include/ck_tile/ops/grouped_convolution/kernel/grouped_convolution_backward_weight_kernel.hpp Source File

include/ck_tile/ops/grouped_convolution/kernel/grouped_convolution_backward_weight_kernel.hpp Source File#

Composable Kernel: include/ck_tile/ops/grouped_convolution/kernel/grouped_convolution_backward_weight_kernel.hpp Source File
grouped_convolution_backward_weight_kernel.hpp
Go to the documentation of this file.
1 // SPDX-License-Identifier: MIT
2 // Copyright (c) 2025, Advanced Micro Devices, Inc. All rights reserved.
3 
4 #pragma once
5 
6 #include <iostream>
7 #include <string>
8 
9 #include "ck_tile/core.hpp"
10 #include "ck_tile/ops/common.hpp"
11 #include "ck_tile/host/concat.hpp"
16 
17 namespace ck_tile {
18 
20 template <typename GroupedConvTraitsType>
22 {
23 
25  TransformConvBwdWeightToGemm<GroupedConvTraitsType::NDimSpatial,
26  GroupedConvTraitsType::ConvSpecialization>;
27  static constexpr index_t NumDTensor = GroupedConvTraitsType::NumDTensor;
28 
29  template <
30  typename InLay = typename GroupedConvTraitsType::InLayout,
31  typename WeiLay = typename GroupedConvTraitsType::WeiLayout,
32  typename OutLay = typename GroupedConvTraitsType::OutLayout,
33  typename std::enable_if<std::is_same_v<InLay, tensor_layout::convolution::NWGC> &&
34  std::is_same_v<WeiLay, tensor_layout::convolution::GKXC> &&
35  std::is_same_v<OutLay, tensor_layout::convolution::NWGK>,
36  bool>::type = false>
38  {
39  in_g_n_c_wis_lengths = {static_cast<index_t>(args.G_),
40  static_cast<index_t>(args.N_),
41  static_cast<index_t>(args.C_),
42  static_cast<index_t>(args.input_spatial_lengths_[0])};
43  wei_g_k_c_xs_lengths = {static_cast<index_t>(args.G_),
44  static_cast<index_t>(args.K_),
45  static_cast<index_t>(args.C_),
46  static_cast<index_t>(args.filter_spatial_lengths_[0])};
47  out_g_n_k_wos_lengths = {static_cast<index_t>(args.G_),
48  static_cast<index_t>(args.N_),
49  static_cast<index_t>(args.K_),
50  static_cast<index_t>(args.output_spatial_lengths_[0])};
51 
52  conv_filter_strides = {static_cast<index_t>(args.conv_filter_strides_[0])};
53  conv_filter_dilations = {static_cast<index_t>(args.conv_filter_dilations_[0])};
54  input_left_pads = {static_cast<index_t>(args.input_left_pads_[0])};
55  input_right_pads = {static_cast<index_t>(args.input_right_pads_[0])};
56 
57  k_batch = args.k_batch;
58 
59  in_ptr = args.in_ptr;
60  wei_ptr = args.wei_ptr;
61  for(index_t d = 0; d < NumDTensor; d++)
62  {
63  ds_ptr[d] = args.ds_ptr[d];
64  }
65  out_ptr = args.out_ptr;
66 
67  ConvToGemmTransformer conv_to_gemm_transformer{in_g_n_c_wis_lengths,
74 
75  // tuple
76  auto grid_descs =
77  conv_to_gemm_transformer.template MakeABCGridDescriptor_A_K0_M_K1_B_K0_N_K1_C_M_N<
78  GroupedConvTraitsType::NDimSpatial>();
79 
80  a_grid_desc_m_k = grid_descs.at(number<0>{});
81  b_grid_desc_n_k = grid_descs.at(number<1>{});
82  c_grid_desc_m_n = grid_descs.at(number<2>{});
83 
84  group_stride_a = args.K_; // A: Out NWGK
85  group_stride_b = args.C_; // B: In NWGC
86  group_stride_c = args.K_ * args.C_ * // C: Wei GKXC
87  std::accumulate(args.filter_spatial_lengths_.begin(),
88  args.filter_spatial_lengths_.end(),
89  1,
90  std::multiplies<index_t>());
91 
92  GemmM = a_grid_desc_m_k.get_length(number<0>{});
93  GemmN = b_grid_desc_n_k.get_length(number<0>{});
94  GemmK = a_grid_desc_m_k.get_length(number<1>{});
95  GemmBatch = args.G_;
96  }
97 
98  template <
99  typename InLay = typename GroupedConvTraitsType::InLayout,
100  typename WeiLay = typename GroupedConvTraitsType::WeiLayout,
101  typename OutLay = typename GroupedConvTraitsType::OutLayout,
102  typename std::enable_if<std::is_same_v<InLay, tensor_layout::convolution::NHWGC> &&
103  std::is_same_v<WeiLay, tensor_layout::convolution::GKYXC> &&
104  std::is_same_v<OutLay, tensor_layout::convolution::NHWGK>,
105  bool>::type = false>
107  {
108  in_g_n_c_wis_lengths = {static_cast<index_t>(args.G_),
109  static_cast<index_t>(args.N_),
110  static_cast<index_t>(args.C_),
111  static_cast<index_t>(args.input_spatial_lengths_[0]),
112  static_cast<index_t>(args.input_spatial_lengths_[1])};
113  wei_g_k_c_xs_lengths = {static_cast<index_t>(args.G_),
114  static_cast<index_t>(args.K_),
115  static_cast<index_t>(args.C_),
116  static_cast<index_t>(args.filter_spatial_lengths_[0]),
