseGather gathers the elements from the dense vector
and stores them in the sparse vector .for(i = 0; i < nnz; ++i) { x_val[i] = y[x_ind[i]]; }
- Example
// Number of non-zeros of the sparse vector int nnz = 3; // Size of sparse and dense vector int size = 9; // Sparse index vector std::vector<int> hx_ind = {0, 3, 5}; // Dense vector std::vector<float> hy = {1.0f, 2.0f, 3.0f, 4.0f, 5.0f, 6.0f, 7.0f, 8.0f, 9.0f}; // Offload data to device int* dx_ind; float* dx_val; float* dy; hipMalloc((void**)&dx_ind, sizeof(int) * nnz); hipMalloc((void**)&dx_val, sizeof(float) * nnz); hipMalloc((void**)&dy, sizeof(float) * size); hipMemcpy(dx_ind, hx_ind.data(), sizeof(int) * nnz, hipMemcpyHostToDevice); hipMemcpy(dy, hy.data(), sizeof(float) * size, hipMemcpyHostToDevice); hipsparseHandle_t handle; hipsparseCreate(&handle); // Create sparse vector X hipsparseSpVecDescr_t vecX; hipsparseCreateSpVec(&vecX, size, nnz, dx_ind, dx_val, HIPSPARSE_INDEX_32I, HIPSPARSE_INDEX_BASE_ZERO, HIP_R_32F); // Create dense vector Y hipsparseDnVecDescr_t vecY; hipsparseCreateDnVec(&vecY, size, dy, HIP_R_32F); // Perform gather hipsparseGather(handle, vecY, vecX); hipsparseSpVecGetValues(vecX, (void**)&dx_val); // Copy result back to host std::vector<float> hx_val(nnz, 0.0f); hipMemcpy(hx_val.data(), dx_val, sizeof(float) * nnz, hipMemcpyDeviceToHost); // Clear hipSPARSE hipsparseDestroySpVec(vecX); hipsparseDestroyDnVec(vecY); hipsparseDestroy(handle); // Clear device memory hipFree(dx_ind); hipFree(dx_val); hipFree(dy);
hipsparseScatter()#
-
hipsparseStatus_t hipsparseScatter(hipsparseHandle_t handle, hipsparseConstSpVecDescr_t vecX, hipsparseDnVecDescr_t vecY)#
Description: Scatter elements from a sparse vector into a dense vector.
hipsparseScatter scatters the elements from the sparse vector
in the dense vector .for(i = 0; i < nnz; ++i) { y[x_ind[i]] = x_val[i]; }
- Example
// Number of non-zeros of the sparse vector int nnz = 3; // Size of sparse and dense vector int size = 9; // Sparse index vector std::vector<int> hx_ind = {0, 3, 5}; // Sparse value vector std::vector<float> hx_val = {1.0f, 2.0f, 3.0f}; // Dense vector std::vector<float> hy = {1.0f, 2.0f, 3.0f, 4.0f, 5.0f, 6.0f, 7.0f, 8.0f, 9.0f}; // Offload data to device int* dx_ind; float* dx_val; float* dy; hipMalloc((void**)&dx_ind, sizeof(int) * nnz); hipMalloc((void**)&dx_val, sizeof(float) * nnz); hipMalloc((void**)&dy, sizeof(float) * size); hipMemcpy(dx_ind, hx_ind.data(), sizeof(int) * nnz, hipMemcpyHostToDevice); hipMemcpy(dx_val, hx_val.data(), sizeof(float) * nnz, hipMemcpyHostToDevice); hipMemcpy(dy, hy.data(), sizeof(float) * size, hipMemcpyHostToDevice); hipsparseHandle_t handle; hipsparseCreate(&handle); // Create sparse vector X hipsparseSpVecDescr_t vecX; hipsparseCreateSpVec(&vecX, size, nnz, dx_ind, dx_val, HIPSPARSE_INDEX_32I, HIPSPARSE_INDEX_BASE_ZERO, HIP_R_32F); // Create dense vector Y hipsparseDnVecDescr_t vecY; hipsparseCreateDnVec(&vecY, size, dy, HIP_R_32F); // Perform scatter hipsparseScatter(handle, vecX, vecY); hipsparseDnVecGetValues(vecY, (void**)&dy); // Copy result back to host hipMemcpy(hy.data(), dy, sizeof(float) * size, hipMemcpyDeviceToHost); // Clear hipSPARSE hipsparseDestroySpVec(vecX); hipsparseDestroyDnVec(vecY); hipsparseDestroy(handle); // Clear device memory hipFree(dx_ind); hipFree(dx_val); hipFree(dy);
hipsparseRot()#
-
hipsparseStatus_t hipsparseRot(hipsparseHandle_t handle, const void *c_coeff, const void *s_coeff, hipsparseSpVecDescr_t vecX, hipsparseDnVecDescr_t vecY)#
Description: Apply Givens rotation to a dense and a sparse vector.
hipsparseRot applies the Givens rotation matrix
to the sparse vector and the dense vector , wherefor(i = 0; i < nnz; ++i) { x_tmp = x_val[i]; y_tmp = y[x_ind[i]]; x_val[i] = c * x_tmp + s * y_tmp; y[x_ind[i]] = c * y_tmp - s * x_tmp; }
- Example
// Number of non-zeros of the sparse vector int nnz = 3; // Size of sparse and dense vector int size = 9; // Sparse index vector std::vector<int> hx_ind = {0, 3, 5}; // Sparse value vector std::vector<float> hx_val = {1.0f, 2.0f, 3.0f}; // Dense vector std::vector<float> hy = {1.0f, 2.0f, 3.0f, 4.0f, 5.0f, 6.0f, 7.0f, 8.0f, 9.0f}; // Scalar c float c = 3.7f; // Scalar s float s = 1.2f; // Offload data to device int* dx_ind; float* dx_val; float* dy; hipMalloc((void**)&dx_ind, sizeof(int) * nnz); hipMalloc((void**)&dx_val, sizeof(float) * nnz); hipMalloc((void**)&dy, sizeof(float) * size); hipMemcpy(dx_ind, hx_ind.data(), sizeof(int) * nnz, hipMemcpyHostToDevice); hipMemcpy(dx_val, hx_val.data(), sizeof(float) * nnz, hipMemcpyHostToDevice); hipMemcpy(dy, hy.data(), sizeof(float) * size, hipMemcpyHostToDevice); hipsparseHandle_t handle; hipsparseCreate(&handle); // Create sparse vector X hipsparseSpVecDescr_t vecX; hipsparseCreateSpVec(&vecX, size, nnz, dx_ind, dx_val, HIPSPARSE_INDEX_32I, HIPSPARSE_INDEX_BASE_ZERO, HIP_R_32F); // Create dense vector Y hipsparseDnVecDescr_t vecY; hipsparseCreateDnVec(&vecY, size, dy, HIP_R_32F); // Call rot hipsparseRot(handle, (void*)&c, (void*)&s, vecX, vecY); hipsparseSpVecGetValues(vecX, (void**)&dx_val); hipsparseDnVecGetValues(vecY, (void**)&dy); // Copy result back to host hipMemcpy(hx_val.data(), dx_val, sizeof(float) * nnz, hipMemcpyDeviceToHost); hipMemcpy(hy.data(), dy, sizeof(float) * size, hipMemcpyDeviceToHost); // Clear hipSPARSE hipsparseDestroySpVec(vecX); hipsparseDestroyDnVec(vecY); hipsparseDestroy(handle); // Clear device memory hipFree(dx_ind); hipFree(dx_val); hipFree(dy);
hipsparseSparseToDense_bufferSize()#
-
hipsparseStatus_t hipsparseSparseToDense_bufferSize(hipsparseHandle_t handle, hipsparseConstSpMatDescr_t matA, hipsparseDnMatDescr_t matB, hipsparseSparseToDenseAlg_t alg, size_t *bufferSize)#
Description: Sparse matrix to dense matrix conversion.
