Python API reference#
This document describes the hipRAND APIs in Python.
The APIs in this wrapper are similar to pyculib.rand.
class PRNG#
- class hiprand.PRNG(rngtype=400, seed=None, offset=None, stream=None)#
-
- MRG32K3A = 402#
MRG32k3a pseudo-random generator type
- MT19937 = 404#
Mersenne Twister 19937 pseudo-random generator type
- MTGP32 = 403#
Mersenne Twister MTGP32 pseudo-random generator type
- PHILOX4_32_10 = 405#
PHILOX_4x32 (10 rounds) pseudo-random generator type
- XORWOW = 401#
XORWOW pseudo-random generator type
- generate(ary, size=None)#
Generates uniformly distributed integers.
Generates size (if present) or ary.size uniformly distributed integers and saves them to ary.
- Supported dtype of ary for 32-bits generators:
numpy.uint32
,numpy.int32
.- Supported dtype of ary for 64-bits generators:
numpy.uint64
,numpy.int64
.
- Parameters:
ary – NumPy array (
numpy.ndarray
) or HIP device-side array (DeviceNDArray
)size – Number of samples to generate, default to ary.size
- lognormal(ary, mean, stddev, size=None)#
Generates log-normally distributed floats.
Generates size (if present) or ary.size log-normally distributed floats and saves them to ary.
Supported dtype of ary:
numpy.float32
,numpy.float64
.- Parameters:
ary – NumPy array (
numpy.ndarray
) or HIP device-side array (DeviceNDArray
)mean – Mean value of log normal distribution
stddev – Standard deviation value of log normal distribution
size – Number of samples to generate, default to ary.size
- normal(ary, mean, stddev, size=None)#
Generates normally distributed floats.
Generates size (if present) or ary.size normally distributed floats and saves them to ary.
Supported dtype of ary:
numpy.float32
,numpy.float64
.- Parameters:
ary – NumPy array (
numpy.ndarray
) or HIP device-side array (DeviceNDArray
)mean – Mean value of normal distribution
stddev – Standard deviation value of normal distribution
size – Number of samples to generate, default to ary.size
- property offset#
Mutable attribute of the offset of random numbers sequence.
Setting this attribute resets the sequence.
- poisson(ary, lmbd, size=None)#
Generates Poisson-distributed integers.
Generates size (if present) or ary.size Poisson-distributed integers and saves them to ary.
Supported dtype of ary:
numpy.uint32
,numpy.int32
.- Parameters:
ary – NumPy array (
numpy.ndarray
) or HIP device-side array (DeviceNDArray
)lmbd – lambda for the Poisson distribution
size – Number of samples to generate, default to ary.size
- property seed#
Mutable attribute of the seed of random numbers sequence.
Setting this attribute resets the sequence.
- uniform(ary, size=None)#
Generates uniformly distributed floats.
Generates size (if present) or ary.size uniformly distributed floats and saves them to ary.
Supported dtype of ary:
numpy.float32
,numpy.float64
.Generated numbers are between 0.0 and 1.0, excluding 0.0 and including 1.0.
- Parameters:
ary – NumPy array (
numpy.ndarray
) or HIP device-side array (DeviceNDArray
)size – Number of samples to generate, default to ary.size
class QRNG#
- class hiprand.QRNG(rngtype=500, ndim=None, offset=None, stream=None)#
-
- SCRAMBLED_SOBOL32 = 502#
Scrambled Sobol32 quasi-random generator type
- SCRAMBLED_SOBOL64 = 504#
Scrambled Sobol64 quasi-random generator type
- SOBOL32 = 501#
Sobol32 quasi-random generator type
- SOBOL64 = 503#
Sobol64 quasi-random generator type
- generate(ary, size=None)#
Generates uniformly distributed integers.
Generates size (if present) or ary.size uniformly distributed integers and saves them to ary.
- Supported dtype of ary for 32-bits generators:
numpy.uint32
,numpy.int32
.- Supported dtype of ary for 64-bits generators:
numpy.uint64
,numpy.int64
.
- Parameters:
ary – NumPy array (
numpy.ndarray
) or HIP device-side array (DeviceNDArray
)size – Number of samples to generate, default to ary.size
- lognormal(ary, mean, stddev, size=None)#
Generates log-normally distributed floats.
Generates size (if present) or ary.size log-normally distributed floats and saves them to ary.
Supported dtype of ary:
numpy.float32
,numpy.float64
.- Parameters:
ary – NumPy array (
numpy.ndarray
) or HIP device-side array (DeviceNDArray
)mean – Mean value of log normal distribution
stddev – Standard deviation value of log normal distribution
size – Number of samples to generate, default to ary.size
- property ndim#
Mutable attribute of the number of dimensions of random numbers sequence.
Supported values are 1 to 20000. Setting this attribute resets the sequence.
- normal(ary, mean, stddev, size=None)#
Generates normally distributed floats.
Generates size (if present) or ary.size normally distributed floats and saves them to ary.
Supported dtype of ary:
numpy.float32
,numpy.float64
.- Parameters:
ary – NumPy array (
numpy.ndarray
) or HIP device-side array (DeviceNDArray
)mean – Mean value of normal distribution
stddev – Standard deviation value of normal distribution
size – Number of samples to generate, default to ary.size
- property offset#
Mutable attribute of the offset of random numbers sequence.
Setting this attribute resets the sequence.
- poisson(ary, lmbd, size=None)#
Generates Poisson-distributed integers.
Generates size (if present) or ary.size Poisson-distributed integers and saves them to ary.
Supported dtype of ary:
numpy.uint32
,numpy.int32
.- Parameters:
ary – NumPy array (
numpy.ndarray
) or HIP device-side array (DeviceNDArray
)lmbd – lambda for the Poisson distribution
size – Number of samples to generate, default to ary.size
- uniform(ary, size=None)#
Generates uniformly distributed floats.
Generates size (if present) or ary.size uniformly distributed floats and saves them to ary.
Supported dtype of ary:
numpy.float32
,numpy.float64
.Generated numbers are between 0.0 and 1.0, excluding 0.0 and including 1.0.
- Parameters:
ary – NumPy array (
numpy.ndarray
) or HIP device-side array (DeviceNDArray
)size – Number of samples to generate, default to ary.size
Exceptions#
- exception hiprand.HipRandError(value)#
Run-time hipRAND error.
- exception hiprand.HipError(value)#
Run-time HIP error.
Utilities#
- class hiprand.DeviceNDArray(shape, dtype, data=None)#
Device-side array.
This class is a limited version of
numpy.ndarray
for device-side arrays.See
empty()
- copy_to_host(ary=None)#
Copy from data device memory to host memory.
If ary is passed then ary must have the same dtype and greater or equal size as self has.
If ary is not passed then a new
numpy.ndarray
will be created.- Parameters:
ary – NumPy array (
numpy.ndarray
)- Returns:
a new array or ary
- hiprand.empty(shape, dtype)#
Create a new device-side array of given shape and type, without initializing entries.
This function is a limited version of
numpy.empty()
for device-side arrays.Example:
import hiprand import numpy as np gen = hiprand.QRNG(ndim=5) d_a = hiprand.empty((5, 10000), dtype=np.float32) gen.uniform(d_a) a = d_a.copy_to_host() print(a)
See
DeviceNDArray
- hiprand.get_version()#
Returns the version number of the rocRAND or cuRAND library.