117  static_cast<index_t>(args.filter_spatial_lengths_[1])};
118  out_g_n_k_wos_lengths = {static_cast<index_t>(args.G_),
119  static_cast<index_t>(args.N_),
120  static_cast<index_t>(args.K_),
121  static_cast<index_t>(args.output_spatial_lengths_[0]),
122  static_cast<index_t>(args.output_spatial_lengths_[1])};
123 
124  conv_filter_strides = {static_cast<index_t>(args.conv_filter_strides_[0]),
125  static_cast<index_t>(args.conv_filter_strides_[1])};
126  conv_filter_dilations = {static_cast<index_t>(args.conv_filter_dilations_[0]),
127  static_cast<index_t>(args.conv_filter_dilations_[1])};
128  input_left_pads = {static_cast<index_t>(args.input_left_pads_[0]),
129  static_cast<index_t>(args.input_left_pads_[1])};
130  input_right_pads = {static_cast<index_t>(args.input_right_pads_[0]),
131  static_cast<index_t>(args.input_right_pads_[1])};
132 
133  k_batch = args.k_batch;
134 
135  in_ptr = args.in_ptr;
136  wei_ptr = args.wei_ptr;
137  for(index_t d = 0; d < NumDTensor; d++)
138  {
139  ds_ptr[d] = args.ds_ptr[d];
140  }
141  out_ptr = args.out_ptr;
142 
143  ConvToGemmTransformer conv_to_gemm_transformer{in_g_n_c_wis_lengths,
150 
151  // tuple
152  auto grid_descs =
153  conv_to_gemm_transformer.template MakeABCGridDescriptor_A_K0_M_K1_B_K0_N_K1_C_M_N<
154  GroupedConvTraitsType::NDimSpatial>();
155 
156  a_grid_desc_m_k = grid_descs.at(number<0>{});
157  b_grid_desc_n_k = grid_descs.at(number<1>{});
158  c_grid_desc_m_n = grid_descs.at(number<2>{});
159 
160  group_stride_a = args.K_; // A: Out NHWGK
161  group_stride_b = args.C_; // B: In NHWGC
162  group_stride_c = args.K_ * args.C_ * // C: Wei GKYXC
163  std::accumulate(args.filter_spatial_lengths_.begin(),
164  args.filter_spatial_lengths_.end(),
165  1,
166  std::multiplies<index_t>());
167 
168  GemmM = a_grid_desc_m_k.get_length(number<0>{});
169  GemmN = b_grid_desc_n_k.get_length(number<0>{});
170  GemmK = a_grid_desc_m_k.get_length(number<1>{});
171  GemmBatch = args.G_;
172  }
173 
174  template <
175  typename InLay = typename GroupedConvTraitsType::InLayout,
176  typename WeiLay = typename GroupedConvTraitsType::WeiLayout,
177  typename OutLay = typename GroupedConvTraitsType::OutLayout,
178  typename std::enable_if<std::is_same_v<InLay, tensor_layout::convolution::NDHWGC> &&
179  std::is_same_v<WeiLay, tensor_layout::convolution::GKZYXC> &&
180  std::is_same_v<OutLay, tensor_layout::convolution::NDHWGK>,
181  bool>::type = false>
183  {
184  in_g_n_c_wis_lengths = {static_cast<index_t>(args.G_),
185  static_cast<index_t>(args.N_),
186  static_cast<index_t>(args.C_),
187  static_cast<index_t>(args.input_spatial_lengths_[0]),
188  static_cast<index_t>(args.input_spatial_lengths_[1]),
189  static_cast<index_t>(args.input_spatial_lengths_[2])};
190  wei_g_k_c_xs_lengths = {static_cast<index_t>(args.G_),
191  static_cast<index_t>(args.K_),
192  static_cast<index_t>(args.C_),
193  static_cast<index_t>(args.filter_spatial_lengths_[0]),
194  static_cast<index_t>(args.filter_spatial_lengths_[1]),
195  static_cast<index_t>(args.filter_spatial_lengths_[2])};
196  out_g_n_k_wos_lengths = {static_cast<index_t>(args.G_),
197  static_cast<index_t>(args.N_),
198  static_cast<index_t>(args.K_),
199  static_cast<index_t>(args.output_spatial_lengths_[0]),
200  static_cast<index_t>(args.output_spatial_lengths_[1]),
201  static_cast<index_t>(args.output_spatial_lengths_[2])};
202 
203  conv_filter_strides = {static_cast<index_t>(args.conv_filter_strides_[0]),
204  static_cast<index_t>(args.conv_filter_strides_[1]),
205  static_cast<index_t>(args.conv_filter_strides_[2])};
206  conv_filter_dilations = {static_cast<index_t>(args.conv_filter_dilations_[0]),
207  static_cast<index_t>(args.conv_filter_dilations_[1]),
208  static_cast<index_t>(args.conv_filter_dilations_[2])};
209  input_left_pads = {static_cast<index_t>(args.input_left_pads_[0]),
210  static_cast<index_t>(args.input_left_pads_[1]),
211  static_cast<index_t>(args.input_left_pads_[2])};
212  input_right_pads = {static_cast<index_t>(args.input_right_pads_[0]),
213  static_cast<index_t>(args.input_right_pads_[1]),
214  static_cast<index_t>(args.input_right_pads_[2])};
215 
216  k_batch = args.k_batch;
217 
218  in_ptr = args.in_ptr;
219  wei_ptr = args.wei_ptr;
220  for(index_t d = 0; d < NumDTensor; d++)