hipsparseSparseToDense_bufferSize
computes the required user allocated buffer size needed when converting a sparse matrix to a dense matrix.
hipsparseSparseToDense()#
-
hipsparseStatus_t hipsparseSparseToDense(hipsparseHandle_t handle, hipsparseConstSpMatDescr_t matA, hipsparseDnMatDescr_t matB, hipsparseSparseToDenseAlg_t alg, void *externalBuffer)#
Description: Sparse matrix to dense matrix conversion.
hipsparseSparseToDense
converts a sparse matrix to a dense matrix. This routine takes a user allocated buffer whose size must first be computed by callinghipsparseSparseToDense_bufferSize
hipsparseDenseToSparse_bufferSize()#
-
hipsparseStatus_t hipsparseDenseToSparse_bufferSize(hipsparseHandle_t handle, hipsparseConstDnMatDescr_t matA, hipsparseSpMatDescr_t matB, hipsparseDenseToSparseAlg_t alg, size_t *bufferSize)#
Description: Dense matrix to sparse matrix conversion.
hipsparseDenseToSparse_bufferSize
computes the required user allocated buffer size needed when converting a dense matrix to a sparse matrix.
hipsparseDenseToSparse_analysis()#
-
hipsparseStatus_t hipsparseDenseToSparse_analysis(hipsparseHandle_t handle, hipsparseConstDnMatDescr_t matA, hipsparseSpMatDescr_t matB, hipsparseDenseToSparseAlg_t alg, void *externalBuffer)#
Description: Dense matrix to sparse matrix conversion.
hipsparseDenseToSparse_analysis
performs analysis that is later used inhipsparseDenseToSparse_convert
when converting a dense matrix to sparse matrix. This routine takes a user allocated buffer whose size must first be computed usinghipsparseDenseToSparse_bufferSize
.
hipsparseDenseToSparse_convert()#
-
hipsparseStatus_t hipsparseDenseToSparse_convert(hipsparseHandle_t handle, hipsparseConstDnMatDescr_t matA, hipsparseSpMatDescr_t matB, hipsparseDenseToSparseAlg_t alg, void *externalBuffer)#
Description: Dense matrix to sparse matrix conversion.
hipsparseDenseToSparse_convert
converts a dense matrix to a sparse matrix. This routine requires a user allocated buffer whose size must be determined by first callinghipsparseDenseToSparse_bufferSize
.
hipsparseSpVV_bufferSize()#
-
hipsparseStatus_t hipsparseSpVV_bufferSize(hipsparseHandle_t handle, hipsparseOperation_t opX, hipsparseConstSpVecDescr_t vecX, hipsparseConstDnVecDescr_t vecY, void *result, hipDataType computeType, size_t *bufferSize)#
Description: Compute the inner dot product of a sparse vector with a dense vector.
hipsparseSpVV_bufferSize
computes the required user allocated buffer size needed when computing the inner dot product of a sparse vector with a dense vectorSee full example below
hipsparseSpVV()#
-
hipsparseStatus_t hipsparseSpVV(hipsparseHandle_t handle, hipsparseOperation_t opX, hipsparseConstSpVecDescr_t vecX, hipsparseConstDnVecDescr_t vecY, void *result, hipDataType computeType, void *externalBuffer)#
Description: Compute the inner dot product of a sparse vector with a dense vector.
hipsparseSpVV
computes the inner dot product of a sparse vector with a dense vector. This routine takes a user allocated buffer whose size must first be computed by callinghipsparseSpVV_bufferSize
- Example
// Number of non-zeros of the sparse vector int nnz = 3; // Size of sparse and dense vector int size = 9; // Sparse index vector std::vector<int> hx_ind = {0, 3, 5}; // Sparse value vector std::vector<float> hx_val = {1.0f, 2.0f, 3.0f}; // Dense vector std::vector<float> hy = {1.0f, 2.0f, 3.0f, 4.0f, 5.0f, 6.0f, 7.0f, 8.0f, 9.0f}; // Offload data to device int* dx_ind; float* dx_val; float* dy; hipMalloc((void**)&dx_ind, sizeof(int) * nnz); hipMalloc((void**)&dx_val, sizeof(float) * nnz); hipMalloc((void**)&dy, sizeof(float) * size); hipMemcpy(dx_ind, hx_ind.data(), sizeof(int) * nnz, hipMemcpyHostToDevice); hipMemcpy(dx_val, hx_val.data(), sizeof(float) * nnz, hipMemcpyHostToDevice); hipMemcpy(dy, hy.data(), sizeof(float) * size, hipMemcpyHostToDevice); hipsparseHandle_t handle; hipsparseCreate(&handle); // Create sparse vector X hipsparseSpVecDescr_t vecX; hipsparseCreateSpVec(&vecX, size, nnz, dx_ind, dx_val, HIPSPARSE_INDEX_32I, HIPSPARSE_INDEX_BASE_ZERO, HIP_R_32F); // Create dense vector Y hipsparseDnVecDescr_t vecY; hipsparseCreateDnVec(&vecY, size, dy, HIP_R_32F); // Obtain buffer size float hresult = 0.0f; size_t buffer_size; hipsparseSpVV_bufferSize(handle, HIPSPARSE_OPERATION_NON_TRANSPOSE, vecX, vecY, &hresult, HIP_R_32F, &buffer_size); void* temp_buffer; hipMalloc(&temp_buffer, buffer_size); // SpVV hipsparseSpVV(handle, HIPSPARSE_OPERATION_NON_TRANSPOSE, vecX, vecY, &hresult, HIP_R_32F, temp_buffer); hipDeviceSynchronize(); std::cout << "hresult: " << hresult << std::endl; // Clear hipSPARSE hipsparseDestroySpVec(vecX); hipsparseDestroyDnVec(vecY); hipsparseDestroy(handle); // Clear device memory hipFree(dx_ind); hipFree(dx_val); hipFree(dy); hipFree(temp_buffer);
hipsparseSpMV_bufferSize()#
-
hipsparseStatus_t hipsparseSpMV_bufferSize(hipsparseHandle_t handle, hipsparseOperation_t opA, const void *alpha, hipsparseConstSpMatDescr_t matA, hipsparseConstDnVecDescr_t vecX, const void *beta, const hipsparseDnVecDescr_t vecY, hipDataType computeType, hipsparseSpMVAlg_t alg, size_t *bufferSize)#
Description: Buffer size step of the sparse matrix multiplication with a dense vector.
