38 template <
typename GridwiseGemm,
39 bool HasMainKBlockLoop,
44 #if CK_USE_LAUNCH_BOUNDS
50 #if(!defined(__HIP_DEVICE_COMPILE__) || defined(__gfx9__))
51 __shared__
char p_shared[GridwiseGemm::GetSharedMemoryNumberOfByte()];
53 auto splitk_batch_offset =
typename GridwiseGemm::SplitKBatchOffset(karg, blockIdx.z);
55 GridwiseGemm::template Run<HasMainKBlockLoop, CGlobalMemoryDataOperation, TailNum>(
56 karg.p_sorted_token_ids,
57 karg.p_sorted_expert_ids,
59 karg.p_a_grid + splitk_batch_offset.a_k_split_offset,
60 karg.p_a_scale_grid + splitk_batch_offset.a_k_split_offset,
61 karg.p_b_grid + splitk_batch_offset.b_k_split_offset,
62 karg.p_b_scale_grid + splitk_batch_offset.b_k_split_offset,
76 template <
typename GridwiseGemm,
77 bool HasMainKBlockLoop,
82 #if CK_USE_LAUNCH_BOUNDS
88 #if(!defined(__HIP_DEVICE_COMPILE__) || defined(__gfx9__))
89 __shared__
char p_shared[GridwiseGemm::GetSharedMemoryNumberOfByte()];
90 __shared__
char p_shared1[GridwiseGemm::GetSharedMemoryNumberOfByte()];
94 GridwiseGemm::template Run_2Lds<HasMainKBlockLoop, CGlobalMemoryDataOperation, TailNum>(
95 karg.p_sorted_token_ids,
96 karg.p_sorted_expert_ids,
116 template <
typename ALayout,
121 typename AScaleDataType,
123 typename BScaleDataType,
124 typename AccDataType,
125 typename CShuffleDataType,
128 typename AElementwiseOperation,
129 typename BElementwiseOperation,
130 typename CElementwiseOperation,
143 typename ABlockTransferThreadClusterLengths_AK0_M_AK1,
144 typename ABlockTransferThreadClusterArrangeOrder,
145 typename ABlockTransferSrcAccessOrder,
146 index_t ABlockTransferSrcVectorDim,
147 index_t ABlockTransferSrcScalarPerVector,
148 index_t ABlockTransferDstScalarPerVector_AK1,
149 bool AThreadTransferSrcResetCoordinateAfterRun,
151 typename BBlockTransferThreadClusterLengths_BK0_N_BK1,
152 typename BBlockTransferThreadClusterArrangeOrder,
153 typename BBlockTransferSrcAccessOrder,
154 index_t BBlockTransferSrcVectorDim,
155 index_t BBlockTransferSrcScalarPerVector,
156 index_t BBlockTransferDstScalarPerVector_BK1,
157 bool BThreadTransferSrcResetCoordinateAfterRun,
159 index_t CShuffleMXdlPerWavePerShuffle,
160 index_t CShuffleNXdlPerWavePerShuffle,
161 typename CShuffleBlockTransferClusterLengths_MBlock_MPerBlock_NBlock_NPerBlock,
162 typename CDEShuffleBlockTransferScalarPerVectors,
165 index_t ActivationOperation = 0,
166 bool NSwizzle =
false,
167 bool IsInputGemm =
true,
168 bool MulRoutedWeight =
true,
170 typename ComputeTypeA = ADataType,
171 typename ComputeTypeB = BDataType>
189 CDEShuffleBlockTransferScalarPerVectors{}[
I0];
225 return static_cast<const DDataType*
>(
nullptr);
238 const index_t gridx = NSwizzle ? nblock * mblock : nblock;
239 const index_t gridy = NSwizzle ? 1 : mblock;
261 auto K_t = K_Batch * KPerBlock;
262 return (K + K_t - 1) / K_t * (KPerBlock / AK1Value);
267 auto K_t = K_Batch * KPerBlock;
268 return (K + K_t - 1) / K_t * (KPerBlock / BK1Value);
273 auto K_t = K_Batch * KPerBlock;
274 return (K + K_t - 1) / K_t * KPerBlock;
280 auto K_t = K_Batch * KReadVec;
281 return (K + K_t - 1) / K_t * KReadVec;
294 template <
index_t MNXdlPerWave,
298 typename TileDesc_K0_MN_K1>
316 IndexType M, IndexType MPad, IndexType K, IndexType KPad, IndexType StrideA, IndexType AK0)
318 const auto a_grid_desc_mraw_kraw = [&]() {
319 if constexpr(is_same_v<tensor_layout::gemm::RowMajor, ALayout>)
323 else if constexpr(is_same_v<tensor_layout::gemm::ColumnMajor, ALayout>)
331 if constexpr(GemmSpec == GemmSpecialization::MKPadding ||
332 GemmSpec == GemmSpecialization::MNKPadding)
335 const auto a_grid_desc_m_k =
349 return a_grid_desc_ak0_m_ak1;
351 else if constexpr(GemmSpec == GemmSpecialization::MPadding ||
352 GemmSpec == GemmSpecialization::MNPadding)
356 a_grid_desc_mraw_kraw,
362 return a_grid_desc_ak0_m_ak1;
364 else if constexpr(GemmSpec == GemmSpecialization::KPadding ||
365 GemmSpec == GemmSpecialization::NKPadding)
369 a_grid_desc_mraw_kraw,
381 return a_grid_desc_ak0_m_ak1;
387 a_grid_desc_mraw_kraw,
393 return a_grid_desc_ak0_m_ak1;
400 const auto b_grid_desc_nraw_kraw = [&]() {
414 GemmSpec != GemmSpecialization::Default),
415 "pk_i4_t does not support padding");
417 GemmSpec != GemmSpecialization::Default),
418 "f4x2_pk_t does not support padding");
420 if constexpr(GemmSpec == GemmSpecialization::NKPadding ||
421 GemmSpec == GemmSpecialization::MNKPadding)
424 const auto b_grid_desc_n_k =
438 return b_grid_desc_bk0_n_bk1;
440 else if constexpr(GemmSpec == GemmSpecialization::NPadding ||
441 GemmSpec == GemmSpecialization::MNPadding)
445 b_grid_desc_nraw_kraw,
451 return b_grid_desc_bk0_n_bk1;
453 else if constexpr(GemmSpec == GemmSpecialization::KPadding ||
454 GemmSpec == GemmSpecialization::MKPadding)
458 b_grid_desc_nraw_kraw,
470 return b_grid_desc_bk0_n_bk1;
476 b_grid_desc_nraw_kraw,
482 return b_grid_desc_bk0_n_bk1;
486 template <
typename ABlockDesc_AK0_M_AK1>
487 __host__ __device__
static constexpr
auto
490 constexpr
index_t MWaves = MPerBlock / (MXdlPerWave * MPerXdl);
492 return MakeGemmMmaTileDescriptor<MXdlPerWave, MWaves, MXdlPack, MPerXdl>(
493 ABlockDesc_AK0_M_AK1{});
496 template <
typename BBlockDesc_BK0_N_BK1>
497 __host__ __device__
static constexpr
auto
500 constexpr
index_t NWaves = NPerBlock / (NXdlPerWave * NPerXdl);
502 return MakeGemmMmaTileDescriptor<NXdlPerWave, NWaves, NXdlPack, NPerXdl>(
503 BBlockDesc_BK0_N_BK1{});
506 template <
typename ELayout>
508 IndexType M, IndexType MPad, IndexType N, IndexType NPad, IndexType StrideC)
510 const auto c_grid_desc_mraw_nraw = [&]() {
529 template <
typename DLayout>
530 __host__ __device__
static auto
533 const auto c_grid_desc_mraw_nraw = [&]() {
558 return MakeDGridDescriptor_M_N<DLayout>(M, MPad, N, NPad, StrideDs[i]);
563 template <
typename DsGr
idDesc>
565 const DsGridDesc& ds_grid_desc_m_n,
index_t MBlock,
index_t NBlock)
570 ds_grid_desc_m_n[i], MBlock, NBlock);
586 std::array<index_t, NumDTensor> StrideDs_,
614 std::cout <<
"problem {"
616 <<
"TopK:" <<
TopK <<
", "
627 <<
"KRead:" <<
KRead <<
", "
629 <<
"AK0:" <<
AK0 <<
", "
630 <<
"BK0:" <<
BK0 <<
", "
631 <<
"MBlock: " <<
MBlock <<
", "
632 <<
"NBlock: " <<
NBlock <<
"}" << std::endl;
661 const index_t* p_sorted_expert_ids_,
662 const index_t* p_max_token_id_,
663 const ADataType* p_a_grid_,
664 const AScaleDataType* p_a_scale_grid_,
665 const BDataType* p_b_grid_,
666 const BScaleDataType* p_b_scale_grid_,
667 std::array<const void*, NumDTensor> p_ds_grid_,
668 CDataType* p_c_grid_,
678 std::array<index_t, NumDTensor> StrideDs_,
681 AElementwiseOperation a_element_op_,
682 BElementwiseOperation b_element_op_,
683 CElementwiseOperation c_element_op_)
715 p_ds_grid(i) =
static_cast<const DDataType_*
>(p_ds_grid_[i]);
738 if constexpr(is_same_v<tensor_layout::gemm::RowMajor, ALayout>)
742 else if constexpr(is_same_v<tensor_layout::gemm::ColumnMajor, ALayout>)
747 if constexpr(is_same_v<tensor_layout::gemm::RowMajor, BLayout>)
751 else if constexpr(is_same_v<tensor_layout::gemm::ColumnMajor, BLayout>)
758 if constexpr(is_same_v<tensor_layout::gemm::RowMajor, ALayout>)
762 else if constexpr(is_same_v<tensor_layout::gemm::ColumnMajor, ALayout>)
769 if constexpr(is_same_v<tensor_layout::gemm::RowMajor, BLayout>)
774 else if constexpr(is_same_v<tensor_layout::gemm::ColumnMajor, BLayout>)
779 if(k_id < karg.