221  {
222  ds_ptr[d] = args.ds_ptr[d];
223  }
224  out_ptr = args.out_ptr;
225 
226  ConvToGemmTransformer conv_to_gemm_transformer{in_g_n_c_wis_lengths,
233 
234  // tuple
235  auto grid_descs =
236  conv_to_gemm_transformer.template MakeABCGridDescriptor_A_K0_M_K1_B_K0_N_K1_C_M_N<
237  GroupedConvTraitsType::NDimSpatial>();
238 
239  a_grid_desc_m_k = grid_descs.at(number<0>{});
240  b_grid_desc_n_k = grid_descs.at(number<1>{});
241  c_grid_desc_m_n = grid_descs.at(number<2>{});
242 
243  group_stride_a = args.K_; // A: Out NDHWGK
244  group_stride_b = args.C_; // B: In NDHWGC
245  group_stride_c = args.K_ * args.C_ * // C: wEI GKZYXC
246  std::accumulate(args.filter_spatial_lengths_.begin(),
247  args.filter_spatial_lengths_.end(),
248  1,
249  std::multiplies<index_t>());
250 
251  GemmM = a_grid_desc_m_k.get_length(number<0>{});
252  GemmN = b_grid_desc_n_k.get_length(number<0>{});
253  GemmK = a_grid_desc_m_k.get_length(number<1>{});
254  GemmBatch = args.G_;
255  }
256 
257  using ABCGridDescs =
259  .template MakeABCGridDescriptor_A_K0_M_K1_B_K0_N_K1_C_M_N())>;
260 
264 
265  static constexpr index_t NonSpatialDims = 3;
269 
274 
280 
281  const void* out_ptr;
282  const void* in_ptr;
283  std::array<const void*, NumDTensor> ds_ptr;
284  void* wei_ptr;
285 
289 
293 };
294 
333 template <typename GroupedConvTraitsType,
334  typename TilePartitioner_,
335  typename GemmPipeline_,
336  typename EpiloguePipeline_>
338 {
339  static constexpr index_t NDimSpatial = GroupedConvTraitsType::NDimSpatial_;
341  GroupedConvTraitsType::ConvSpecialization;
348 
353 
355  static constexpr index_t NumDTensor = GroupedConvTraitsType::NumDTensor;
356 
357  static constexpr index_t KernelBlockSize = GemmPipeline::BlockSize;
358 
362  // Below type is actually accumulation data type - the output of block GEMM.
364 
367 
368  // TODO: Enable this
369  static constexpr bool IsSplitKSupported = true;
370 
371  static constexpr auto I0 = number<0>();
372  static constexpr auto I1 = number<1>();
373  static constexpr auto I2 = number<2>();
374  static constexpr auto I3 = number<3>();
375 
376  static_assert(GemmPipeline::kPadM && GemmPipeline::kPadN && GemmPipeline::kPadK,
377  "Not supported!");
378  static_assert(std::is_same_v<GemmALayout, tensor_layout::gemm::RowMajor>, "Not supported!");
379  static_assert(std::is_same_v<GemmBLayout, tensor_layout::gemm::ColumnMajor>, "Not supported!");
380  static_assert(std::is_same_v<GemmCLayout, tensor_layout::gemm::RowMajor>, "Not supported!");
381 
382  [[nodiscard]] CK_TILE_HOST static const std::string GetName()
383  {
384  // clang-format off
385  return concat('_', "grouped_convolution_backward_weight", gemm_prec_str<InDataType, WeiDataType>, GemmPipeline::GetName());
386  // clang-format on
387  }
388 
389  CK_TILE_HOST static constexpr auto
391  {
392  return dim3(
393  TilePartitioner::GridSize(kargs.GemmM, kargs.GemmN), kargs.GemmBatch, kargs.k_batch);
394  }
395 
396  CK_TILE_HOST static constexpr auto BlockSize() { return dim3(KernelBlockSize); }
397 
400  {
402  }
403 
405  {
406  return max(GemmPipeline::GetSmemSize(), EpiloguePipeline::GetSmemSize());
407  }
408 
410  {
412  const std::size_t k_id = blockIdx.z)
413  {
414  constexpr auto K1 = TilePartitioner::BlockGemmShape::WarpTile::at(number<2>{});
415  const index_t K_t = __builtin_amdgcn_readfirstlane(kargs.k_batch * K1);
416  const index_t KRead =
417  __builtin_amdgcn_readfirstlane((kargs.GemmK + K_t - 1) / K_t * K1);
418 
419  a_k_split_offset = __builtin_amdgcn_readfirstlane(k_id * KRead);
420  b_k_split_offset = __builtin_amdgcn_readfirstlane(k_id * KRead);
421 
422  if(k_id < static_cast<uint32_t>(kargs.k_batch - 1))
423  {
424  splitted_k = __builtin_amdgcn_readfirstlane(KRead);
425  }
426  else
427  {
428  splitted_k =
429  __builtin_amdgcn_readfirstlane(kargs.GemmK - KRead * (kargs.k_batch - 1));
430  }
431  }
432 
436  };
437 
439  const stream_config& s)
440  {
441  return [&]() {
442  if(kargs.k_batch > 1)
443  hipGetErrorString(hipMemsetAsync(kargs.wei_ptr,
444  0,
445  kargs.GemmBatch * kargs.GemmM * kargs.GemmN *
446  sizeof(WeiDataType),
447  s.stream_id_));
448  };
449  }
450 
451  CK_TILE_HOST static bool
453  {
454  if constexpr((EpiloguePipeline::GetVectorSizeC() % 2 != 0 &&
457  {
458  if(kargs.k_batch != 1)