hipsparseSpMV_bufferSize
computes the required user allocated buffer size needed when computing the sparse matrix multiplication with a dense vectorSee full example below
hipsparseSpMV()#
-
hipsparseStatus_t hipsparseSpMV(hipsparseHandle_t handle, hipsparseOperation_t opA, const void *alpha, hipsparseConstSpMatDescr_t matA, hipsparseConstDnVecDescr_t vecX, const void *beta, const hipsparseDnVecDescr_t vecY, hipDataType computeType, hipsparseSpMVAlg_t alg, void *externalBuffer)#
Description: Compute the sparse matrix multiplication with a dense vector.
hipsparseSpMV
computes sparse matrix multiplication with a dense vector- Example
// A, x, and y are m×k, k×1, and m×1 int m = 3, k = 4; int nnz_A = 8; hipsparseOperation_t transA = HIPSPARSE_OPERATION_NON_TRANSPOSE; // alpha and beta float alpha = 0.5f; float beta = 0.25f; std::vector<int> hcsr_row_ptr = {0, 3, 5, 8}; std::vector<int> hcsr_col_ind = {0, 1, 3, 1, 2, 0, 2, 3}; std::vector<float> hcsr_val = {1, 2, 3, 4, 5, 6, 7, 8}; std::vector<float> hx(k, 1.0f); std::vector<float> hy(m, 1.0f); int *dcsr_row_ptr; int *dcsr_col_ind; float *dcsr_val; hipMalloc((void**)&dcsr_row_ptr, sizeof(int) * (m + 1)); hipMalloc((void**)&dcsr_col_ind, sizeof(int) * nnz_A); hipMalloc((void**)&dcsr_val, sizeof(float) * nnz_A); hipMemcpy(dcsr_row_ptr, hcsr_row_ptr.data(), sizeof(int) * (m + 1), hipMemcpyHostToDevice); hipMemcpy(dcsr_col_ind, hcsr_col_ind.data(), sizeof(int) * nnz_A, hipMemcpyHostToDevice); hipMemcpy(dcsr_val, hcsr_val.data(), sizeof(float) * nnz_A, hipMemcpyHostToDevice); hipsparseHandle_t handle; hipsparseCreate(&handle); hipsparseSpMatDescr_t matA; hipsparseCreateCsr(&matA, m, k, nnz_A, dcsr_row_ptr, dcsr_col_ind, dcsr_val, HIPSPARSE_INDEX_32I, HIPSPARSE_INDEX_32I, HIPSPARSE_INDEX_BASE_ZERO, HIP_R_32F); // Allocate memory for the vector x float* dx; hipMalloc((void**)&dx, sizeof(float) * k); hipMemcpy(dx, hx.data(), sizeof(float) * k, hipMemcpyHostToDevice); hipsparseDnVecDescr_t vecX; hipsparseCreateDnVec(&vecX, k, dx, HIP_R_32F); // Allocate memory for the resulting vector y float* dy; hipMalloc((void**)&dy, sizeof(float) * m); hipMemcpy(dy, hy.data(), sizeof(float) * m, hipMemcpyHostToDevice); hipsparseDnMatDescr_t vecY; hipsparseCreateDnVec(&vecY, m, dy, HIP_R_32F); // Compute buffersize size_t bufferSize; hipsparseSpMV_bufferSize(handle, transA, &alpha, matA, vecX, &beta, vecY, HIP_R_32F, HIPSPARSE_MV_ALG_DEFAULT, &bufferSize); void* buffer; hipMalloc(&buffer, bufferSize); // Preprocess operation (Optional) hipsparseSpMV_preprocess(handle, transA, &alpha, matA, vecX, &beta, vecY, HIP_R_32F, HIPSPARSE_MV_ALG_DEFAULT, &buffer); // Perform operation hipsparseSpMV(handle, transA, &alpha, matA, vecX, &beta, vecY, HIP_R_32F, HIPSPARSE_MV_ALG_DEFAULT, &buffer); // Copy device to host hipMemcpy(hy.data(), dy, sizeof(float) * m, hipMemcpyDeviceToHost); // Destroy matrix descriptors and handles hipsparseDestroySpMat(matA); hipsparseDestroyDnVec(vecX); hipsparseDestroyDnVec(vecY); hipsparseDestroy(handle); hipFree(buffer); hipFree(dcsr_row_ptr); hipFree(dcsr_col_ind); hipFree(dcsr_val); hipFree(dx); hipFree(dy);
hipsparseSpMM_bufferSize()#
-
hipsparseStatus_t hipsparseSpMM_bufferSize(hipsparseHandle_t handle, hipsparseOperation_t opA, hipsparseOperation_t opB, const void *alpha, hipsparseConstSpMatDescr_t matA, hipsparseConstDnMatDescr_t matB, const void *beta, const hipsparseDnMatDescr_t matC, hipDataType computeType, hipsparseSpMMAlg_t alg, size_t *bufferSize)#
Description: Calculate the buffer size required for the sparse matrix multiplication with a dense matrix.
hipsparseSpMM_bufferSize
computes the required user allocated buffer size needed when computing the sparse matrix multiplication with a dense matrixSee full example below
hipsparseSpMM_preprocess()#
-
hipsparseStatus_t hipsparseSpMM_preprocess(hipsparseHandle_t handle, hipsparseOperation_t opA, hipsparseOperation_t opB, const void *alpha, hipsparseConstSpMatDescr_t matA, hipsparseConstDnMatDescr_t matB, const void *beta, const hipsparseDnMatDescr_t matC, hipDataType computeType, hipsparseSpMMAlg_t alg, void *externalBuffer)#
Description: Preprocess step of the sparse matrix multiplication with a dense matrix.
hipsparseSpMM_preprocess
performs the required preprocessing used when computing the sparse matrix multiplication with a dense matrixSee full example below
hipsparseSpMM()#
-
hipsparseStatus_t hipsparseSpMM(hipsparseHandle_t handle, hipsparseOperation_t opA, hipsparseOperation_t opB, const void *alpha, hipsparseConstSpMatDescr_t matA, hipsparseConstDnMatDescr_t matB, const void *beta, const hipsparseDnMatDescr_t matC, hipDataType computeType, hipsparseSpMMAlg_t alg, void *externalBuffer)#
Description: Compute the sparse matrix multiplication with a dense matrix.