KBatch - 1)
808 constexpr
auto a_lds_block_desc =
820 return a_lds_block_desc_permuted;
827 constexpr
auto WaveSize = 64;
828 constexpr
auto M0 = ABlockTransferThreadClusterLengths_AK0_M_AK1{}.At(
I1);
829 constexpr
auto M1 = MPerBlock / M0;
831 constexpr
auto KThreadWrite = ABlockTransferThreadClusterLengths_AK0_M_AK1{}.At(
I0);
832 constexpr
auto K0PerThreadWrite =
AK0Number / KThreadWrite;
833 constexpr
auto KThreadRead = WaveSize / MPerXdl;
834 constexpr
auto K0PerThreadRead =
AK0Number / KThreadRead;
836 constexpr
auto kfold = (
AK1Number * M0 *
sizeof(ADataType) > 128)
838 : 128 / (
AK1Number * M0 *
sizeof(ADataType));
839 constexpr
auto KThreadReadPerm =
840 (kfold * K0PerThreadWrite / K0PerThreadRead) > 1
841 ? KThreadRead / (kfold * K0PerThreadWrite / K0PerThreadRead)
845 constexpr
auto mpair = (
AK1Number * MPerXdl *
sizeof(ADataType) > 128)
847 : ((128 / (
AK1Number * MPerXdl *
sizeof(ADataType))) > M0
849 : 128 / (
AK1Number * MPerXdl *
sizeof(ADataType)));
855 Number<kfold * M0 / mpair>{},
874 a_lds_block_desc_permuted,
896 a_lds_block_desc_unmerged,
899 Number<KThreadWrite / kfold / KThreadReadPerm>{},
908 return a_lds_block_desc_ak0_m_ak1;
924 constexpr
auto b_lds_block_desc =
936 return b_lds_block_desc_permuted;
940 constexpr
auto WaveSize = 64;
941 constexpr
auto N0 = BBlockTransferThreadClusterLengths_BK0_N_BK1{}.At(
I1);
942 constexpr
auto N1 = NPerBlock / N0;
944 constexpr
auto KThreadWrite = BBlockTransferThreadClusterLengths_BK0_N_BK1{}.At(
I0);
945 constexpr
auto K0PerThreadWrite =
BK0Number / KThreadWrite;
946 constexpr
auto KThreadRead = WaveSize / NPerXdl;
947 constexpr
auto K0PerThreadRead =
BK0Number / KThreadRead;
949 constexpr
auto kfold = (
BK1Number * N0 *
sizeof(BDataType) > 128)
951 : 128 / (
BK1Number * N0 *
sizeof(BDataType));
952 constexpr
auto KThreadReadPerm =
953 (kfold * K0PerThreadWrite / K0PerThreadRead) > 1
954 ? KThreadRead / (kfold * K0PerThreadWrite / K0PerThreadRead)
958 constexpr
auto npair = (
BK1Number * NPerXdl *
sizeof(BDataType) > 128)
960 : ((128 / (
BK1Number * NPerXdl *
sizeof(BDataType))) > N0
962 : 128 / (
BK1Number * NPerXdl *
sizeof(BDataType)));
968 Number<kfold * N0 / npair>{},
987 b_lds_block_desc_permuted,
1009 b_lds_block_desc_unmerged,
1012 Number<KThreadWrite / kfold / KThreadReadPerm>{},
1021 return b_lds_block_desc_bk0_n_bk1;
1027 constexpr
index_t MWave = MPerBlock / (MXdlPerWave * MPerXdl);
1028 constexpr
index_t NWave = NPerBlock / (NXdlPerWave * NPerXdl);
1030 constexpr
auto c_shuffle_block_desc_mblock_mperblock_nblock_nperblock =
1037 return c_shuffle_block_desc_mblock_mperblock_nblock_nperblock;
1058 ABlockTransferSrcScalarPerVector,
1059 BBlockTransferSrcScalarPerVector,
1080 a_block_desc_ak0_m_ak1.GetElementSpaceSize(), max_lds_align);
1083 b_block_desc_bk0_n_bk1.GetElementSpaceSize(), max_lds_align);
1086 constexpr
auto c_shuffle_block_desc_mblock_mperblock_nblock_nperblock =
1089 constexpr
auto c_block_size =
1090 c_shuffle_block_desc_mblock_mperblock_nblock_nperblock.GetElementSpaceSize();
1092 if constexpr(IsInputGemm)
1094 return math::max((a_block_space_size_aligned *
sizeof(ADataType) +
1095 b_block_space_size_aligned *
sizeof(BDataType)) *
1097 c_block_size *
sizeof(CShuffleDataType));
1101 return math::max((a_block_space_size_aligned *
sizeof(ADataType) +
1102 b_block_space_size_aligned *
sizeof(BDataType)),
1103 c_block_size *
sizeof(CShuffleDataType));
1110 static_assert((MPerBlock % (MPerXdl * MXdlPerWave) == 0) &&
1111 (NPerBlock % (NXdlPerWave * NPerXdl)) == 0,
1112 "Invalid tuning param!");
1114 static_assert(KPerBlock % (ScaleBlockSize /
BPackedSize) == 0,
1115 "KPerBlock should be multiple of ScaleBlockSize");
1123 if(!(karg.
M % MPerBlock == 0))
1127 std::cout <<
"Arg M value is not a multiple of MPerBlock! M: " << karg.
M <<
" "
1128 << __FILE__ <<
":" << __LINE__ <<
", in function: " << __func__
1141 if(!(karg.
N % NPerBlock == 0))
1145 std::cout <<
"Arg N value is not a multiple of NPerBlock! N: " << karg.
N <<
" "
1146 << __FILE__ <<
":" << __LINE__ <<
", in function: " << __func__
1158 auto K_t = karg.
KBatch * KPerBlock;
1159 if(!(karg.
K % K_t == 0))
1163 std::cout <<
"Arg K value is not a multiple of K_Batch * K0PerBlock * K1! K: "
1164 << karg.
K <<
" " << __FILE__ <<
":" << __LINE__
1165 <<
", in function: " << __func__ << std::endl;
1173 auto K_t = karg.
KBatch * KReadVec;
1175 if((KReadPadSplited * (karg.
KBatch - 1)) >= karg.
K)
1183 if(karg.
K % ABlockTransferSrcScalarPerVector != 0)
1187 std::cout <<
"Arg K (" << karg.
K
1188 <<
") value is not a multiple of ABlockTransferSrcScalarPerVector ("
1189 << ABlockTransferSrcScalarPerVector <<
" )! " << __FILE__ <<
":"
1190 << __LINE__ <<
", in function: " << __func__ << std::endl;
1197 if(karg.
M % ABlockTransferSrcScalarPerVector != 0)
1201 std::cout <<
"Arg M (" << karg.
M
1202 <<
") value is not a multiple of ABlockTransferSrcScalarPerVector ("
1203 << ABlockTransferSrcScalarPerVector <<
" )! " << __FILE__ <<
":"
1204 << __LINE__ <<
", in function: " << __func__ << std::endl;
1212 if(karg.
N % BBlockTransferSrcScalarPerVector != 0)
1216 std::cout <<
"Arg N (" << karg.
N
1217 <<
") value is not a multiple of BBlockTransferSrcScalarPerVector ("
1218 << BBlockTransferSrcScalarPerVector <<
" )! " << __FILE__ <<
":"
1219 << __LINE__ <<
", in function: " << __func__ << std::endl;
1226 if(karg.
K % BBlockTransferSrcScalarPerVector != 0)
1230 std::cout <<
"Arg K (" << karg.
K
1231 <<
") value is not a multiple of BBlockTransferSrcScalarPerVector ("
1232 << BBlockTransferSrcScalarPerVector <<
" )! " << __FILE__ <<
":"
1233 << __LINE__ <<
", in function: " << __func__ << std::endl;
1245 std::cout <<
"Arg N (" << karg.
N
1246 <<
") value is not a multiple of "
1247 "CShuffleBlockTransferScalarPerVector_NPerBlock ("
1249 << __FILE__ <<
":" << __LINE__ <<
", in function: " << __func__
1261 std::cout <<
"Arg M (" << karg.
M
1262 <<
") value is not a multiple of "
1263 "CShuffleBlockTransferScalarPerVector_NPerBlock ("
1265 << __FILE__ <<
":" << __LINE__ <<
", in function: " << __func__
1275 const auto num_k_loop = karg.