459  {
460  if(ck_tile::EnvIsEnabled(CK_TILE_ENV(CK_TILE_LOGGING)))
461  {
462  CK_TILE_ERROR("Conditions not met for Kbatch >1 !");
463  }
464  return false;
465  }
466  }
467 
468  const index_t ConvK = kargs.wei_g_k_c_xs_lengths[number<1>{}];
469  const index_t ConvC = kargs.wei_g_k_c_xs_lengths[number<2>{}];
470 
471  // check ConvSpecialization
473  {
474  // check if it's 1x1, stride=1 conv
475  for(index_t i = 0; i < NDimSpatial; ++i)
476  {
477  const index_t SpatialDim = kargs.wei_g_k_c_xs_lengths[i + 3];
478  const index_t ConvStride = kargs.conv_filter_strides[i];
479  const index_t LeftPad = kargs.input_left_pads[i];
480  const index_t RightPad = kargs.input_right_pads[i];
481 
482  if(!(SpatialDim == 1 && ConvStride == 1 && LeftPad == 0 && RightPad == 0))
483  {
484  return false;
485  }
486  }
487  }
489  {
490  // check if it's 1x1 conv
491  for(index_t i = 0; i < NDimSpatial; ++i)
492  {
493  const index_t SpatialDim = kargs.wei_g_k_c_xs_lengths[i + 3];
494  const index_t LeftPad = kargs.input_left_pads[i];
495  const index_t RightPad = kargs.input_right_pads[i];
496 
497  if(!(SpatialDim == 1 && LeftPad == 0 && RightPad == 0))
498  {
499  return false;
500  }
501  }
502  }
504  {
505  if(ConvC != 1)
506  {
507  return false;
508  }
509  for(index_t i = 0; i < NDimSpatial; ++i)
510  {
511  const index_t filter_spatial_dim = kargs.wei_g_k_c_xs_lengths[i + I3];
512 
513  if(filter_spatial_dim != I3)
514  {
515  return false;
516  }
517  }
518  }
519 
520  namespace ctc = tensor_layout::convolution;
521 
522  if constexpr(std::is_same_v<InLayout, ctc::NWGC> || std::is_same_v<InLayout, ctc::NHWGC> ||
523  std::is_same_v<InLayout, ctc::NDHWGC>)
524  {
525  // Check access per C
526  if(ConvC % GemmPipeline::GetVectorSizeB() != 0)
527  {
528  CK_TILE_ERROR("Conv C is not a multiple of vector load size for input image!");
529  return false;
530  }
531  }
532  else
533  {
534  CK_TILE_ERROR("Not supported input layout!");
535  return false;
536  }
537 
538  // check vector access of B
539  // FIXME: layout
540  if constexpr(std::is_same_v<WeiLayout, ctc::GKXC> ||
541  std::is_same_v<WeiLayout, ctc::GKYXC> ||
542  std::is_same_v<WeiLayout, ctc::GKZYXC>)
543  {
544  if(ConvC % EpiloguePipeline::GetVectorSizeC() != 0)
545  {
546  CK_TILE_ERROR("Conv C is not a multiple of vector load size for weight!");
547  return false;
548  }
549  }
550  else
551  {
552  CK_TILE_ERROR("Not supported weight layout!");
553  return false;
554  }
555 
556  // check vector access of E
557  if constexpr(std::is_same_v<OutLayout, ctc::NWGK> ||
558  std::is_same_v<OutLayout, ctc::NHWGK> ||
559  std::is_same_v<OutLayout, ctc::NDHWGK>)
560  {
561  if(ConvK % GemmPipeline::GetVectorSizeA() != 0)
562  {
563  CK_TILE_ERROR("Conv K is not a multiple of vector store size for output image!");
564  return false;
565  }
566  }
567  else
568  {
569  CK_TILE_ERROR("Not supported output layout!");
570  return false;
571  }
572 
573  return true;
574  }
575 
576  template <memory_operation_enum DstInMemOp = memory_operation_enum::set>
577  CK_TILE_DEVICE static auto
579  const InDataType* b_ptr,
580  const std::array<const void*, NumDTensor>& ds_ptr,
581  WeiDataType* c_ptr,
583  {
584  static_assert(!TilePartitioner::BlockGemmShape::PermuteA, "Not implemented!");
585  static_assert(!TilePartitioner::BlockGemmShape::PermuteB, "Not implemented!");
586  const auto& a_tensor_view = [&]() {
587  return make_tensor_view<address_space_enum::global>(a_ptr,
588  kargs.a_grid_desc_m_k); // A: out
589  }();
590 
591  const auto& b_tensor_view = [&]() {
592  return make_tensor_view<address_space_enum::global>(b_ptr,
593  kargs.b_grid_desc_n_k); // B: in
594  }();
595 
596  const auto& c_tensor_view = [&]() {
597  return make_naive_tensor_view<address_space_enum::global, DstInMemOp>(
598  c_ptr,
599  make_tuple(kargs.GemmM, kargs.GemmN),
600  make_tuple(kargs.GemmN, 1),
601  number<EpiloguePipeline::GetVectorSizeC()>{},
602  number<1>{});
603  }();
604 
605  const auto& ds_tensor_view = generate_tuple(
606  [&](auto i) {
607  static_assert(std::is_same_v<std::tuple_element_t<i, DsLayout>, OutLayout>,
608  "Not supported!");
609  static_assert(std::is_same_v<GemmCLayout, tensor_layout::gemm::RowMajor>,
610  "Not supported!");