hipsparseSpMM
computes sparse matrix multiplication with a dense matrix- Example
// A, B, and C are m×k, k×n, and m×n int m = 3, n = 5, k = 4; int ldb = n, ldc = n; int nnz_A = 8, nnz_B = 20, nnz_C = 15; hipsparseOperation_t transA = HIPSPARSE_OPERATION_NON_TRANSPOSE; hipsparseOperation_t transB = HIPSPARSE_OPERATION_NON_TRANSPOSE; hipsparseOperation_t transC = HIPSPARSE_OPERATION_NON_TRANSPOSE; hipsparseOrder_t order = HIPSPARSE_ORDER_ROW; // alpha and beta float alpha = 0.5f; float beta = 0.25f; std::vector<int> hcsr_row_ptr = {0, 3, 5, 8}; std::vector<int> hcsr_col_ind = {0, 1, 3, 1, 2, 0, 2, 3}; std::vector<float> hcsr_val = {1, 2, 3, 4, 5, 6, 7, 8}; std::vector<float> hB(nnz_B, 1.0f); std::vector<float> hC(nnz_C, 1.0f); int *dcsr_row_ptr; int *dcsr_col_ind; float *dcsr_val; hipMalloc((void**)&dcsr_row_ptr, sizeof(int) * (m + 1)); hipMalloc((void**)&dcsr_col_ind, sizeof(int) * nnz_A); hipMalloc((void**)&dcsr_val, sizeof(float) * nnz_A); hipMemcpy(dcsr_row_ptr, hcsr_row_ptr.data(), sizeof(int) * (m + 1), hipMemcpyHostToDevice); hipMemcpy(dcsr_col_ind, hcsr_col_ind.data(), sizeof(int) * nnz_A, hipMemcpyHostToDevice); hipMemcpy(dcsr_val, hcsr_val.data(), sizeof(float) * nnz_A, hipMemcpyHostToDevice); hipsparseHandle_t handle; hipsparseCreate(&handle); hipsparseSpMatDescr_t matA; hipsparseCreateCsr(&matA, m, k, nnz_A, dcsr_row_ptr, dcsr_col_ind, dcsr_val, HIPSPARSE_INDEX_32I, HIPSPARSE_INDEX_32I, HIPSPARSE_INDEX_BASE_ZERO, HIP_R_32F); // Allocate memory for the matrix B float* dB; hipMalloc((void**)&dB, sizeof(float) * nnz_B); hipMemcpy(dB, hB.data(), sizeof(float) * nnz_B, hipMemcpyHostToDevice); hipsparseDnMatDescr_t matB; hipsparseCreateDnMat(&matB, k, n, ldb, dB, HIP_R_32F, order); // Allocate memory for the resulting matrix C float* dC; hipMalloc((void**)&dC, sizeof(float) * nnz_C); hipMemcpy(dC, hC.data(), sizeof(float) * nnz_C, hipMemcpyHostToDevice); hipsparseDnMatDescr_t matC; hipsparseCreateDnMat(&matC, m, n, ldc, dC, HIP_R_32F, HIPSPARSE_ORDER_ROW); // Compute buffersize size_t bufferSize; hipsparseSpMM_bufferSize(handle, transA, transB, &alpha, matA, matB, &beta, matC, HIP_R_32F, HIPSPARSE_MM_ALG_DEFAULT, &bufferSize); void* buffer; hipMalloc(&buffer, bufferSize); // Preprocess operation (Optional) hipsparseSpMM_preprocess(handle, transA, transB, &alpha, matA, matB, &beta, matC, HIP_R_32F, HIPSPARSE_MM_ALG_DEFAULT, &buffer); // Perform operation hipsparseSpMM(handle, transA, transB, &alpha, matA, matB, &beta, matC, HIP_R_32F, HIPSPARSE_MM_ALG_DEFAULT, &buffer); // Copy device to host hipMemcpy(hC.data(), dC, sizeof(float) * nnz_C, hipMemcpyDeviceToHost); // Destroy matrix descriptors and handles hipsparseDestroySpMat(matA); hipsparseDestroyDnMat(matB); hipsparseDestroyDnMat(matC); hipsparseDestroy(handle); hipFree(buffer); hipFree(dcsr_row_ptr); hipFree(dcsr_col_ind); hipFree(dcsr_val); hipFree(dB); hipFree(dC);
hipsparseSpGEMM_createDescr()#
-
hipsparseStatus_t hipsparseSpGEMM_createDescr(hipsparseSpGEMMDescr_t *descr)#
Description: Create sparse matrix sparse matrix product descriptor.
hipsparseSpGEMM_createDescr
creates a sparse matrix sparse matrix product descriptor. It should be destroyed at the end using hipsparseSpGEMM_destroyDescr().
hipsparseSpGEMM_destroyDescr()#
-
hipsparseStatus_t hipsparseSpGEMM_destroyDescr(hipsparseSpGEMMDescr_t descr)#
Description: Destroy sparse matrix sparse matrix product descriptor.
hipsparseSpGEMM_destroyDescr
destroys a sparse matrix sparse matrix product descriptor and releases all resources used by the descriptor.
hipsparseSpGEMM_workEstimation()#
-
hipsparseStatus_t hipsparseSpGEMM_workEstimation(hipsparseHandle_t handle, hipsparseOperation_t opA, hipsparseOperation_t opB, const void *alpha, hipsparseConstSpMatDescr_t matA, hipsparseConstSpMatDescr_t matB, const void *beta, hipsparseSpMatDescr_t matC, hipDataType computeType, hipsparseSpGEMMAlg_t alg, hipsparseSpGEMMDescr_t spgemmDescr, size_t *bufferSize1, void *externalBuffer1)#
Description: Work estimation step of the sparse matrix sparse matrix product C’ = alpha * A * B + beta * C where C’, A, B, C are sparse matrices and C’ and C have the same sparsity pattern.
hipsparseSpGEMM_workEstimation
is called twice. We call it to compute the size of the first required user allocated buffer. After this buffer size is determined, the user allocates it and callshipsparseSpGEMM_workEstimation
a second time with the newly allocated buffer passed in. This second call inspects the matrices A and B to determine the number of intermediate products that will result from multipltying A and B together.- Example (See full example below)
void* dBuffer1 = NULL; size_t bufferSize1 = 0; hipsparseSpGEMMDescr_t spgemmDesc; hipsparseSpGEMM_createDescr(&spgemmDesc); size_t bufferSize1 = 0; hipsparseSpGEMM_workEstimation(handle, opA, opB, &alpha, matA, matB, &beta, matC, computeType, HIPSPARSE_SPGEMM_DEFAULT, spgemmDesc, &bufferSize1, NULL); hipMalloc((void**) &dBuffer1, bufferSize1); // Determine number of intermediate product when computing A * B hipsparseSpGEMM_workEstimation(handle, opA, opB, &alpha, matA, matB, &beta, matC, computeType, HIPSPARSE_SPGEMM_DEFAULT, spgemmDesc, &bufferSize1, dBuffer1);
hipsparseSpGEMM_compute()#
-
hipsparseStatus_t hipsparseSpGEMM_compute(hipsparseHandle_t handle, hipsparseOperation_t opA, hipsparseOperation_t opB, const void *alpha, hipsparseConstSpMatDescr_t matA, hipsparseConstSpMatDescr_t matB, const void *beta, hipsparseSpMatDescr_t matC, hipDataType computeType, hipsparseSpGEMMAlg_t alg, hipsparseSpGEMMDescr_t spgemmDescr, size_t *bufferSize2, void *externalBuffer2)#
Description: Compute step of the sparse matrix sparse matrix product C’ = alpha * A * B + beta * C where C’, A, B, C are sparse matrices and C’ and C have the same sparsity pattern.