AK0 / (KPerBlock / AK1Value);
1277 if(num_k_loop <= BlockwiseGemmPipe::PrefetchStages)
1288 const index_t num_loop = K / KPerBlock;
1290 return BlockwiseGemmPipe::BlockHasHotloop(num_loop);
1295 const index_t num_loop = K / KPerBlock;
1297 return BlockwiseGemmPipe::BlockLoopTailNum(num_loop);
1300 template <
typename CGr
idDesc>
1302 const CGridDesc& c_grid_desc_m_n,
index_t MBlock,
index_t NBlock)
1311 return c_grid_desc_mblock_mperblock_nblock_nperblock;
1323 "A scale pack data type too large!");
1325 "B scale pack data type too large!");
1327 template <
bool HasMainKBlockLoop,
1331 const index_t* p_sorted_expert_ids,
1332 const index_t* p_max_token_id,
1333 const ADataType* p_a_grid,
1334 const AScaleDataType* p_a_scale_grid,
1335 const BDataType* p_b_grid,
1336 const BScaleDataType* p_b_scale_grid,
1338 CDataType* p_c_grid,
1341 AElementwiseOperation a_element_op,
1342 BElementwiseOperation b_element_op,
1343 CElementwiseOperation c_element_op)
1355 const auto c_grid_desc_m_n = MakeCGridDescriptor_M_N<CLayout>(
1374 const auto c_grid_desc_mblock_mperblock_nblock_nperblock =
1378 const index_t max_token_id = __builtin_amdgcn_readfirstlane(p_max_token_id[0]);
1379 const index_t expert_block_id = NSwizzle ? blockIdx.x / problem.
NBlock : blockIdx.y;
1380 if(expert_block_id * MPerBlock >= max_token_id)
1383 __builtin_amdgcn_readfirstlane(p_sorted_expert_ids[expert_block_id]);
1385 const auto block_mn = [&]() -> std::pair<int, int> {
1386 if constexpr(NSwizzle)
1388 const index_t ecnt_prefix = p_max_token_id[1 + expert_id];
1390 const index_t ecnt = p_max_token_id[2 + expert_id] - ecnt_prefix;
1391 const index_t expert_swizzle =
1392 ecnt > 0 ? ecnt : 1;
1393 const index_t bid_new = blockIdx.x - prefix_block;
1394 const index_t nid = __builtin_amdgcn_readfirstlane(
1395 bid_new % 8 + bid_new / (8 * expert_swizzle) * 8);
1397 __builtin_amdgcn_readfirstlane(ecnt_prefix + bid_new / 8 % expert_swizzle);
1402 return {blockIdx.x, blockIdx.y};
1406 const index_t block_n_id = block_mn.first;
1407 const index_t block_m_id = block_mn.second;
1409 __builtin_amdgcn_readfirstlane(p_sorted_token_ids[block_m_id * MPerBlock] & 0xffffff);
1412 constexpr
auto AMThreads = ABlockTransferThreadClusterLengths_AK0_M_AK1{}.At(
I1);
1413 constexpr
auto AK0Threads = ABlockTransferThreadClusterLengths_AK0_M_AK1{}.At(
I0);
1414 constexpr
auto AK1Threads = ABlockTransferThreadClusterLengths_AK0_M_AK1{}.At(
I2);
1415 constexpr
auto AKThreads = AK0Threads * AK1Threads;
1416 constexpr
auto AMRepeats = MPerBlock / AMThreads;
1417 const index_t token_pos = block_m_id * MPerBlock + threadIdx.x / AKThreads * AMRepeats;
1419 if(token_pos >= max_token_id || token0 >= problem.
NumTokens)
1423 const index_t fused_token = p_sorted_token_ids[token_pos + m0];
1424 index_t token_offset = fused_token & 0xffffff;
1425 if constexpr(!IsInputGemm)
1427 token_offset = token_offset * problem.
TopK + (fused_token >> 24);
1429 gather_offsets(m0) =
static_cast<IndexType
>(token_offset) * problem.
K;
1433 __builtin_amdgcn_readfirstlane(problem.
N * problem.
K * (IsInputGemm ? 2 : 1));
1434 const index_t expert_scale_stride = __builtin_amdgcn_readfirstlane(
1435 problem.
N * (IsInputGemm ? 2 : 1) *
1439 const index_t n_block_data_idx_on_grid =
1440 __builtin_amdgcn_readfirstlane(block_n_id * NPerBlock);
1443 const auto a_grid_buf = make_dynamic_buffer<AddressSpaceEnum::Global>(
1444 p_a_grid, a_grid_desc_ak0_m_ak1.GetElementSpaceSize());
1445 const auto b_grid_buf = make_dynamic_buffer<AddressSpaceEnum::Global>(
1446 p_b_grid + expert_id * expert_stride, b_grid_desc_bk0_n_bk1.GetElementSpaceSize());
1449 const auto a_scale_grid_buf = make_dynamic_buffer<AddressSpaceEnum::Global>(
1450 p_a_scale_grid, a_scale_grid_desc_am_ak.GetElementSpaceSize());
1451 const auto b_scale_grid_buf = make_dynamic_buffer<AddressSpaceEnum::Global>(
1452 p_b_scale_grid + (expert_id * expert_scale_stride) /
sizeof(BScaleDataType),
1453 b_scale_grid_desc_bn_ak.GetElementSpaceSize());
1467 AElementwiseOperation,
1471 ABlockTransferThreadClusterLengths_AK0_M_AK1,
1472 ABlockTransferThreadClusterArrangeOrder,
1475 decltype(a_grid_desc_ak0_m_ak1),
1476 decltype(a_block_desc_ak0_m_ak1),
1477 ABlockTransferSrcAccessOrder,
1479 ABlockTransferSrcVectorDim,
1481 ABlockTransferSrcScalarPerVector,
1482 ABlockTransferDstScalarPerVector_AK1,
1485 AThreadTransferSrcResetCoordinateAfterRun,
1489 BlockwiseGemmPipe::GlobalBufferNum>(a_grid_desc_ak0_m_ak1,
1492 a_block_desc_ak0_m_ak1,
1498 auto b_blockwise_copy =
1500 BElementwiseOperation,
1504 BBlockTransferThreadClusterLengths_BK0_N_BK1,
1505 BBlockTransferThreadClusterArrangeOrder,
1508 decltype(b_grid_desc_bk0_n_bk1),
1509 decltype(b_block_desc_bk0_n_bk1),
1510 BBlockTransferSrcAccessOrder,
1512 BBlockTransferSrcVectorDim,
1514 BBlockTransferSrcScalarPerVector,
1515 BBlockTransferDstScalarPerVector_BK1,
1518 BThreadTransferSrcResetCoordinateAfterRun,
1520 BlockwiseGemmPipe::GlobalBufferNum>(
1521 b_grid_desc_bk0_n_bk1,
1524 b_block_desc_bk0_n_bk1,
1530 a_block_desc_ak0_m_ak1.GetElementSpaceSize(), max_lds_align);
1533 auto a_block_buf = make_dynamic_buffer<AddressSpaceEnum::Lds>(
1534 static_cast<ADataType*
>(p_shared), a_block_desc_ak0_m_ak1.GetElementSpaceSize());
1536 auto b_block_buf = make_dynamic_buffer<AddressSpaceEnum::Lds>(
1537 reinterpret_cast<BDataType*
>(
static_cast<char*
>(p_shared) +
1538 a_block_space_size_aligned *
sizeof(ADataType)),
1539 b_block_desc_bk0_n_bk1.GetElementSpaceSize());
1545 static_assert(std::is_default_constructible_v<BlockwiseGemmPipe>);
1547 auto c_thread_buf = blockwise_gemm_pipeline.GetCThreadBuffer();
1548 decltype(c_thread_buf) c_thread_buf_up;
1552 c_thread_buf.num_of_v_,
1553 c_thread_buf.s_per_v,
1557 const index_t num_k_block_main_loop = __builtin_amdgcn_readfirstlane(
1558 (a_grid_desc_ak0_m_ak1.GetLength(
I0) * a_grid_desc_ak0_m_ak1.GetLength(
I2)) /
1562 const auto wave_idx = BlockwiseGemmPipe::GetWaveIdx();
1563 const auto waveId_m = wave_idx[
I0];
1564 const auto waveId_n = wave_idx[
I1];
1566 auto thread_offset_shuffled =
1569 auto a_thread_offset_m = waveId_m;
1574 decltype(a_scale_grid_desc_am_ak),
1575 decltype(BlockwiseGemmPipe::a_scale_thread_desc),
1581 true>(a_scale_grid_desc_am_ak,
1587 auto b_thread_offset_n = waveId_n;
1592 decltype(b_scale_grid_desc_bn_ak),
1593 decltype(BlockwiseGemmPipe::b_scale_thread_desc),
1599 true>(b_scale_grid_desc_bn_ak,
1604 if constexpr(IsInputGemm)
1607 b_block_desc_bk0_n_bk1.GetElementSpaceSize(), max_lds_align);
1608 auto b_block_buf_up = make_dynamic_buffer<AddressSpaceEnum::Lds>(
1609 reinterpret_cast<BDataType*
>(
static_cast<char*
>(p_shared) +
1610 a_block_space_size_aligned *
sizeof(ADataType) +