611  static_assert(std::is_same_v<std::tuple_element_t<i, DsDataType>, OutDataType>,
612  "Not supported!");
613 
614  return make_tensor_view<address_space_enum::global>(
615  static_cast<OutDataType*>(ds_ptr[i]), kargs.c_grid_desc_m_n);
616  },
618 
619  return make_tuple(a_tensor_view, b_tensor_view, ds_tensor_view, c_tensor_view);
620  }
621 
622  template <typename TensorView>
623  CK_TILE_DEVICE static auto MakeGemmPadViews(const TensorView& views, const index_t k_batch)
624  {
625  const auto& a_pad_view = [&]() {
626  const auto& a_tensor_view = views.at(I0);
627  return pad_tensor_view(a_tensor_view,
631  }();
632 
633  const auto& b_pad_view = [&]() {
634  const auto& b_tensor_view = views.at(I1);
635  return pad_tensor_view(b_tensor_view,
639  }();
640 
641  const auto& ds_tensor_view = views.at(I2);
642  const auto& ds_pad_view = generate_tuple(
643  [&](auto i) {
644  return pad_tensor_view(ds_tensor_view[i],
648  },
650 
651  const auto& c_pad_view = [&]() {
652  const auto& c_tensor_view = views.at(I3);
653  return pad_tensor_view(c_tensor_view,
657  }();
658 
659  return make_tuple(a_pad_view, b_pad_view, ds_pad_view, c_pad_view);
660  }
661 
662  template <typename PadView>
663  CK_TILE_DEVICE static auto MakeGemmTileWindows(const PadView& views,
664  const index_t i_m,
665  const index_t i_n,
666  const index_t i_k)
667  {
668  const auto& a_pad_view = views.at(I0);
669  const auto& b_pad_view = views.at(I1);
670  const auto& ds_pad_view = views.at(I2);
671  const auto& c_pad_view = views.at(I3);
672 
673  const auto& a_block_window = [&]() {
674  return make_tile_window(a_pad_view,
677  {i_m, i_k});
678  }();
679 
680  const auto& b_block_window = [&]() {
681  return make_tile_window(b_pad_view,
684  {i_n, i_k});
685  }();
686 
687  const auto ds_block_window = generate_tuple(
688  [&](auto i) {
689  return make_tile_window(ds_pad_view[i],
692  {i_m, i_n});
693  },
695 
696  auto c_block_window = make_tile_window(
697  c_pad_view,
699  {i_m, i_n});
700 
701  return make_tuple(a_block_window, b_block_window, ds_block_window, c_block_window);
702  }
703 
716  CK_TILE_DEVICE static void RunGemm(const OutDataType* a_ptr,
717  const InDataType* b_ptr,
718  const std::array<const void*, NumDTensor>& ds_ptr,
719  WeiDataType* c_ptr,
720  void* smem_ptr_0,
722  const index_t num_loop,
723  const index_t block_idx_m,
724  const index_t block_idx_n,
725  const index_t block_idx_k)
726  {
727  // Create Gemm tensor views, pad views and tile windows
728  const auto& gemm_tensor_views_tuple =
729  MakeGemmTensorViews<EpiloguePipeline::MemoryOperation>(
730  a_ptr, b_ptr, ds_ptr, c_ptr, kargs);
731 
732  const auto& gemm_pad_views = MakeGemmPadViews(gemm_tensor_views_tuple, kargs.k_batch);
733  auto gemm_tile_windows =
734  MakeGemmTileWindows(gemm_pad_views, block_idx_m, block_idx_n, block_idx_k);
735 
736  // Run GEMM cooperatively by whole workgroup.
737  const auto& a_block_window = gemm_tile_windows.at(I0);
738  const auto& b_block_window = gemm_tile_windows.at(I1);
739  const auto& d_block_window = gemm_tile_windows.at(I2);
740 
741  const auto& c_block_tile = GemmPipeline{}.template operator()(
742  a_block_window, b_block_window, num_loop, smem_ptr_0);
743 
744  // Run Epilogue Pipeline
745  auto& c_block_window = gemm_tile_windows.at(I3);
746 
747  EpiloguePipeline{}.template operator()<decltype(c_block_window), decltype(c_block_tile)>(
748  c_block_window, c_block_tile, d_block_window, smem_ptr_0);
749  }
750 
766  CK_TILE_DEVICE static void RunGemm2LDS(const OutDataType* a_ptr,
767  const InDataType* b_ptr,
768  const std::array<const void*, NumDTensor>& ds_ptr,
769  WeiDataType* c_ptr,
770  void* __restrict__ smem_ptr_0,
771  void* __restrict__ smem_ptr_1,
773  const index_t num_loop,
774  const index_t block_idx_m,
775  const index_t block_idx_n,
776  const index_t block_idx_k)
777  {
778  // Create Gemm tensor views, pad views and tile windows
779  const auto& gemm_tensor_views_tuple =
780  MakeGemmTensorViews<EpiloguePipeline::MemoryOperation>(
781  a_ptr, b_ptr, ds_ptr, c_ptr, kargs);
782  const auto& gemm_pad_views = MakeGemmPadViews(gemm_tensor_views_tuple, kargs.k_batch);
783  auto gemm_tile_windows =
784  MakeGemmTileWindows(gemm_pad_views, block_idx_m, block_idx_n, block_idx_k);
785 
786  // Run GEMM cooperatively by whole workgroup.