hipsparseSpGEMM_compute
is called twice. First to compute the size of the second required user allocated buffer. After this buffer size is determined, the user allocates it and callshipsparseSpGEMM_compute
a second time with the newly allocated buffer passed in. This second call performs the actual computation of C’ = alpha * A * B (the result is stored in the temporary buffers).- Example (See full example below)
void* dBuffer2 = NULL; size_t bufferSize2 = 0; size_t bufferSize2 = 0; hipsparseSpGEMM_compute(handle, opA, opB, &alpha, matA, matB, &beta, matC, computeType, HIPSPARSE_SPGEMM_DEFAULT, spgemmDesc, &bufferSize2, NULL); hipMalloc((void**) &dBuffer2, bufferSize2); // compute the intermediate product of A * B hipsparseSpGEMM_compute(handle, opA, opB, &alpha, matA, matB, &beta, matC, computeType, HIPSPARSE_SPGEMM_DEFAULT, spgemmDesc, &bufferSize2, dBuffer2);
hipsparseSpGEMM_copy()#
-
hipsparseStatus_t hipsparseSpGEMM_copy(hipsparseHandle_t handle, hipsparseOperation_t opA, hipsparseOperation_t opB, const void *alpha, hipsparseConstSpMatDescr_t matA, hipsparseConstSpMatDescr_t matB, const void *beta, hipsparseSpMatDescr_t matC, hipDataType computeType, hipsparseSpGEMMAlg_t alg, hipsparseSpGEMMDescr_t spgemmDescr)#
Description: Copy step of the sparse matrix sparse matrix product C’ = alpha * A * B + beta * C where C’, A, B, C are sparse matrices and C’ and C have the same sparsity pattern.
hipsparseSpGEMM_copy
is called once to copy the results (that are currently stored in the temporary arrays) to the output sparse matrix. If beta != 0, then the beta * C portion of the computation: C’ = alpha * A * B + beta * C is handled. This is possible because C’ and C must have the same sparsity pattern.- Example (Full example)
hipsparseHandle_t handle = NULL; hipsparseSpMatDescr_t matA, matB, matC; void* dBuffer1 = NULL; void* dBuffer2 = NULL; size_t bufferSize1 = 0; size_t bufferSize2 = 0; hipsparseCreate(&handle); // Create sparse matrix A in CSR format hipsparseCreateCsr(&matA, m, k, nnzA, dcsr_row_ptrA, dcsr_col_indA, dcsr_valA, HIPSPARSE_INDEX_32I, HIPSPARSE_INDEX_32I, HIPSPARSE_INDEX_BASE_ZERO, HIP_R_32F); hipsparseCreateCsr(&matB, k, n, nnzB, dcsr_row_ptrB, dcsr_col_indB, dcsr_valB, HIPSPARSE_INDEX_32I, HIPSPARSE_INDEX_32I, HIPSPARSE_INDEX_BASE_ZERO, HIP_R_32F); hipsparseCreateCsr(&matC, m, n, 0, dcsr_row_ptrC, NULL, NULL, HIPSPARSE_INDEX_32I, HIPSPARSE_INDEX_32I, HIPSPARSE_INDEX_BASE_ZERO, HIP_R_32F); hipsparseSpGEMMDescr_t spgemmDesc; hipsparseSpGEMM_createDescr(&spgemmDesc); // Determine size of first user allocated buffer hipsparseSpGEMM_workEstimation(handle, opA, opB, &alpha, matA, matB, &beta, matC, computeType, HIPSPARSE_SPGEMM_DEFAULT, spgemmDesc, &bufferSize1, NULL); hipMalloc((void**) &dBuffer1, bufferSize1); // Inspect the matrices A and B to determine the number of intermediate product in // C = alpha * A * B hipsparseSpGEMM_workEstimation(handle, opA, opB, &alpha, matA, matB, &beta, matC, computeType, HIPSPARSE_SPGEMM_DEFAULT, spgemmDesc, &bufferSize1, dBuffer1); // Determine size of second user allocated buffer hipsparseSpGEMM_compute(handle, opA, opB, &alpha, matA, matB, &beta, matC, computeType, HIPSPARSE_SPGEMM_DEFAULT, spgemmDesc, &bufferSize2, NULL); hipMalloc((void**) &dBuffer2, bufferSize2); // Compute C = alpha * A * B and store result in temporary buffers hipsparseSpGEMM_compute(handle, opA, opB, &alpha, matA, matB, &beta, matC, computeType, HIPSPARSE_SPGEMM_DEFAULT, spgemmDesc, &bufferSize2, dBuffer2); // Get matrix C non-zero entries C_nnz1 int64_t C_num_rows1, C_num_cols1, C_nnz1; hipsparseSpMatGetSize(matC, &C_num_rows1, &C_num_cols1, &C_nnz1); // Allocate the CSR structures for the matrix C hipMalloc((void**) &dcsr_col_indC, C_nnz1 * sizeof(int)); hipMalloc((void**) &dcsr_valC, C_nnz1 * sizeof(float)); // Update matC with the new pointers hipsparseCsrSetPointers(matC, dcsr_row_ptrC, dcsr_col_indC, dcsr_valC); // Copy the final products to the matrix C hipsparseSpGEMM_copy(handle, opA, opB, &alpha, matA, matB, &beta, matC, computeType, HIPSPARSE_SPGEMM_DEFAULT, spgemmDesc); // Destroy matrix descriptors and handles hipsparseSpGEMM_destroyDescr(spgemmDesc); hipsparseDestroySpMat(matA); hipsparseDestroySpMat(matB); hipsparseDestroySpMat(matC); hipsparseDestroy(handle); // Free device memory hipFree(dBuffer1); hipFree(dBuffer2);
Note
The two user allocated temporary buffers can only be freed after the call to
hipsparseSpGEMM_copy
hipsparseSpGEMMreuse_workEstimation()#
-
hipsparseStatus_t hipsparseSpGEMMreuse_workEstimation(hipsparseHandle_t handle, hipsparseOperation_t opA, hipsparseOperation_t opB, hipsparseConstSpMatDescr_t matA, hipsparseConstSpMatDescr_t matB, hipsparseSpMatDescr_t matC, hipsparseSpGEMMAlg_t alg, hipsparseSpGEMMDescr_t spgemmDescr, size_t *bufferSize1, void *externalBuffer1)#
Description: Work estimation step of the sparse matrix sparse matrix product C’ = alpha * A * B + beta * C where C’, A, B, C are sparse matrices and C’ and C have the same sparsity pattern.
hipsparseSpGEMMreuse_workEstimation
is called twice. We call it to compute the size of the first required user allocated buffer. After this buffer size is determined, the user allocates it and callshipsparseSpGEMMreuse_workEstimation
a second time with the newly allocated buffer passed in. This second call inspects the matrices A and B to determine the number of intermediate products that will result from multipltying A and B together.- Example (See full example below)
void* dBuffer1 = NULL; size_t bufferSize1 = 0; hipsparseSpGEMMDescr_t spgemmDesc; hipsparseSpGEMM_createDescr(&spgemmDesc); size_t bufferSize1 = 0; hipsparseSpGEMMreuse_workEstimation(handle, opA, opB, matA, matB, matC, HIPSPARSE_SPGEMM_DEFAULT, spgemmDesc, &bufferSize1, NULL); hipMalloc((void**) &dBuffer1, bufferSize1); // Determine number of intermediate product when computing A * B hipsparseSpGEMMreuse_workEstimation(handle, opA, opB, matA, matB, matC, HIPSPARSE_SPGEMM_DEFAULT, spgemmDesc, &bufferSize1, dBuffer1);
hipsparseSpGEMMreuse_nnz()#
-
hipsparseStatus_t hipsparseSpGEMMreuse_nnz(hipsparseHandle_t handle, hipsparseOperation_t opA, hipsparseOperation_t opB, hipsparseConstSpMatDescr_t matA, hipsparseConstSpMatDescr_t matB, hipsparseSpMatDescr_t matC, hipsparseSpGEMMAlg_t alg, hipsparseSpGEMMDescr_t spgemmDescr, size_t *bufferSize2, void *externalBuffer2, size_t *bufferSize3, void *externalBuffer3, size_t *bufferSize4, void *externalBuffer4)#
Description: Nnz calculation step of the sparse matrix sparse matrix product C’ = alpha * A * B + beta * C where C’, A, B, C are sparse matrices and C’ and C have the same sparsity pattern.