1611 b_block_space_size_aligned *
sizeof(BDataType)),
1612 b_block_desc_bk0_n_bk1.GetElementSpaceSize());
1614 const BDataType* p_b_grid_up = p_b_grid + expert_stride / 2;
1615 const auto b_grid_buf_up = make_dynamic_buffer<AddressSpaceEnum::Global>(
1616 p_b_grid_up + expert_id * expert_stride,
1617 b_grid_desc_bk0_n_bk1.GetElementSpaceSize());
1619 auto b_blockwise_copy_up =
1621 BElementwiseOperation,
1625 BBlockTransferThreadClusterLengths_BK0_N_BK1,
1626 BBlockTransferThreadClusterArrangeOrder,
1629 decltype(b_grid_desc_bk0_n_bk1),
1630 decltype(b_block_desc_bk0_n_bk1),
1631 BBlockTransferSrcAccessOrder,
1633 BBlockTransferSrcVectorDim,
1635 BBlockTransferSrcScalarPerVector,
1636 BBlockTransferDstScalarPerVector_BK1,
1639 BThreadTransferSrcResetCoordinateAfterRun,
1641 BlockwiseGemmPipe::GlobalBufferNum>(
1642 b_grid_desc_bk0_n_bk1,
1645 b_block_desc_bk0_n_bk1,
1649 const BScaleDataType* p_b_scale_grid_up =
1650 p_b_scale_grid + expert_scale_stride / 2 /
sizeof(BScaleDataType);
1651 const auto b_scale_grid_buf_up = make_dynamic_buffer<AddressSpaceEnum::Global>(
1652 p_b_scale_grid_up + expert_id * expert_scale_stride /
sizeof(BScaleDataType),
1653 b_scale_grid_desc_bn_ak.GetElementSpaceSize());
1658 decltype(b_scale_grid_desc_bn_ak),
1659 decltype(BlockwiseGemmPipe::b_scale_thread_desc),
1666 b_scale_grid_desc_bn_ak,
1671 blockwise_gemm_pipeline.template Run<HasMainKBlockLoop, TailNum>(
1673 a_grid_desc_ak0_m_ak1,
1674 a_block_desc_ak0_m_ak1,
1678 a_block_slice_copy_step,
1680 b_grid_desc_bk0_n_bk1,
1681 b_block_desc_bk0_n_bk1,
1683 b_blockwise_copy_up,
1688 b_block_slice_copy_step,
1693 a_scale_grid_desc_am_ak,
1694 a_scale_thread_copy,
1697 b_scale_grid_desc_bn_ak,
1698 b_scale_thread_copy,
1699 b_scale_thread_copy_up,
1701 b_scale_grid_buf_up,
1702 num_k_block_main_loop);
1706 blockwise_gemm_pipeline.template Run<HasMainKBlockLoop, TailNum>(
1707 a_grid_desc_ak0_m_ak1,
1708 a_block_desc_ak0_m_ak1,
1712 a_block_slice_copy_step,
1713 b_grid_desc_bk0_n_bk1,
1714 b_block_desc_bk0_n_bk1,
1718 b_block_slice_copy_step,
1720 a_scale_grid_desc_am_ak,
1721 a_scale_thread_copy,
1723 b_scale_grid_desc_bn_ak,
1724 b_scale_thread_copy,
1726 num_k_block_main_loop);
1731 static_assert(MXdlPerWave % CShuffleMXdlPerWavePerShuffle == 0 &&
1732 NXdlPerWave % CShuffleNXdlPerWavePerShuffle == 0,
1734 static_assert(CShuffleMXdlPerWavePerShuffle %
MXdlPack == 0 &&
1735 CShuffleNXdlPerWavePerShuffle %
NXdlPack == 0,
1738 constexpr
index_t MWave = MPerBlock / (MXdlPerWave * MPerXdl);
1739 constexpr
index_t NWave = NPerBlock / (NXdlPerWave * NPerXdl);
1742 constexpr
auto c_thread_desc_m0_n0_m1_n1_m2_m3_m4_n2 =
1743 blockwise_gemm_pipeline.GetCThreadDescriptor_M0_N0_M1_N1_M2_N2_M3_M4_M5_N3();
1747 constexpr
auto c_block_desc_m0_n0_m1_n1_m2_m3_m4_n2_tmp =
1748 blockwise_gemm_pipeline.GetCBlockDescriptor_M0_N0_M1_N1_M2_N2_M3_M4_M5_N3();
1750 constexpr
auto M0 = c_block_desc_m0_n0_m1_n1_m2_m3_m4_n2_tmp.GetLength(
I0);
1751 constexpr
auto N0 = c_block_desc_m0_n0_m1_n1_m2_m3_m4_n2_tmp.GetLength(
I1);
1752 constexpr
auto M1 = c_block_desc_m0_n0_m1_n1_m2_m3_m4_n2_tmp.GetLength(
I2);
1753 constexpr
auto N1 = c_block_desc_m0_n0_m1_n1_m2_m3_m4_n2_tmp.GetLength(
I3);
1754 constexpr
auto M2 = c_block_desc_m0_n0_m1_n1_m2_m3_m4_n2_tmp.GetLength(
I4);
1755 constexpr
auto N2 = c_block_desc_m0_n0_m1_n1_m2_m3_m4_n2_tmp.GetLength(
I5);
1756 constexpr
auto M3 = c_block_desc_m0_n0_m1_n1_m2_m3_m4_n2_tmp.GetLength(
I6);
1757 constexpr
auto M4 = c_block_desc_m0_n0_m1_n1_m2_m3_m4_n2_tmp.GetLength(
I7);
1758 constexpr
auto M5 = c_block_desc_m0_n0_m1_n1_m2_m3_m4_n2_tmp.GetLength(
I8);
1759 constexpr
auto N3 = c_block_desc_m0_n0_m1_n1_m2_m3_m4_n2_tmp.GetLength(
I9);
1762 static_assert(M0 * M1 * M2 * M3 * M4 * M5 == MPerBlock);
1763 static_assert(M5 == 4);
1773 const index_t m_pos = block_m_id * MPerBlock +
1774 m0 * M2 * M1 * M3 * M4 * M5 +
1775 m1 * M2 * M3 * M4 * M5 +
1776 imxdl * M3 * M4 * M5 + m3 * M4 * M5 + m4 * M5;
1778 if constexpr(MulRoutedWeight)
1781 *c_style_pointer_cast<const vector_type<float, M5>*>(
1782 p_ds_grid[
I2] + m_pos);
1786 blockwise_gemm_pipeline.GetCThreadDesc().CalculateOffset(
1787 make_tuple(m0, n0, imxdl, inxdl, m3 * M5 + m5));
1790 if constexpr(IsInputGemm)
1792 if constexpr(ActivationOperation ==
1795 float gate = c_thread_buf[cidx];
1796 float up = c_thread_buf_up[cidx];
1797 if constexpr(MulRoutedWeight)
1799 gate = gate * topk_weights.AsType<
float>()[m5];
1800 up = up * topk_weights.AsType<
float>()[m5];
1803 c_thread_buf_fp32(cidx) = gate * up;
1807 float gate = c_thread_buf[cidx];
1808 float up = c_thread_buf_up[cidx];
1809 if constexpr(MulRoutedWeight)
1811 gate = gate * topk_weights.AsType<
float>()[m5];
1812 up = up * topk_weights.AsType<
float>()[m5];
1815 c_thread_buf_fp32(cidx) = gate * up;
1830 c_thread_buf_fp32(cidx) = c_thread_buf[cidx];
1831 if constexpr(MulRoutedWeight)
1833 c_thread_buf_fp32(cidx) =
1834 topk_weights.AsType<
float>()[m5] *
1835 c_thread_buf_fp32[cidx];
1845 constexpr
auto c_shuffle_block_desc_mblock_mperblock_nblock_nperblock =
1848 auto c_shuffle_block_buf = make_dynamic_buffer<AddressSpaceEnum::Lds>(
1849 static_cast<CShuffleDataType*
>(p_shared),
1850 c_shuffle_block_desc_mblock_mperblock_nblock_nperblock.GetElementSpaceSize());
1853 c_shuffle_block_desc_mblock_mperblock_nblock_nperblock,
1879 const auto c_thread_mtx_on_block =
1880 blockwise_gemm_pipeline.CalculateCThreadOriginDataIndex(
I0,
I0,
I0,
I0);
1882 const index_t m_thread_data_on_block = c_thread_mtx_on_block[
I0];
1883 const index_t n_thread_data_on_block = c_thread_mtx_on_block[
I1];
1885 const auto m_thread_data_on_block_to_m0_m1_m2_m3_m4_adaptor =
1891 const auto m_thread_data_on_block_idx =
1892 m_thread_data_on_block_to_m0_m1_m2_m3_m4_adaptor.CalculateBottomIndex(
1895 const auto n_thread_data_on_block_to_n0_n1_n2_adaptor =
1901 const auto n_thread_data_on_block_idx =
1902 n_thread_data_on_block_to_n0_n1_n2_adaptor.CalculateBottomIndex(
1909 decltype(c_thread_desc_m0_n0_m1_n1_m2_m3_m4_n2),
1910 decltype(c_block_desc_m0_n0_m1_n1_m2_m3_m4_n2),
1913 CShuffleNXdlPerWavePerShuffle /
NXdlPack,
1922 Sequence<0, 1, 2, 3, 4, 5, 6, 7, 8, 9>,
1927 true>{c_block_desc_m0_n0_m1_n1_m2_m3_m4_n2,
1930 m_thread_data_on_block_idx[
I1],
1931 n_thread_data_on_block_idx[
I1],
1932 m_thread_data_on_block_idx[
I2],
1933 n_thread_data_on_block_idx[
I2],
1934 m_thread_data_on_block_idx[
I3],
1935 m_thread_data_on_block_idx[
I4],
1936 m_thread_data_on_block_idx[
I5],
1937 n_thread_data_on_block_idx[
I3]),
1940 using EDataType = CDataType;
1945 const auto ds_grid_desc_mblock_mperblock_nblock_nperblock =
1951 return make_dynamic_buffer<AddressSpaceEnum::Global>(