787  const auto& a_block_window = gemm_tile_windows.at(I0);
788  const auto& b_block_window = gemm_tile_windows.at(I1);
789  const auto& d_block_window = gemm_tile_windows.at(I2);
790 
791  const auto& c_block_tile = GemmPipeline{}.template operator()(
792  a_block_window, b_block_window, num_loop, smem_ptr_0, smem_ptr_1);
793 
794  // Run Epilogue Pipeline
795  auto& c_block_window = gemm_tile_windows.at(I3);
796 
797  EpiloguePipeline{}.template operator()<decltype(c_block_window), decltype(c_block_tile)>(
798  c_block_window, c_block_tile, d_block_window, smem_ptr_0);
799  }
800 
802  {
803  const auto blockIdX = __builtin_amdgcn_readfirstlane(blockIdx.x);
804  const auto [iM, iN] =
805  TilePartitioner{kargs.GemmM, kargs.GemmN}.GetOutputTileIndex(blockIdX);
806  const index_t i_m = __builtin_amdgcn_readfirstlane(iM * TilePartitioner::MPerBlock);
807  const index_t i_n = __builtin_amdgcn_readfirstlane(iN * TilePartitioner::NPerBlock);
808 
809  const auto blockIdZ = __builtin_amdgcn_readfirstlane(blockIdx.z);
810  const index_t num_loop = __builtin_amdgcn_readfirstlane(
811  ck_tile::integer_divide_ceil(kargs.GemmK, kargs.k_batch * TilePartitioner::KPerBlock));
812  const index_t i_k =
813  __builtin_amdgcn_readfirstlane(blockIdZ * num_loop * TilePartitioner::KPerBlock);
814 
815  const auto blockIdY = __builtin_amdgcn_readfirstlane(blockIdx.y);
816  const auto group_offset_a = __builtin_amdgcn_readfirstlane(kargs.group_stride_a * blockIdY);
817  const auto group_offset_b = __builtin_amdgcn_readfirstlane(kargs.group_stride_b * blockIdY);
818  const auto group_offset_c = __builtin_amdgcn_readfirstlane(kargs.group_stride_c * blockIdY);
819 
820  // options
821  // conv_bwd_weight = Out * In = Weight
822  const OutDataType* a_ptr = static_cast<const OutDataType*>(kargs.out_ptr) + group_offset_a;
823  const InDataType* b_ptr = static_cast<const InDataType*>(kargs.in_ptr) + group_offset_b;
824  WeiDataType* c_ptr = static_cast<WeiDataType*>(kargs.wei_ptr) + group_offset_c;
825 
826  // allocate LDS
827  __shared__ char smem_ptr_0[GetSmemSize()];
828 
829  if constexpr(GemmPipeline::DoubleSmemBuffer == true)
830  {
831  __shared__ char smem_ptr_1[GetSmemSize()];
832  if constexpr(!(EpiloguePipeline::MemoryOperation == memory_operation_enum::atomic_add &&
833  EpiloguePipeline::GetVectorSizeC() % 2 != 0 &&
835  {
836  RunGemm2LDS(a_ptr,
837  b_ptr,
838  kargs.ds_ptr,
839  c_ptr,
840  smem_ptr_0,
841  smem_ptr_1,
842  kargs,
843  num_loop,
844  i_m,
845  i_n,
846  i_k);
847  }
848  }
849  else
850  {
851  if constexpr(!(EpiloguePipeline::MemoryOperation == memory_operation_enum::atomic_add &&
852  EpiloguePipeline::GetVectorSizeC() % 2 != 0 &&
854  {
855  RunGemm(
856  a_ptr, b_ptr, kargs.ds_ptr, c_ptr, smem_ptr_0, kargs, num_loop, i_m, i_n, i_k);
857  }
858  }
859  }
860 };
861 
862 } // namespace ck_tile
#define CK_TILE_DEVICE
Definition: config.hpp:40
#define CK_TILE_HOST
Definition: config.hpp:39
#define CK_TILE_HOST_DEVICE
Definition: config.hpp:41
Definition: cluster_descriptor.hpp:13
bool EnvIsEnabled(EnvVar)
Definition: env.hpp:156
constexpr CK_TILE_HOST_DEVICE auto integer_divide_ceil(X x, Y y)
Definition: math.hpp:149
void CK_TILE_ERROR(Args &&... args) noexcept
Definition: env.hpp:12
ConvolutionSpecialization
Definition: convolution_specialization.hpp:11
int32_t index_t
Definition: integer.hpp:9
constexpr CK_TILE_HOST_DEVICE auto pad_tensor_view(const TensorView &tensor_view, const TileLengths &tile_lengths, DoPads)
Definition: tensor_view.hpp:529
auto concat(const Ts &... xs) -> std::enable_if_t<!AllConvertibleToStringView< Ts... >, std::string >
Definition: concat.hpp:43
remove_cv_t< std::remove_reference_t< T > > remove_cvref_t
Definition: type_traits.hpp:21
int64_t long_index_t
Definition: integer.hpp:11
constexpr CK_TILE_DEVICE auto make_tile_window(null_tensor_view, const WindowLengths &window_lengths, const multi_index< WindowLengths::size()> &, Ts &&...)
Definition: null_tile_window.hpp:72
constexpr CK_TILE_HOST_DEVICE auto generate_tuple(F &&f, number< N >)
Definition: tuple.hpp:412
constexpr CK_TILE_HOST_DEVICE auto make_tuple(Xs &&... xs)
Definition: tuple.hpp:343
constexpr CK_TILE_HOST_DEVICE T max(T x)
Definition: math.hpp:161
constexpr bool is_same_v
Definition: type.hpp:283
__device__ X atomic_add(X *p_dst, const X &x)
The Grouped Convolution kernel device arguments.
Definition: grouped_convolution_backward_weight_kernel.hpp:22
long_index_t group_stride_b
Definition: grouped_convolution_backward_weight_kernel.hpp:291
static constexpr index_t NonSpatialDims
Definition: grouped_convolution_backward_weight_kernel.hpp:265
array< index_t, GroupedConvTraitsType::NDimSpatial > conv_filter_dilations
Definition: grouped_convolution_backward_weight_kernel.hpp:271
remove_cvref_t< decltype(ABCGridDescs{}[number< 1 >{}])> BGridDescNK
Definition: grouped_convolution_backward_weight_kernel.hpp:262
array< index_t, GroupedConvTraitsType::NDimSpatial > input_right_pads
Definition: grouped_convolution_backward_weight_kernel.hpp:273
const void * out_ptr
Definition: grouped_convolution_backward_weight_kernel.hpp:281
remove_cvref_t< decltype(ConvToGemmTransformer{} .template MakeABCGridDescriptor_A_K0_M_K1_B_K0_N_K1_C_M_N())> ABCGridDescs
Definition: grouped_convolution_backward_weight_kernel.hpp:259
CGridDescMN c_grid_desc_m_n
Definition: grouped_convolution_backward_weight_kernel.hpp:288
array< index_t, NonSpatialDims+GroupedConvTraitsType::NDimSpatial > wei_g_k_c_xs_lengths
Definition: grouped_convolution_backward_weight_kernel.hpp:267
array< index_t, NonSpatialDims+GroupedConvTraitsType::NDimSpatial > out_g_n_k_wos_lengths
Definition: grouped_convolution_backward_weight_kernel.hpp:268
index_t GemmM
Definition: grouped_convolution_backward_weight_kernel.hpp:276
const void * in_ptr
Definition: grouped_convolution_backward_weight_kernel.hpp:282
array< index_t, GroupedConvTraitsType::NDimSpatial > input_left_pads
