hipdf.core.dtypes.CategoricalDtype#

25 min read time

Applies to Linux

class hipdf.core.dtypes.CategoricalDtype(categories=None, ordered: bool = False)#

Bases: _BaseDtype

Type for categorical data with the categories and orderedness.

Parameters#

categoriessequence, optional

Must be unique, and must not contain any nulls. The categories are stored in an Index, and if an index is provided the dtype of that index will be used.

orderedbool or None, default False

Whether or not this categorical is treated as a ordered categorical. None can be used to maintain the ordered value of existing categoricals when used in operations that combine categoricals, e.g. astype, and will resolve to False if there is no existing ordered to maintain.

Attributes#

categories ordered

Methods#

from_pandas to_pandas

Examples#

>>> import cudf
>>> dtype = cudf.CategoricalDtype(categories=['b', 'a'], ordered=True)
>>> cudf.Series(['a', 'b', 'a', 'c'], dtype=dtype)
0       a
1       b
2       a
3    <NA>
dtype: category
Categories (2, object): ['b' < 'a']
__init__(categories=None, ordered: bool = False) None#

Methods

__init__([categories, ordered])

construct_array_type()

Return the array type associated with this dtype.

construct_from_string()

Construct this type from a string.

deserialize(header, frames)

Generate an object from a serialized representation.

device_deserialize(header, frames)

Perform device-side deserialization tasks.

device_serialize()

Serialize data and metadata associated with device memory.

empty(shape)

Construct an ExtensionArray of this dtype with the given shape.

from_pandas(dtype)

Convert a pandas.CategrocialDtype to cudf.CategoricalDtype

host_deserialize(header, frames)

Perform device-side deserialization tasks.

host_serialize()

Serialize data and metadata associated with host memory.

is_dtype(dtype)

Check if we match 'dtype'.

serialize()

Generate an equivalent serializable representation of an object.

to_pandas()

Convert a cudf.CategoricalDtype to pandas.CategoricalDtype

Attributes

categories

An Index containing the unique categories allowed.

kind

A character code (one of 'biufcmMOSUV'), default 'O'

na_value

Default NA value to use for this type.

name

A string identifying the data type.

names

Ordered list of field names, or None if there are no fields.

ordered

Whether the categories have an ordered relationship.

str

type

The scalar type for the array, e.g. int.

__init__(categories=None, ordered: bool = False) None#
property categories: GenericIndex#

An Index containing the unique categories allowed.

Examples#

>>> import cudf
>>> dtype = cudf.CategoricalDtype(categories=['b', 'a'], ordered=True)
>>> dtype.categories
StringIndex(['b' 'a'], dtype='object')
property type#

The scalar type for the array, e.g. int

It’s expected ExtensionArray[item] returns an instance of ExtensionDtype.type for scalar item, assuming that value is valid (not NA). NA values do not need to be instances of type.

property name#

A string identifying the data type.

Will be used for display in, e.g. Series.dtype

property str#
property ordered: bool#

Whether the categories have an ordered relationship.

classmethod from_pandas(dtype: CategoricalDtype) CategoricalDtype#

Convert a pandas.CategrocialDtype to cudf.CategoricalDtype

Examples#

>>> import cudf
>>> import pandas as pd
>>> pd_dtype = pd.CategoricalDtype(categories=['b', 'a'], ordered=True)
>>> pd_dtype
CategoricalDtype(categories=['b', 'a'], ordered=True)
>>> cudf_dtype = cudf.CategoricalDtype.from_pandas(pd_dtype)
>>> cudf_dtype
CategoricalDtype(categories=['b', 'a'], ordered=True)
to_pandas() CategoricalDtype#

Convert a cudf.CategoricalDtype to pandas.CategoricalDtype

Examples#

>>> import cudf
>>> dtype = cudf.CategoricalDtype(categories=['b', 'a'], ordered=True)
>>> dtype
CategoricalDtype(categories=['b', 'a'], ordered=True)
>>> dtype.to_pandas()
CategoricalDtype(categories=['b', 'a'], ordered=True)
construct_from_string()#

Construct this type from a string.

This is useful mainly for data types that accept parameters. For example, a period dtype accepts a frequency parameter that can be set as period[H] (where H means hourly frequency).

By default, in the abstract class, just the name of the type is expected. But subclasses can overwrite this method to accept parameters.

Parameters#

stringstr

The name of the type, for example category.

Returns#

ExtensionDtype

Instance of the dtype.

Raises#

TypeError

If a class cannot be constructed from this ‘string’.

Examples#

For extension dtypes with arguments the following may be an adequate implementation.

>>> @classmethod
... def construct_from_string(cls, string):
...     pattern = re.compile(r"^my_type\[(?P<arg_name>.+)\]$")
...     match = pattern.match(string)
...     if match:
...         return cls(**match.groupdict())
...     else:
...         raise TypeError(
...             f"Cannot construct a '{cls.__name__}' from '{string}'"
...         )
classmethod construct_array_type() type_t[ExtensionArray]#

Return the array type associated with this dtype.

Returns#

type

empty(shape: Shape) type_t[ExtensionArray]#

Construct an ExtensionArray of this dtype with the given shape.

Analogous to numpy.empty.

Parameters#

shape : int or tuple[int]

Returns#

ExtensionArray

classmethod is_dtype(dtype: object) bool#

Check if we match ‘dtype’.

Parameters#

dtypeobject

The object to check.

Returns#

bool

Notes#

The default implementation is True if

  1. cls.construct_from_string(dtype) is an instance of cls.

  2. dtype is an object and is an instance of cls

  3. dtype has a dtype attribute, and any of the above conditions is true for dtype.dtype.

property kind: str#

A character code (one of ‘biufcmMOSUV’), default ‘O’

This should match the NumPy dtype used when the array is converted to an ndarray, which is probably ‘O’ for object if the extension type cannot be represented as a built-in NumPy type.

See Also#

numpy.dtype.kind

property na_value: object#

Default NA value to use for this type.

This is used in e.g. ExtensionArray.take. This should be the user-facing “boxed” version of the NA value, not the physical NA value for storage. e.g. for JSONArray, this is an empty dictionary.

property names: list[str] | None#

Ordered list of field names, or None if there are no fields.

This is for compatibility with NumPy arrays, and may be removed in the future.