1952 p_ds_grid[i], ds_grid_desc_m_n[i].GetElementSpaceSize());
1958 tie(c_shuffle_block_desc_mblock_mperblock_nblock_nperblock),
1960 [&](
auto i) ->
const auto&
1961 {
return ds_grid_desc_mblock_mperblock_nblock_nperblock[i]; },
1966 tie(c_shuffle_block_buf),
1968 [&](
auto i) ->
const auto&
1969 {
return ds_grid_buf[i]; },
1973 const auto idx_c_ds_block_begin =
1983 const auto e_grid_desc_mblock_mperblock_nblock_nperblock =
1984 c_grid_desc_mblock_mperblock_nblock_nperblock;
1986 using CDEBlockTransferCluster =
1987 CShuffleBlockTransferClusterLengths_MBlock_MPerBlock_NBlock_NPerBlock;
1988 const auto EGlobalMemoryDataOperation = CGlobalMemoryDataOperation;
1989 constexpr
index_t scatter_weight_idx = 3;
1994 decltype(c_ds_desc_refs),
1995 decltype(
tie(e_grid_desc_mblock_mperblock_nblock_nperblock)),
1996 CElementwiseOperation,
2001 CShuffleMXdlPerWavePerShuffle * MWave * MPerXdl,
2003 CShuffleNXdlPerWavePerShuffle * NWave * NPerXdl>,
2004 CDEBlockTransferCluster,
2010 CDEShuffleBlockTransferScalarPerVectors,
2022 idx_c_ds_block_begin,
2023 tie(e_grid_desc_mblock_mperblock_nblock_nperblock),
2027 auto c_grid_buf = make_dynamic_buffer<AddressSpaceEnum::Global>(
2028 p_c_grid, c_grid_desc_mblock_mperblock_nblock_nperblock.GetElementSpaceSize());
2030 constexpr
auto sfc_c_vgpr =
2041 Sequence<0, 1, 2, 3, 4, 5, 6, 7, 8, 9>,
2043 CShuffleNXdlPerWavePerShuffle /
NXdlPack,
2053 constexpr
index_t num_access = sfc_c_vgpr.GetNumOfAccess();
2056 constexpr
auto sfc_cde_block =
2060 CShuffleMXdlPerWavePerShuffle * MWave * MPerXdl,
2062 CShuffleNXdlPerWavePerShuffle * NWave * NPerXdl>>{};
2064 static_assert(num_access == sfc_cde_block.GetNumOfAccess(),
"wrong!");
2065 constexpr
auto EMThreads =
2066 CDEBlockTransferCluster{}.At(
I0) * CDEBlockTransferCluster{}.At(
I1);
2067 constexpr
auto EMRepeats = CShuffleMXdlPerWavePerShuffle * MWave * MPerXdl / EMThreads;
2068 constexpr
auto ENThreads =
2069 CDEBlockTransferCluster{}.At(
I2) * CDEBlockTransferCluster{}.At(
I3);
2074 auto dstidx = sfc_cde_block.GetIndex(access_id);
2076 block_m_id * MPerBlock + threadIdx.x / ENThreads * EMRepeats + dstidx(
I1);
2078 const index_t fused_token = p_sorted_token_ids[c_token_pos + m0];
2079 IndexType token_offset = fused_token & 0xffffff;
2080 if constexpr(IsInputGemm)
2082 token_offset = token_offset * problem.
TopK + (fused_token >> 24);
2084 scatter_offsets(m0) =
static_cast<IndexType
>(token_offset) * problem.
N;
2090 c_thread_copy_vgpr_to_lds.Run(c_thread_desc_m0_n0_m1_n1_m2_m3_m4_n2,
2091 sfc_c_vgpr.GetIndexTupleOfNumber(access_id),
2093 c_block_desc_m0_n0_m1_n1_m2_m3_m4_n2,
2094 c_shuffle_block_buf);
2100 cde_block_copy_lds_and_global.Run(
2103 tie(e_grid_desc_mblock_mperblock_nblock_nperblock),
2107 if constexpr(access_id < num_access - 1)
2109 constexpr
auto cde_lds_and_global_step =
2110 sfc_cde_block.GetForwardStep(access_id);
2114 cde_block_copy_lds_and_global.MoveSrcSliceWindow(
2115 c_ds_desc_refs, i +
I1, cde_lds_and_global_step);
2119 cde_block_copy_lds_and_global.MoveDstSliceWindow(
2120 tie(e_grid_desc_mblock_mperblock_nblock_nperblock),
2122 cde_lds_and_global_step);
2129 template <
bool HasMainKBlockLoop,
2132 __device__
static void Run_2Lds(
const index_t* p_sorted_token_ids,
2133 const index_t* p_sorted_expert_ids,
2134 const index_t* p_max_token_id,
2135 const ADataType* p_a_grid,
2136 const AScaleDataType* p_a_scale_grid,
2137 const BDataType* p_b_grid,
2138 const BScaleDataType* p_b_scale_grid,
2140 CDataType* p_c_grid,
2143 const Problem& problem,
2144 AElementwiseOperation a_element_op,
2145 BElementwiseOperation b_element_op,
2146 CElementwiseOperation c_element_op)
2150 IsInputGemm ? problem.NumTokens : problem.NumTokens * problem.TopK,
2157 problem.K, problem.KPadded, problem.N, problem.NPadded, problem.StrideB, problem.BK0);
2158 const auto c_grid_desc_m_n = MakeCGridDescriptor_M_N<CLayout>(
2159 IsInputGemm ? problem.NumTokens * problem.TopK : problem.NumTokens,
2177 const auto c_grid_desc_mblock_mperblock_nblock_nperblock =
2179 c_grid_desc_m_n, problem.MBlock, problem.NBlock);
2180 const index_t max_token_id = __builtin_amdgcn_readfirstlane(p_max_token_id[0]);
2182 const index_t expert_block_id = NSwizzle ? blockIdx.x / problem.NBlock : blockIdx.y;
2183 if(expert_block_id * MPerBlock >= max_token_id)
2186 __builtin_amdgcn_readfirstlane(p_sorted_expert_ids[expert_block_id]);
2187 const auto block_mn = [&]() -> std::pair<int, int> {
2188 if constexpr(NSwizzle)
2190 const index_t ecnt_prefix = p_max_token_id[1 + expert_id];
2191 const index_t prefix_block = ecnt_prefix * problem.NBlock;
2192 const index_t ecnt = p_max_token_id[2 + expert_id] - ecnt_prefix;
2193 const index_t expert_swizzle =
2194 ecnt > 0 ? ecnt : 1;
2195 const index_t bid_new = blockIdx.x - prefix_block;
2196 const index_t nid = __builtin_amdgcn_readfirstlane(
2197 bid_new % 8 + bid_new / (8 * expert_swizzle) * 8);
2199 __builtin_amdgcn_readfirstlane(ecnt_prefix + bid_new / 8 % expert_swizzle);
2204 return {blockIdx.x, blockIdx.y};
2208 const index_t block_n_id = block_mn.first;
2209 const index_t block_m_id = block_mn.second;
2211 __builtin_amdgcn_readfirstlane(p_sorted_token_ids[block_m_id * MPerBlock] & 0xffffff);
2214 constexpr
auto AMThreads = ABlockTransferThreadClusterLengths_AK0_M_AK1{}.At(
I1);
2215 constexpr
auto AK0Threads = ABlockTransferThreadClusterLengths_AK0_M_AK1{}.At(
I0);
2216 constexpr
auto AK1Threads = ABlockTransferThreadClusterLengths_AK0_M_AK1{}.At(
I2);
2217 constexpr
auto AKThreads = AK0Threads * AK1Threads;
2218 constexpr
auto AMRepeats = MPerBlock / AMThreads;
2219 const index_t token_pos = block_m_id * MPerBlock + threadIdx.x / AKThreads * AMRepeats;
2221 if(token_pos >= max_token_id || token0 >= problem.NumTokens)
2223 StaticallyIndexedArray<IndexType, AMRepeats> gather_offsets;
2224 static_for<0, AMRepeats, 1>{}([&](
auto m0) {
2225 const index_t fused_token = p_sorted_token_ids[token_pos + m0];
2226 index_t token_offset = fused_token & 0xffffff;
2227 if constexpr(!IsInputGemm)
2229 token_offset = token_offset * problem.TopK + (fused_token >> 24);
2231 gather_offsets(m0) =
static_cast<IndexType
>(token_offset) * problem.K;
2235 __builtin_amdgcn_readfirstlane(problem.N * problem.K * (IsInputGemm ? 2 : 1));
2236 const index_t expert_scale_stride = __builtin_amdgcn_readfirstlane(
2240 const index_t n_block_data_idx_on_grid =
2241 __builtin_amdgcn_readfirstlane(block_n_id * NXdlPerWave);
2243 const auto a_grid_buf = make_dynamic_buffer<AddressSpaceEnum::Global>(
2244 p_a_grid, a_grid_desc_ak0_m_ak1.GetElementSpaceSize());
2246 const auto b_grid_buf = make_dynamic_buffer<AddressSpaceEnum::Global>(
2247 p_b_grid + expert_id * expert_stride, b_grid_desc_bpreshuffled.GetElementSpaceSize());