Definition: grouped_convolution_backward_weight_kernel.hpp:272
void * wei_ptr
Definition: grouped_convolution_backward_weight_kernel.hpp:284
index_t k_batch
Definition: grouped_convolution_backward_weight_kernel.hpp:275
long_index_t group_stride_c
Definition: grouped_convolution_backward_weight_kernel.hpp:292
BGridDescNK b_grid_desc_n_k
Definition: grouped_convolution_backward_weight_kernel.hpp:287
index_t GemmBatch
Definition: grouped_convolution_backward_weight_kernel.hpp:279
remove_cvref_t< decltype(ABCGridDescs{}[number< 2 >{}])> CGridDescMN
Definition: grouped_convolution_backward_weight_kernel.hpp:263
CK_TILE_HOST GroupedConvBwdWeightKernelArgs(const GroupedConvBwdWeightHostArgs &args)
Definition: grouped_convolution_backward_weight_kernel.hpp:37
AGridDescMK a_grid_desc_m_k
Definition: grouped_convolution_backward_weight_kernel.hpp:286
array< index_t, NonSpatialDims+GroupedConvTraitsType::NDimSpatial > in_g_n_c_wis_lengths
Definition: grouped_convolution_backward_weight_kernel.hpp:266
std::array< const void *, NumDTensor > ds_ptr
Definition: grouped_convolution_backward_weight_kernel.hpp:283
array< index_t, GroupedConvTraitsType::NDimSpatial > conv_filter_strides
Definition: grouped_convolution_backward_weight_kernel.hpp:270
index_t GemmK
Definition: grouped_convolution_backward_weight_kernel.hpp:278
remove_cvref_t< decltype(ABCGridDescs{}[number< 0 >{}])> AGridDescMK
Definition: grouped_convolution_backward_weight_kernel.hpp:261
index_t GemmN
Definition: grouped_convolution_backward_weight_kernel.hpp:277
static constexpr index_t NumDTensor
Definition: grouped_convolution_backward_weight_kernel.hpp:27
long_index_t group_stride_a
Definition: grouped_convolution_backward_weight_kernel.hpp:290
The Grouped Conv kernel host arguments.
Definition: grouped_convolution_utils.hpp:19
index_t k_batch
Definition: grouped_convolution_utils.hpp:40
InPtr in_ptr
Definition: grouped_convolution_utils.hpp:36
WeiPtr wei_ptr
Definition: grouped_convolution_utils.hpp:37
OutPtr out_ptr
Definition: grouped_convolution_utils.hpp:39
const std::vector< const void * > ds_ptr
Definition: grouped_convolution_utils.hpp:38
Definition: grouped_convolution_backward_weight_kernel.hpp:410
index_t a_k_split_offset
Definition: grouped_convolution_backward_weight_kernel.hpp:433
index_t b_k_split_offset
Definition: grouped_convolution_backward_weight_kernel.hpp:434
index_t splitted_k
Definition: grouped_convolution_backward_weight_kernel.hpp:435
__device__ SplitKBatchOffset(const GroupedConvBwdWeightKernelArgsSpecialized &kargs, const std::size_t k_id=blockIdx.z)
Definition: grouped_convolution_backward_weight_kernel.hpp:411
The Grouped Convolution Forward kernel template.
Definition: grouped_convolution_backward_weight_kernel.hpp:338
static CK_TILE_DEVICE auto MakeGemmTileWindows(const PadView &views, const index_t i_m, const index_t i_n, const index_t i_k)
Definition: grouped_convolution_backward_weight_kernel.hpp:663
static constexpr CK_TILE_HOST auto BlockSize()
Definition: grouped_convolution_backward_weight_kernel.hpp:396
remove_cvref_t< typename GroupedConvTraitsType::InLayout > InLayout
Definition: grouped_convolution_backward_weight_kernel.hpp:349
static constexpr ConvolutionSpecialization ConvSpecialization
Definition: grouped_convolution_backward_weight_kernel.hpp:340
remove_cvref_t< typename GemmPipeline::BDataType > WeiDataType
Definition: grouped_convolution_backward_weight_kernel.hpp:360
static constexpr index_t KernelBlockSize
Definition: grouped_convolution_backward_weight_kernel.hpp:357
static constexpr auto I2
Definition: grouped_convolution_backward_weight_kernel.hpp:373
static constexpr auto I0
Definition: grouped_convolution_backward_weight_kernel.hpp:371
remove_cvref_t< typename GroupedConvTraitsType::OutLayout > OutLayout
Definition: grouped_convolution_backward_weight_kernel.hpp:351
static CK_TILE_DEVICE auto MakeGemmTensorViews(const OutDataType *a_ptr, const InDataType *b_ptr, const std::array< const void *, NumDTensor > &ds_ptr, WeiDataType *c_ptr, const GroupedConvBwdWeightKernelArgsSpecialized &kargs)
Definition: grouped_convolution_backward_weight_kernel.hpp:578
static CK_TILE_HOST const std::string GetName()
Definition: grouped_convolution_backward_weight_kernel.hpp:382
static CK_TILE_HOST bool IsSupportedArgument(const GroupedConvBwdWeightKernelArgsSpecialized &kargs)
Definition: grouped_convolution_backward_weight_kernel.hpp:452
GroupedConvBwdWeightKernelArgs< GroupedConvTraitsType > GroupedConvBwdWeightKernelArgsSpecialized
Definition: grouped_convolution_backward_weight_kernel.hpp:366
remove_cvref_t< typename GemmPipeline::CLayout > GemmCLayout
Definition: grouped_convolution_backward_weight_kernel.hpp:347
static CK_TILE_DEVICE auto MakeGemmPadViews(const TensorView &views, const index_t k_batch)
Definition: grouped_convolution_backward_weight_kernel.hpp:623
static constexpr CK_TILE_HOST GroupedConvBwdWeightKernelArgsSpecialized MakeKernelArgs(const GroupedConvBwdWeightHostArgs &hostArgs)
Definition: grouped_convolution_backward_weight_kernel.hpp:399
remove_cvref_t< typename GemmPipeline::BLayout > GemmBLayout
Definition: grouped_convolution_backward_weight_kernel.hpp:346
remove_cvref_t< TilePartitioner_ > TilePartitioner
Definition: grouped_convolution_backward_weight_kernel.hpp:342
static constexpr auto I1
Definition: grouped_convolution_backward_weight_kernel.hpp:372
static constexpr index_t NDimSpatial
Definition: grouped_convolution_backward_weight_kernel.hpp:339
static CK_TILE_DEVICE void RunGemm2LDS(const OutDataType *a_ptr, const InDataType *b_ptr, const std::array< const void *, NumDTensor > &ds_ptr, WeiDataType *c_ptr, void *__restrict__ smem_ptr_0, void *__restrict__ smem_ptr_1, const GroupedConvBwdWeightKernelArgsSpecialized &kargs, const index_t num_loop, const index_t block_idx_m, const index_t block_idx_n, const index_t block_idx_k)
Runs single GEMM problem cooperatively by whole workgroup.