- Example (See full example below)
// Determine size of second, third, and fourth user allocated buffer hipsparseSpGEMMreuse_nnz(handle, opA, opB, matA, matB, matC, HIPSPARSE_SPGEMM_DEFAULT, spgemmDesc, &bufferSize2, NULL, &bufferSize3, NULL, &bufferSize4, NULL); hipMalloc((void**) &dBuffer2, bufferSize2); hipMalloc((void**) &dBuffer3, bufferSize3); hipMalloc((void**) &dBuffer4, bufferSize4); // COmpute sparsity pattern of C matrix and store in temporary buffers hipsparseSpGEMMreuse_nnz(handle, opA, opB, matA, matB, matC, HIPSPARSE_SPGEMM_DEFAULT, spgemmDesc, &bufferSize2, dBuffer2, &bufferSize3, dBuffer3, &bufferSize4, dBuffer4); // We can now free buffer 1 and 2 hipFree(dBuffer1); hipFree(dBuffer2);
hipsparseSpGEMMreuse_copy()#
-
hipsparseStatus_t hipsparseSpGEMMreuse_copy(hipsparseHandle_t handle, hipsparseOperation_t opA, hipsparseOperation_t opB, hipsparseConstSpMatDescr_t matA, hipsparseConstSpMatDescr_t matB, hipsparseSpMatDescr_t matC, hipsparseSpGEMMAlg_t alg, hipsparseSpGEMMDescr_t spgemmDescr, size_t *bufferSize5, void *externalBuffer5)#
Description: Copy step of the sparse matrix sparse matrix product C’ = alpha * A * B + beta * C where C’, A, B, C are sparse matrices and C’ and C have the same sparsity pattern.
- Example (See full example below)
// Get matrix C non-zero entries nnzC int64_t rowsC, colsC, nnzC; hipsparseSpMatGetSize(matC, &rowsC, &colsC, &nnzC); // Allocate matrix C hipMalloc((void**) &dcsr_col_indC, sizeof(int) * nnzC); hipMalloc((void**) &dcsr_valC, sizeof(float) * nnzC); // Update matC with the new pointers. The C values array can be filled with data here // which is used if beta != 0. hipsparseCsrSetPointers(matC, dcsr_row_ptrC, dcsr_col_indC, dcsr_valC); // Determine size of fifth user allocated buffer hipsparseSpGEMMreuse_copy(handle, opA, opB, matA, matB, matC, HIPSPARSE_SPGEMM_DEFAULT, spgemmDesc, &bufferSize5, NULL); hipMalloc((void**) &dBuffer5, bufferSize5); // Copy data from temporary buffers to the newly allocated C matrix hipsparseSpGEMMreuse_copy(handle, opA, opB, matA, matB, matC, HIPSPARSE_SPGEMM_DEFAULT, spgemmDesc, &bufferSize5, dBuffer5); // We can now free buffer 3 hipFree(dBuffer3);
hipsparseSpGEMMreuse_compute()#
-
hipsparseStatus_t hipsparseSpGEMMreuse_compute(hipsparseHandle_t handle, hipsparseOperation_t opA, hipsparseOperation_t opB, const void *alpha, hipsparseConstSpMatDescr_t matA, hipsparseConstSpMatDescr_t matB, const void *beta, hipsparseSpMatDescr_t matC, hipDataType computeType, hipsparseSpGEMMAlg_t alg, hipsparseSpGEMMDescr_t spgemmDescr)#
Description: Compute step of the sparse matrix sparse matrix product.
- Full example
int m = 2; int k = 2; int n = 3; int nnzA = 4; int nnzB = 4; float alpha{1.0f}; float beta{0.0f}; hipsparseOperation_t opA = HIPSPARSE_OPERATION_NON_TRANSPOSE; hipsparseOperation_t opB = HIPSPARSE_OPERATION_NON_TRANSPOSE; hipDataType computeType = HIP_R_32F; // A, B, and C are m×k, k×n, and m×n // A std::vector<int> hcsr_row_ptrA = {0, 2, 4}; std::vector<int> hcsr_col_indA = {0, 1, 0, 1}; std::vector<float> hcsr_valA = {1.0f, 2.0f, 3.0f, 4.0f}; // B std::vector<int> hcsr_row_ptrB = {0, 2, 4}; std::vector<int> hcsr_col_indB = {1, 2, 0, 2}; std::vector<float> hcsr_valB = {5.0f , 6.0f, 7.0f, 8.0f}; // Device memory management: Allocate and copy A, B int* dcsr_row_ptrA; int* dcsr_col_indA; float* dcsr_valA; int* dcsr_row_ptrB; int* dcsr_col_indB; float* dcsr_valB; int* dcsr_row_ptrC; int* dcsr_col_indC; float* dcsr_valC; hipMalloc((void**)&dcsr_row_ptrA, (m + 1) * sizeof(int)); hipMalloc((void**)&dcsr_col_indA, nnzA * sizeof(int)); hipMalloc((void**)&dcsr_valA, nnzA * sizeof(float)); hipMalloc((void**)&dcsr_row_ptrB, (k + 1) * sizeof(int)); hipMalloc((void**)&dcsr_col_indB, nnzB * sizeof(int)); hipMalloc((void**)&dcsr_valB, nnzB * sizeof(float)); hipMalloc((void**)&dcsr_row_ptrC, (m + 1) * sizeof(int)); hipMemcpy(dcsr_row_ptrA, hcsr_row_ptrA.data(), (m + 1) * sizeof(int), hipMemcpyHostToDevice); hipMemcpy(dcsr_col_indA, hcsr_col_indA.data(), nnzA * sizeof(int), hipMemcpyHostToDevice); hipMemcpy(dcsr_valA, hcsr_valA.data(), nnzA * sizeof(float), hipMemcpyHostToDevice); hipMemcpy(dcsr_row_ptrB, hcsr_row_ptrB.data(), (k + 1) * sizeof(int), hipMemcpyHostToDevice); hipMemcpy(dcsr_col_indB, hcsr_col_indB.data(), nnzB * sizeof(int), hipMemcpyHostToDevice); hipMemcpy(dcsr_valB, hcsr_valB.data(), nnzB * sizeof(float), hipMemcpyHostToDevice); hipsparseHandle_t handle = NULL; hipsparseSpMatDescr_t matA, matB, matC; void* dBuffer1 = NULL; void* dBuffer2 = NULL; void* dBuffer3 = NULL; void* dBuffer4 = NULL; void* dBuffer5 = NULL; size_t bufferSize1 = 0; size_t bufferSize2 = 0; size_t bufferSize3 = 0; size_t bufferSize4 = 0; size_t bufferSize5 = 0; hipsparseCreate(&handle); // Create sparse matrix A in CSR format