2249 const auto a_scale_grid_buf = make_dynamic_buffer<AddressSpaceEnum::Global>(
2250 p_a_scale_grid, a_scale_grid_desc_am_ak.GetElementSpaceSize());
2251 const auto b_scale_grid_buf = make_dynamic_buffer<AddressSpaceEnum::Global>(
2252 p_b_scale_grid + (expert_id * expert_scale_stride) /
sizeof(BScaleDataType),
2253 b_scale_grid_desc_bn_ak.GetElementSpaceSize());
2262 auto a_blockwise_copy = ThreadGroupTensorSliceTransfer_v4r1_gather<
2264 AElementwiseOperation,
2267 Sequence<AK0Number, MPerBlock, AK1Number>,
2268 ABlockTransferThreadClusterLengths_AK0_M_AK1,
2269 ABlockTransferThreadClusterArrangeOrder,
2272 decltype(a_grid_desc_ak0_m_ak1),
2273 decltype(a_block_desc_ak0_m_ak1),
2274 ABlockTransferSrcAccessOrder,
2276 ABlockTransferSrcVectorDim,
2278 ABlockTransferSrcScalarPerVector,
2279 ABlockTransferDstScalarPerVector_AK1,
2282 AThreadTransferSrcResetCoordinateAfterRun,
2286 BlockwiseGemmPipe::GlobalBufferNum>(a_grid_desc_ak0_m_ak1,
2289 a_block_desc_ak0_m_ak1,
2296 auto b_block_buf_ping = make_static_buffer<AddressSpaceEnum::Vgpr, BDataType>(
2297 b_block_desc_bk0_n_bk1.GetElementSpaceSize());
2298 auto b_block_buf_pong = make_static_buffer<AddressSpaceEnum::Vgpr, BDataType>(
2299 b_block_desc_bk0_n_bk1.GetElementSpaceSize());
2300 auto b_block_bufs =
make_tuple(b_block_buf_ping, b_block_buf_pong);
2302 auto b_blockwise_copy =
2303 ThreadwiseTensorSliceTransfer_v2<BDataType,
2305 decltype(b_grid_desc_bpreshuffled),
2306 decltype(b_block_desc_bk0_n_bk1),
2311 Number<BK1Value>{}>,
2312 Sequence<1, 2, 0, 3, 4>,
2314 BBlockTransferSrcScalarPerVector,
2315 BThreadTransferSrcResetCoordinateAfterRun,
2317 b_grid_desc_bpreshuffled,
2326 auto a_block_buf_ping = make_dynamic_buffer<AddressSpaceEnum::Lds>(
2327 static_cast<ADataType*
>(p_shared), a_block_desc_ak0_m_ak1.GetElementSpaceSize());
2328 auto a_block_buf_pong = make_dynamic_buffer<AddressSpaceEnum::Lds>(
2329 static_cast<ADataType*
>(p_shared1), a_block_desc_ak0_m_ak1.GetElementSpaceSize());
2330 auto a_block_bufs =
make_tuple(a_block_buf_ping, a_block_buf_pong);
2333 constexpr
auto b_block_slice_copy_step =
make_multi_index(0, 0, 0, KRepeat, 0);
2336 static_assert(std::is_default_constructible_v<BlockwiseGemmPipe>);
2338 auto c_thread_buf = blockwise_gemm_pipeline.GetCThreadBuffer();
2339 decltype(c_thread_buf) c_thread_buf_up;
2343 c_thread_buf.num_of_v_,
2344 c_thread_buf.s_per_v,
2348 const index_t num_k_block_main_loop = __builtin_amdgcn_readfirstlane(
2349 (a_grid_desc_ak0_m_ak1.GetLength(
I0) * a_grid_desc_ak0_m_ak1.GetLength(
I2)) /
2353 const auto wave_idx = BlockwiseGemmPipe::GetWaveIdx();
2354 const auto waveId_m = wave_idx[
I0];
2355 const auto waveId_n = wave_idx[
I1];
2357 auto thread_offset_shuffled =
2360 auto a_thread_offset_m = waveId_m;
2363 const index_t token_scale_pos = block_m_id * MPerBlock;
2364 if(token_scale_pos >= max_token_id || token0 >= problem.NumTokens)
2367 auto a_scale_thread_copy = ThreadwiseTensorSliceTransfer_v2<
2370 decltype(a_scale_grid_desc_am_ak),
2371 decltype(BlockwiseGemmPipe::a_scale_thread_desc),
2377 true>(a_scale_grid_desc_am_ak,
2383 auto b_thread_offset_n = waveId_n;
2385 auto b_scale_thread_copy = ThreadwiseTensorSliceTransfer_v2<
2388 decltype(b_scale_grid_desc_bn_ak),
2389 decltype(BlockwiseGemmPipe::b_scale_thread_desc),
2395 true>(b_scale_grid_desc_bn_ak,
2400 if constexpr(IsInputGemm)
2402 const BDataType* p_b_grid_up = p_b_grid + expert_stride / 2 /
BPackedSize;
2403 const auto b_grid_buf_up = make_dynamic_buffer<AddressSpaceEnum::Global>(
2404 p_b_grid_up + expert_id * expert_stride /
BPackedSize,
2405 b_grid_desc_bpreshuffled.GetElementSpaceSize());
2406 auto b_blockwise_copy_up = ThreadwiseTensorSliceTransfer_v2<
2409 decltype(b_grid_desc_bpreshuffled),
2410 decltype(b_block_desc_bk0_n_bk1),
2411 Sequence<Number<NXdlPerWave>{},
I1, Number<KRepeat>{}, Number<BK1Value>{}>,
2412 Sequence<1, 2, 0, 3>,
2414 BBlockTransferSrcScalarPerVector,
2415 BThreadTransferSrcResetCoordinateAfterRun,
2416 true>(b_grid_desc_bpreshuffled,
2421 const BScaleDataType* p_b_scale_grid_up = p_b_scale_grid + expert_scale_stride / 2;
2422 const auto b_scale_grid_buf_up = make_dynamic_buffer<AddressSpaceEnum::Global>(
2423 p_b_scale_grid_up + expert_id * expert_scale_stride,
2424 b_scale_grid_desc_bn_ak.GetElementSpaceSize());
2425 auto b_scale_thread_copy_up = ThreadwiseTensorSliceTransfer_v2<
2428 decltype(b_scale_grid_desc_bn_ak),
2429 decltype(BlockwiseGemmPipe::b_scale_thread_desc),
2436 b_scale_grid_desc_bn_ak,
2441 blockwise_gemm_pipeline.template Run<HasMainKBlockLoop, TailNum>(
2442 a_grid_desc_ak0_m_ak1,
2443 a_block_desc_ak0_m_ak1,
2447 a_block_slice_copy_step,
2448 b_grid_desc_bpreshuffled,
2449 b_block_desc_bk0_n_bk1,
2451 b_blockwise_copy_up,
2455 b_block_slice_copy_step,
2458 a_scale_grid_desc_am_ak,
2459 a_scale_thread_copy,
2461 b_scale_grid_desc_bn_ak,
2462 b_scale_thread_copy,
2463 b_scale_thread_copy_up,
2465 b_scale_grid_buf_up,
2466 num_k_block_main_loop);
2470 blockwise_gemm_pipeline.template Run<HasMainKBlockLoop, TailNum>(
2471 a_grid_desc_ak0_m_ak1,
2472 a_block_desc_ak0_m_ak1,
2476 a_block_slice_copy_step,
2477 b_grid_desc_bpreshuffled,
2478 b_block_desc_bk0_n_bk1,
2482 b_block_slice_copy_step,
2484 a_scale_grid_desc_am_ak,
2485 a_scale_thread_copy,
2487 b_scale_grid_desc_bn_ak,
2488 b_scale_thread_copy,
2490 num_k_block_main_loop);
2495 static_assert(MXdlPerWave % CShuffleMXdlPerWavePerShuffle == 0 &&
2496 NXdlPerWave % CShuffleNXdlPerWavePerShuffle == 0,
2500 constexpr
auto c_thread_desc_m0_n0_m1_n1_m2_m3_m4_n2 =
2501 blockwise_gemm_pipeline.GetCThreadDescriptor_M0_N0_M1_N1_M2_M3_M4_N2();
2505 constexpr
auto c_block_desc_m0_n0_m1_n1_m2_m3_m4_n2_tmp =
2506 blockwise_gemm_pipeline.GetCBlockDescriptor_M0_N0_M1_N1_M2_M3_M4_N2();
2508 constexpr
auto M0 = c_block_desc_m0_n0_m1_n1_m2_m3_m4_n2_tmp.GetLength(
I0);
2509 constexpr
auto N0 = c_block_desc_m0_n0_m1_n1_m2_m3_m4_n2_tmp.GetLength(
I1);
2510 constexpr
auto M1 = c_block_desc_m0_n0_m1_n1_m2_m3_m4_n2_tmp.GetLength(
I2);
2511 constexpr
auto N1 = c_block_desc_m0_n0_m1_n1_m2_m3_m4_n2_tmp.GetLength(
I3);
2512 constexpr
auto M2 = c_block_desc_m0_n0_m1_n1_m2_m3_m4_n2_tmp.GetLength(
I4);
2513 constexpr
auto M3 = c_block_desc_m0_n0_m1_n1_m2_m3_m4_n2_tmp.GetLength(
I5);
2514 constexpr
auto M4 = c_block_desc_m0_n0_m1_n1_m2_m3_m4_n2_tmp.GetLength(
I6);
2515 constexpr
auto N2 = c_block_desc_m0_n0_m1_n1_m2_m3_m4_n2_tmp.GetLength(
I7);
2519 static_assert(M0 * M1 * M2 * M3 * M4 == MPerBlock);
2520 static_assert(M4 == 4);
2524 vector_type<float, 4> topk_weights;
2525 static_for<0, NXdlPerWave, 1>{}([&](
auto n0) {
2526 static_for<0, MXdlPerWave, 1>{}([&](
auto m0) {