Definition: grouped_convolution_backward_weight_kernel.hpp:766
static constexpr CK_TILE_HOST auto GridSize(const GroupedConvBwdWeightKernelArgsSpecialized &kargs)
Definition: grouped_convolution_backward_weight_kernel.hpp:390
static constexpr bool IsSplitKSupported
Definition: grouped_convolution_backward_weight_kernel.hpp:369
CK_TILE_DEVICE void operator()(GroupedConvBwdWeightKernelArgsSpecialized kargs) const
Definition: grouped_convolution_backward_weight_kernel.hpp:801
remove_cvref_t< EpiloguePipeline_ > EpiloguePipeline
Definition: grouped_convolution_backward_weight_kernel.hpp:344
static constexpr index_t NumDTensor
Definition: grouped_convolution_backward_weight_kernel.hpp:355
remove_cvref_t< typename EpiloguePipeline::DsLayout > GemmDsLayout
Definition: grouped_convolution_backward_weight_kernel.hpp:354
remove_cvref_t< typename GemmPipeline::ADataType > InDataType
Definition: grouped_convolution_backward_weight_kernel.hpp:359
static CK_TILE_HOST auto Preprocess(const GroupedConvBwdWeightKernelArgsSpecialized &kargs, const stream_config &s)
Definition: grouped_convolution_backward_weight_kernel.hpp:438
remove_cvref_t< typename GroupedConvTraitsType::DsLayout > DsLayout
Definition: grouped_convolution_backward_weight_kernel.hpp:352
remove_cvref_t< GemmPipeline_ > GemmPipeline
Definition: grouped_convolution_backward_weight_kernel.hpp:343
remove_cvref_t< typename EpiloguePipeline::DsDataType > DsDataType
Definition: grouped_convolution_backward_weight_kernel.hpp:361
remove_cvref_t< typename GroupedConvTraitsType::WeiLayout > WeiLayout
Definition: grouped_convolution_backward_weight_kernel.hpp:350
remove_cvref_t< typename GemmPipeline::ALayout > GemmALayout
Definition: grouped_convolution_backward_weight_kernel.hpp:345
remove_cvref_t< typename EpiloguePipeline::ODataType > OutDataType
Definition: grouped_convolution_backward_weight_kernel.hpp:363
static constexpr auto I3
Definition: grouped_convolution_backward_weight_kernel.hpp:374
static constexpr CK_TILE_HOST_DEVICE index_t GetSmemSize()
Definition: grouped_convolution_backward_weight_kernel.hpp:404
static CK_TILE_DEVICE void RunGemm(const OutDataType *a_ptr, const InDataType *b_ptr, const std::array< const void *, NumDTensor > &ds_ptr, WeiDataType *c_ptr, void *smem_ptr_0, const GroupedConvBwdWeightKernelArgsSpecialized &kargs, const index_t num_loop, const index_t block_idx_m, const index_t block_idx_n, const index_t block_idx_k)
Runs single GEMM problem cooperatively by whole workgroup.
Definition: grouped_convolution_backward_weight_kernel.hpp:716
Definition: transform_conv_bwd_weight_to_gemm.hpp:19
Definition: integral_constant.hpp:13
std::vector< ck_tile::long_index_t > input_spatial_lengths_
Definition: convolution_parameter.hpp:130
ck_tile::long_index_t K_
Definition: convolution_parameter.hpp:126
std::vector< ck_tile::long_index_t > output_spatial_lengths_
Definition: convolution_parameter.hpp:131
std::vector< ck_tile::long_index_t > input_right_pads_
Definition: convolution_parameter.hpp:137
ck_tile::long_index_t G_
Definition: convolution_parameter.hpp:124
std::vector< ck_tile::long_index_t > conv_filter_strides_
Definition: convolution_parameter.hpp:133
std::vector< ck_tile::long_index_t > filter_spatial_lengths_
Definition: convolution_parameter.hpp:129
ck_tile::long_index_t C_
Definition: convolution_parameter.hpp:127
ck_tile::long_index_t N_
Definition: convolution_parameter.hpp:125
std::vector< ck_tile::long_index_t > input_left_pads_
Definition: convolution_parameter.hpp:136
std::vector< ck_tile::long_index_t > conv_filter_dilations_
Definition: convolution_parameter.hpp:134
Definition: type_traits.hpp:115
Definition: sequence.hpp:52
Definition: stream_config.hpp:30
hipStream_t stream_id_
Definition: stream_config.hpp:31
#define CK_TILE_ENV(name)
Definition: env.hpp:145