hipsparseCreateCsr(&matA, m, k, nnzA, dcsr_row_ptrA, dcsr_col_indA, dcsr_valA, HIPSPARSE_INDEX_32I, HIPSPARSE_INDEX_32I, HIPSPARSE_INDEX_BASE_ZERO, HIP_R_32F); hipsparseCreateCsr(&matB, k, n, nnzB, dcsr_row_ptrB, dcsr_col_indB, dcsr_valB, HIPSPARSE_INDEX_32I, HIPSPARSE_INDEX_32I, HIPSPARSE_INDEX_BASE_ZERO, HIP_R_32F); hipsparseCreateCsr(&matC, m, n, 0, dcsr_row_ptrC, NULL, NULL, HIPSPARSE_INDEX_32I, HIPSPARSE_INDEX_32I, HIPSPARSE_INDEX_BASE_ZERO, HIP_R_32F); hipsparseSpGEMMDescr_t spgemmDesc; hipsparseSpGEMM_createDescr(&spgemmDesc); // Determine size of first user allocated buffer hipsparseSpGEMMreuse_workEstimation(handle, opA, opB, matA, matB, matC, HIPSPARSE_SPGEMM_DEFAULT, spgemmDesc, &bufferSize1, NULL); hipMalloc((void**) &dBuffer1, bufferSize1); // Inspect the matrices A and B to determine the number of intermediate product in // C = alpha * A * B hipsparseSpGEMMreuse_workEstimation(handle, opA, opB, matA, matB, matC, HIPSPARSE_SPGEMM_DEFAULT, spgemmDesc, &bufferSize1, dBuffer1); // Determine size of second, third, and fourth user allocated buffer hipsparseSpGEMMreuse_nnz(handle, opA, opB, matA, matB, matC, HIPSPARSE_SPGEMM_DEFAULT, spgemmDesc, &bufferSize2, NULL, &bufferSize3, NULL, &bufferSize4, NULL); hipMalloc((void**) &dBuffer2, bufferSize2); hipMalloc((void**) &dBuffer3, bufferSize3); hipMalloc((void**) &dBuffer4, bufferSize4); // COmpute sparsity pattern of C matrix and store in temporary buffers hipsparseSpGEMMreuse_nnz(handle, opA, opB, matA, matB, matC, HIPSPARSE_SPGEMM_DEFAULT, spgemmDesc, &bufferSize2, dBuffer2, &bufferSize3, dBuffer3, &bufferSize4, dBuffer4); // We can now free buffer 1 and 2 hipFree(dBuffer1); hipFree(dBuffer2); // Get matrix C non-zero entries nnzC int64_t rowsC, colsC, nnzC; hipsparseSpMatGetSize(matC, &rowsC, &colsC, &nnzC); // Allocate matrix C hipMalloc((void**) &dcsr_col_indC, sizeof(int) * nnzC); hipMalloc((void**) &dcsr_valC, sizeof(float) * nnzC); // Update matC with the new pointers. The C values array can be filled with data here // which is used if beta != 0. hipsparseCsrSetPointers(matC, dcsr_row_ptrC, dcsr_col_indC, dcsr_valC); // Determine size of fifth user allocated buffer hipsparseSpGEMMreuse_copy(handle, opA, opB, matA, matB, matC, HIPSPARSE_SPGEMM_DEFAULT, spgemmDesc, &bufferSize5, NULL); hipMalloc((void**) &dBuffer5, bufferSize5); // Copy data from temporary buffers to the newly allocated C matrix hipsparseSpGEMMreuse_copy(handle, opA, opB, matA, matB, matC, HIPSPARSE_SPGEMM_DEFAULT, spgemmDesc, &bufferSize5, dBuffer5); // We can now free buffer 3 hipFree(dBuffer3); // Compute C' = alpha * A * B + beta * C hipsparseSpGEMMreuse_compute(handle, opA, opB, &alpha, matA, matB, &beta, matC, computeType, HIPSPARSE_SPGEMM_DEFAULT, spgemmDesc); // Copy results back to host if required using hipsparseCsrGet... // Update dcsr_valA, dcsr_valB with new values for(size_t i = 0; i < hcsr_valA.size(); i++){ hcsr_valA[i] = 1.0f; } for(size_t i = 0; i < hcsr_valB.size(); i++){ hcsr_valB[i] = 2.0f; } hipMemcpy(dcsr_valA, hcsr_valA.data(), sizeof(float) * nnzA, hipMemcpyHostToDevice); hipMemcpy(dcsr_valB, hcsr_valB.data(), sizeof(float) * nnzB, hipMemcpyHostToDevice); // Compute C' = alpha * A * B + beta * C again with the new A and B values hipsparseSpGEMMreuse_compute(handle, opA, opB, &alpha, matA, matB, &beta, matC, computeType, HIPSPARSE_SPGEMM_DEFAULT, spgemmDesc); // Copy results back to host if required using hipsparseCsrGet... // Destroy matrix descriptors and handles hipsparseSpGEMM_destroyDescr(spgemmDesc); hipsparseDestroySpMat(matA); hipsparseDestroySpMat(matB); hipsparseDestroySpMat(matC); hipsparseDestroy(handle); // Free device memory hipFree(dBuffer4); hipFree(dBuffer5); hipFree(dcsr_row_ptrA); hipFree(dcsr_col_indA); hipFree(dcsr_valA); hipFree(dcsr_row_ptrB); hipFree(dcsr_col_indB); hipFree(dcsr_valB); hipFree(dcsr_row_ptrC); hipFree(dcsr_col_indC); hipFree(dcsr_valC);
hipsparseSDDMM_bufferSize()#
-
hipsparseStatus_t hipsparseSDDMM_bufferSize(hipsparseHandle_t handle, hipsparseOperation_t opA, hipsparseOperation_t opB, const void *alpha, hipsparseConstDnMatDescr_t A, hipsparseConstDnMatDescr_t B, const void *beta, hipsparseSpMatDescr_t C, hipDataType computeType, hipsparseSDDMMAlg_t alg, size_t *bufferSize)#
Description: Calculate the buffer size required for the sampled dense dense matrix multiplication.
hipsparseSDDMM_bufferSize
computes the required user allocated buffer size needed when computing the sampled dense dense matrix multiplication
hipsparseSDDMM_preprocess()#
-
hipsparseStatus_t hipsparseSDDMM_preprocess(hipsparseHandle_t handle, hipsparseOperation_t opA, hipsparseOperation_t opB, const void *alpha, hipsparseConstDnMatDescr_t A, hipsparseConstDnMatDescr_t B, const void *beta, hipsparseSpMatDescr_t C, hipDataType computeType, hipsparseSDDMMAlg_t alg, void *tempBuffer)#
Description: Preprocess step of the sampled dense dense matrix multiplication.