2527 static_for<0, M2, 1>{}([&](
auto m2) {
2528 const index_t m_pos = block_m_id * MPerBlock + m0 * M1 * M2 * M3 * M4 +
2529 m1 * M2 * M3 * M4 + m2 * M3 * M4 + m3 * M4;
2530 if constexpr(MulRoutedWeight)
2532 topk_weights = *c_style_pointer_cast<const vector_type<float, M4>*>(
2533 p_ds_grid[
I2] + m_pos);
2535 static_for<0, M4, 1>{}([&](
auto m4) {
2537 blockwise_gemm_pipeline.GetCThreadDesc().CalculateOffset(
2543 constexpr
auto cidx = Number<c_offset>{};
2545 if constexpr(IsInputGemm)
2549 float gate = c_thread_buf[cidx];
2550 float up = c_thread_buf_up[cidx];
2551 if constexpr(MulRoutedWeight)
2553 gate = gate * topk_weights.AsType<
float>()[m4];
2554 up = up * topk_weights.AsType<
float>()[m4];
2556 tensor_operation::element_wise::Silu{}(gate, gate);
2557 c_thread_buf_fp32(cidx) = gate * up;
2561 float gate = c_thread_buf[cidx];
2562 float up = c_thread_buf_up[cidx];
2563 if constexpr(MulRoutedWeight)
2565 gate = gate * topk_weights.AsType<
float>()[m4];
2566 up = up * topk_weights.AsType<
float>()[m4];
2568 tensor_operation::element_wise::Gelu{}(gate, gate);
2569 c_thread_buf_fp32(cidx) = gate * up;
2574 c_thread_buf_fp32(cidx) = c_thread_buf[cidx];
2575 if constexpr(MulRoutedWeight)
2577 c_thread_buf_fp32(cidx) =
2578 topk_weights.AsType<
float>()[m4] * c_thread_buf_fp32[cidx];
2586 constexpr
auto c_shuffle_block_desc_mblock_mperblock_nblock_nperblock =
2589 auto c_shuffle_block_buf = make_dynamic_buffer<AddressSpaceEnum::Lds>(
2590 static_cast<CShuffleDataType*
>(p_shared),
2591 c_shuffle_block_desc_mblock_mperblock_nblock_nperblock.GetElementSpaceSize());
2594 c_shuffle_block_desc_mblock_mperblock_nblock_nperblock,
2597 Number<CShuffleMXdlPerWavePerShuffle>{},
2605 Number<CShuffleNXdlPerWavePerShuffle>{},
2609 make_tuple(Sequence<0>{}, Sequence<1>{}, Sequence<2>{}, Sequence<3>{}),
2611 Sequence<>{}, Sequence<0, 2, 4, 5, 6>{}, Sequence<>{}, Sequence<1, 3, 7>{}));
2615 const auto c_thread_mtx_on_block =
2616 blockwise_gemm_pipeline.CalculateCThreadOriginDataIndex(
I0,
I0,
I0,
I0);
2618 const index_t m_thread_data_on_block = c_thread_mtx_on_block[
I0];
2619 const index_t n_thread_data_on_block = c_thread_mtx_on_block[
I1];
2621 const auto m_thread_data_on_block_to_m0_m1_m2_m3_m4_adaptor =
2627 const auto m_thread_data_on_block_idx =
2628 m_thread_data_on_block_to_m0_m1_m2_m3_m4_adaptor.CalculateBottomIndex(
2631 const auto n_thread_data_on_block_to_n0_n1_n2_adaptor =
2637 const auto n_thread_data_on_block_idx =
2638 n_thread_data_on_block_to_n0_n1_n2_adaptor.CalculateBottomIndex(
2642 auto c_thread_copy_vgpr_to_lds =
2643 ThreadwiseTensorSliceTransfer_v1r3<AccDataType,
2645 decltype(c_thread_desc_m0_n0_m1_n1_m2_m3_m4_n2),
2646 decltype(c_block_desc_m0_n0_m1_n1_m2_m3_m4_n2),
2648 Sequence<CShuffleMXdlPerWavePerShuffle,
2649 CShuffleNXdlPerWavePerShuffle,
2656 Sequence<0, 1, 2, 3, 4, 5, 6, 7>,
2662 c_block_desc_m0_n0_m1_n1_m2_m3_m4_n2,
2665 m_thread_data_on_block_idx[
I1],
2666 n_thread_data_on_block_idx[
I1],
2667 m_thread_data_on_block_idx[
I2],
2668 m_thread_data_on_block_idx[
I3],
2669 m_thread_data_on_block_idx[
I4],
2670 n_thread_data_on_block_idx[
I2]),
2673 using EDataType = CDataType;
2676 problem.M, problem.MPadded, problem.N, problem.NPadded, problem.StrideDs);
2678 const auto ds_grid_desc_mblock_mperblock_nblock_nperblock =
2680 ds_grid_desc_m_n, problem.MBlock, problem.NBlock);
2684 return make_dynamic_buffer<AddressSpaceEnum::Global>(
2685 p_ds_grid[i], ds_grid_desc_m_n[i].GetElementSpaceSize());
2687 Number<NumDTensor>{});
2691 tie(c_shuffle_block_desc_mblock_mperblock_nblock_nperblock),
2693 {
return ds_grid_desc_mblock_mperblock_nblock_nperblock[i]; },
2694 Number<NumDTensor>{}));
2698 tie(c_shuffle_block_buf),
2700 {
return ds_grid_buf[i]; },
2701 Number<NumDTensor>{}));
2704 const auto idx_c_ds_block_begin =
2712 Number<NumDTensor>{}));
2714 const auto e_grid_desc_mblock_mperblock_nblock_nperblock =
2715 c_grid_desc_mblock_mperblock_nblock_nperblock;
2717 using CDEBlockTransferCluster =
2718 CShuffleBlockTransferClusterLengths_MBlock_MPerBlock_NBlock_NPerBlock;
2719 const auto EGlobalMemoryDataOperation = CGlobalMemoryDataOperation;
2720 constexpr
index_t scatter_weight_idx = 3;
2721 auto cde_block_copy_lds_and_global = ThreadGroupTensorSliceTransfer_v7r3_scatter<
2725 decltype(c_ds_desc_refs),
2726 decltype(
tie(e_grid_desc_mblock_mperblock_nblock_nperblock)),
2727 CElementwiseOperation,
2728 Sequence<static_cast<index_t>(EGlobalMemoryDataOperation)>,
2732 CShuffleMXdlPerWavePerShuffle * MWave * MPerXdl,
2734 CShuffleNXdlPerWavePerShuffle * NWave * NPerXdl>,
2735 CDEBlockTransferCluster,
2736 Sequence<0, 1, 2, 3>,
2737 Sequence<0, 1, 2, 3>,
2738 Sequence<0, 1, 2, 3>,
2741 CDEShuffleBlockTransferScalarPerVectors,
2753 idx_c_ds_block_begin,
2754 tie(e_grid_desc_mblock_mperblock_nblock_nperblock),
2758 auto c_grid_buf = make_dynamic_buffer<AddressSpaceEnum::Global>(
2759 p_c_grid, c_grid_desc_mblock_mperblock_nblock_nperblock.GetElementSpaceSize());
2760 constexpr
auto sfc_c_vgpr =
2761 SpaceFillingCurve<Sequence<MXdlPerWave, NXdlPerWave, 1, 1, M2, 1, M4, 1>,
2762 Sequence<0, 1, 2, 3, 4, 5, 6, 7>,
2763 Sequence<CShuffleMXdlPerWavePerShuffle,
2764 CShuffleNXdlPerWavePerShuffle,
2772 constexpr
index_t num_access = sfc_c_vgpr.GetNumOfAccess();
2775 constexpr
auto sfc_cde_block =
2776 SpaceFillingCurve<Sequence<1, MPerBlock, 1, NPerBlock>,
2777 Sequence<0, 2, 1, 3>,
2779 CShuffleMXdlPerWavePerShuffle * MWave * MPerXdl,
2781 CShuffleNXdlPerWavePerShuffle * NWave * NPerXdl>>{};
2783 static_assert(num_access == sfc_cde_block.GetNumOfAccess(),
"wrong!");
2784 constexpr
auto EMThreads =
2785 CDEBlockTransferCluster{}.At(
I0) * CDEBlockTransferCluster{}.At(
I1);
2786 constexpr
auto EMRepeats = CShuffleMXdlPerWavePerShuffle * MWave * MPerXdl / EMThreads;
2787 constexpr
auto ENThreads =
2788 CDEBlockTransferCluster{}.At(
I2) * CDEBlockTransferCluster{}.At(
I3);
2789 static_for<0, num_access, 1>{}([&](
auto access_id) {
2791 StaticallyIndexedArray<IndexType, EMRepeats> scatter_offsets;
2793 auto dstidx = sfc_cde_block.GetIndex(access_id);
2795 block_m_id * MPerBlock + threadIdx.x / ENThreads * EMRepeats + dstidx(
I1);
2796 static_for<0, EMRepeats, 1>{}([&](
auto m0) {
2797 const index_t fused_token = p_sorted_token_ids[c_token_pos + m0];
2798 IndexType token_offset = fused_token & 0xffffff;
2799 if constexpr(IsInputGemm)
2801 token_offset = token_offset * problem.TopK + (fused_token >> 24);
2803 scatter_offsets(m0) =
static_cast<IndexType
>(token_offset) * problem.N;
2809 c_thread_copy_vgpr_to_lds.Run(c_thread_desc_m0_n0_m1_n1_m2_m3_m4_n2,
2810 sfc_c_vgpr.GetIndexTupleOfNumber(access_id),
2812 c_block_desc_m0_n0_m1_n1_m2_m3_m4_n2,