hipsparseSDDMM_preprocess
performs the required preprocessing used when computing the sampled dense dense matrix multiplication
hipsparseSDDMM()#
-
hipsparseStatus_t hipsparseSDDMM(hipsparseHandle_t handle, hipsparseOperation_t opA, hipsparseOperation_t opB, const void *alpha, hipsparseConstDnMatDescr_t A, hipsparseConstDnMatDescr_t B, const void *beta, hipsparseSpMatDescr_t C, hipDataType computeType, hipsparseSDDMMAlg_t alg, void *tempBuffer)#
Description: Sampled Dense-Dense Matrix Multiplication.
hipsparseSDDMM multiplies the scalar
with the dense matrix , the dense matrix , filtered by the sparsity pattern of the sparse matrix and adds the result to scaled by . The final result is stored in the sparse matrix , such that
hipsparseSpSV_createDescr()#
-
hipsparseStatus_t hipsparseSpSV_createDescr(hipsparseSpSVDescr_t *descr)#
Description: Create sparse matrix triangular solve descriptor.
hipsparseSpGEMM_createDescr
creates a sparse matrix triangular solve descriptor. It should be destroyed at the end using hipsparseSpSV_destroyDescr().
hipsparseSpSV_destroyDescr()#
-
hipsparseStatus_t hipsparseSpSV_destroyDescr(hipsparseSpSVDescr_t descr)#
Description: Destroy sparse matrix triangular solve descriptor.
hipsparseSpSV_destroyDescr
destroys a sparse matrix triangular solve descriptor and releases all resources used by the descriptor.
hipsparseSpSV_bufferSize()#
-
hipsparseStatus_t hipsparseSpSV_bufferSize(hipsparseHandle_t handle, hipsparseOperation_t opA, const void *alpha, hipsparseConstSpMatDescr_t matA, hipsparseConstDnVecDescr_t x, const hipsparseDnVecDescr_t y, hipDataType computeType, hipsparseSpSVAlg_t alg, hipsparseSpSVDescr_t spsvDescr, size_t *bufferSize)#
Description: Buffer size step of solution of triangular linear system op(A) * Y = alpha * X, where A is a sparse matrix in CSR storage format, x and Y are dense vectors.
hipsparseSpSV_bufferSize
computes the required user allocated buffer size needed when computing the solution of triangular linear system op(A) * Y = alpha * X, where A is a sparse matrix in CSR storage format, x and Y are dense vectors.
hipsparseSpSV_analysis()#
-
hipsparseStatus_t hipsparseSpSV_analysis(hipsparseHandle_t handle, hipsparseOperation_t opA, const void *alpha, hipsparseConstSpMatDescr_t matA, hipsparseConstDnVecDescr_t x, const hipsparseDnVecDescr_t y, hipDataType computeType, hipsparseSpSVAlg_t alg, hipsparseSpSVDescr_t spsvDescr, void *externalBuffer)#
Description: Analysis step of solution of triangular linear system op(A) * Y = alpha * X, where A is a sparse matrix in CSR storage format, x and Y are dense vectors.
hipsparseSpSV_analysis
performs the required analysis used when computing the solution of triangular linear system op(A) * Y = alpha * X, where A is a sparse matrix in CSR storage format, x and Y are dense vectors.
hipsparseSpSV_solve()#
-
hipsparseStatus_t hipsparseSpSV_solve(hipsparseHandle_t handle, hipsparseOperation_t opA, const void *alpha, hipsparseConstSpMatDescr_t matA, hipsparseConstDnVecDescr_t x, const hipsparseDnVecDescr_t y, hipDataType computeType, hipsparseSpSVAlg_t alg, hipsparseSpSVDescr_t spsvDescr)#
Description: Sparse triangular solve.
hipsparseSpSV_solve
solves a sparse triangular linear system of a sparse matrix, defined in CSR or COO storage format, a dense solution vector and the right-hand side that is multiplied by , such that
hipsparseSpSM_createDescr()#
-
hipsparseStatus_t hipsparseSpSM_createDescr(hipsparseSpSMDescr_t *descr)#
Description: Create sparse matrix triangular solve with multiple rhs descriptor.
hipsparseSpSM_createDescr
creates a sparse matrix triangular solve with multiple rhs descriptor. It should be destroyed at the end using hipsparseSpSM_destroyDescr().
hipsparseSpSM_destroyDescr()#
-
hipsparseStatus_t hipsparseSpSM_destroyDescr(hipsparseSpSMDescr_t descr)#
Description: Destroy sparse matrix triangular solve with multiple rhs descriptor.
hipsparseSpSM_destroyDescr
destroys a sparse matrix triangular solve with multiple rhs descriptor and releases all resources used by the descriptor.
hipsparseSpSM_bufferSize()#
-
hipsparseStatus_t hipsparseSpSM_bufferSize(hipsparseHandle_t handle, hipsparseOperation_t opA, hipsparseOperation_t opB, const void *alpha, hipsparseConstSpMatDescr_t matA, hipsparseConstDnMatDescr_t matB, const hipsparseDnMatDescr_t matC, hipDataType computeType, hipsparseSpSMAlg_t alg, hipsparseSpSMDescr_t spsmDescr, size_t *bufferSize)#
Description: Buffer size step of solution of triangular linear system op(A) * C = alpha * op(B), where A is a sparse matrix in CSR storage format, B and C are dense matrices.
hipsparseSpSV_bufferSize
computes the required user allocated buffer size needed when computing the solution of triangular linear system op(A) * C = alpha * op(B), where A is a sparse matrix in CSR storage format, B and C are dense matrices.
hipsparseSpSM_analysis()#
-
hipsparseStatus_t hipsparseSpSM_analysis(hipsparseHandle_t handle, hipsparseOperation_t opA, hipsparseOperation_t opB, const void *alpha, hipsparseConstSpMatDescr_t matA, hipsparseConstDnMatDescr_t matB, const hipsparseDnMatDescr_t matC, hipDataType computeType, hipsparseSpSMAlg_t alg, hipsparseSpSMDescr_t spsmDescr, void *externalBuffer)#
Description: Analysis step of solution of triangular linear system op(A) * C = alpha * op(B), where A is a sparse matrix in CSR storage format, B and C are dense vectors.
hipsparseSpSV_analysis
performs the required analysis used when computing the solution of triangular linear system op(A) * C = alpha * op(B), where A is a sparse matrix in CSR storage format, B and C are dense vectors.
hipsparseSpSM_solve()#
-
hipsparseStatus_t hipsparseSpSM_solve(hipsparseHandle_t handle, hipsparseOperation_t opA, hipsparseOperation_t opB, const void *alpha, hipsparseConstSpMatDescr_t matA, hipsparseConstDnMatDescr_t matB, const hipsparseDnMatDescr_t matC, hipDataType computeType, hipsparseSpSMAlg_t alg, hipsparseSpSMDescr_t spsmDescr, void *externalBuffer)#
Description: Sparse triangular system solve.
hipsparseSpSM_solve
solves a sparse triangular linear system of a sparse matrix, defined in CSR or COO storage format, a dense solution matrix and the right-hand side that is multiplied by , such that