2813 c_shuffle_block_buf);
2819 cde_block_copy_lds_and_global.Run(
2822 tie(e_grid_desc_mblock_mperblock_nblock_nperblock),
2826 if constexpr(access_id < num_access - 1)
2828 constexpr
auto cde_lds_and_global_step =
2829 sfc_cde_block.GetForwardStep(access_id);
2832 static_for<0, NumDTensor, 1>{}([&](
auto i) {
2833 cde_block_copy_lds_and_global.MoveSrcSliceWindow(
2834 c_ds_desc_refs, i +
I1, cde_lds_and_global_step);
2838 cde_block_copy_lds_and_global.MoveDstSliceWindow(
2839 tie(e_grid_desc_mblock_mperblock_nblock_nperblock),
2841 cde_lds_and_global_step);
#define CK_MAX_THREAD_PER_BLOCK
Definition: ck.hpp:29
Y __host__ constexpr __device__ auto lcm(X x, Y y)
Definition: math.hpp:198
__host__ constexpr __device__ auto integer_least_multiple(X x, Y y)
Definition: math.hpp:78
__host__ constexpr __device__ auto integer_divide_ceil(X x, Y y)
Definition: math.hpp:72
__host__ constexpr __device__ T max(T x)
Definition: math.hpp:84
GemmSpecialization
Definition: gemm_specialization.hpp:11
typename detail::StaticallyIndexedArrayImpl< T, N >::type StaticallyIndexedArray
Definition: statically_indexed_array.hpp:45
__host__ constexpr __device__ auto make_multi_index(Xs &&... xs)
Definition: array_multi_index.hpp:15
__device__ index_t get_warp_local_1d_id()
Definition: get_id.hpp:23
__host__ constexpr __device__ auto generate_tie(F &&f, Number< N >)
Definition: tuple_helper.hpp:34
__host__ constexpr __device__ auto make_naive_tensor_descriptor(const Tuple< Lengths... > &lengths, const Tuple< Strides... > &strides)
Definition: tensor_descriptor_helper.hpp:49
__global__ void kernel_moe_mxgemm(typename GridwiseGemm::Argument karg)
Definition: gridwise_moe_mx_gemm_bns.hpp:48
typename uniform_sequence_gen< NSize, I >::type uniform_sequence_gen_t
Definition: sequence.hpp:928
typename tuple_element< I, TTuple >::type tuple_element_t
Definition: tuple.hpp:208
__host__ constexpr __device__ auto generate_tuple(F &&f, Number< N >)
Definition: tuple_helper.hpp:21
InMemoryDataOperationEnum
Definition: ck.hpp:278
__host__ constexpr __device__ index_t get_warp_size()
Definition: get_id.hpp:10
__host__ constexpr __device__ auto make_naive_tensor_descriptor_packed(const Tuple< Lengths... > &lengths)
Definition: tensor_descriptor_helper.hpp:101
__host__ constexpr __device__ auto make_merge_transform(const LowLengths &low_lengths)
Definition: multi_index_transform_helper.hpp:55
BlockGemmPipelineVersion
Definition: blkgemmpipe_scheduler.hpp:12
__host__ constexpr __device__ auto make_merge_transform_v3_division_mod(const LowLengths &low_lengths)
Definition: multi_index_transform_helper.hpp:84
__global__ void kernel_moe_mxgemm_2lds(typename GridwiseGemm::Argument karg)
Definition: gridwise_moe_mx_gemm.hpp:87
TailNumber
Definition: blkgemmpipe_scheduler.hpp:31
__host__ constexpr __device__ auto make_single_stage_tensor_adaptor(const Transforms &transforms, LowerDimensionOldTopIdss, UpperDimensionNewTopIdss)
Definition: tensor_adaptor.hpp:429
__host__ constexpr __device__ auto make_freeze_transform(const LowerIndex &low_idx)
Definition: multi_index_transform_helper.hpp:98
constexpr detail::ignore_t ignore
Definition: ignore.hpp:20
constexpr Tuple< Args &... > tie(Args &... args) noexcept
Definition: tuple.hpp:218
__host__ constexpr __device__ auto make_xor_with_modulo_transform(const LowLengths &low_lengths)
Definition: multi_index_transform_helper.hpp:132
Activation
Definition: gridwise_moe_gemm.hpp:31
@ silu_and_mul
Definition: gridwise_moe_gemm.hpp:33
@ gelu_and_mul
Definition: gridwise_moe_gemm.hpp:32
bool EnvIsEnabled(EnvVar)
Definition: env.hpp:139
__host__ constexpr __device__ auto container_concat(const X &x, const Ys &... ys)
Definition: container_helper.hpp:320
__host__ constexpr __device__ auto make_pass_through_transform(const LowLength &low_length)
Definition: multi_index_transform_helper.hpp:12
__host__ constexpr __device__ auto concat_tuple_of_reference(const Tuple< X &... > &tx, const Tuple< Y &... > &ty)
Definition: tuple_helper.hpp:42
constexpr bool is_same_v
Definition: type.hpp:283
typename sequence_merge< Sx, Sy >::type sequence_merge_t
Definition: sequence.hpp:925
BlockGemmPipelineScheduler
Definition: blkgemmpipe_scheduler.hpp:25
__host__ constexpr __device__ auto make_tuple(Xs &&... xs)
Definition: tuple.hpp:211
remove_cv_t< remove_reference_t< T > > remove_cvref_t
Definition: type.hpp:297
__host__ constexpr __device__ auto make_unmerge_transform(const UpLengths &up_lengths, integral_constant< bool, Use24BitIntegerCalculation >=integral_constant< bool, false >{})
Definition: multi_index_transform_helper.hpp:90
int32_t index_t
Definition: ck.hpp:300
__device__ index_t get_thread_local_1d_id()
Definition: get_id.hpp:19
__host__ constexpr __device__ auto transform_tensor_descriptor(const OldTensorDescriptor &old_tensor_desc, const NewTransforms &new_transforms, NewLowerDimensionOldVisibleIdss, NewUpperDimensionNewVisibleIdss)
Definition: tensor_descriptor.hpp:319
__host__ constexpr __device__ auto make_right_pad_transform(const LowLength &low_length, const RightPadLength &right_pad, integral_constant< bool, SkipIsValidCheck >=integral_constant< bool, false >{})
Definition: multi_index_transform_helper.hpp:37
__device__ void block_sync_lds()
Definition: synchronization.hpp:10
constexpr auto BlockGemmMXNBSPipeline_Selector()
Definition: blockwise_gemm_pipeline_xdlops_mx_moe_nbs_selector.hpp:37
integral_constant< index_t, N > Number
Definition: number.hpp:12
Definition: gridwise_moe_mx_gemm_bns.hpp:659
const ADataType * p_a_grid
Definition: gridwise_moe_mx_gemm_bns.hpp:722
const index_t * p_sorted_token_ids
Definition: gridwise_moe_mx_gemm_bns.hpp:719
const index_t * p_sorted_expert_ids
Definition: gridwise_moe_mx_gemm_bns.hpp:720
const index_t * p_max_token_id
Definition: gridwise_moe_mx_gemm_bns.hpp:721
DsGridPointer p_ds_grid
Definition: gridwise_moe_mx_gemm_bns.hpp:726
const CElementwiseOperation c_element_op
Definition: gridwise_moe_mx_gemm_bns.hpp:731
CDataType * p_c_grid
Definition: gridwise_moe_mx_gemm_bns.hpp:727
const AElementwiseOperation a_element_op
Definition: gridwise_moe_mx_gemm_bns.hpp:729
const BScaleDataType * p_b_scale_grid
Definition: gridwise_moe_mx_gemm_bns.hpp:725
const BDataType * p_b_grid
Definition: gridwise_moe_mx_gemm_bns.hpp:724
const AScaleDataType * p_a_scale_grid
Definition: gridwise_moe_mx_gemm_bns.hpp:723
__host__ Argument(const index_t *p_sorted_token_ids_, const index_t *p_sorted_expert_ids_, const index_t *p_max_token_id_, const ADataType *p_a_grid_, const AScaleDataType *p_a_scale_grid_, const BDataType *p_b_grid_, const BScaleDataType *p_b_scale_grid_, std::array< const void *, NumDTensor > p_ds_grid_, CDataType *p_c_grid_, index_t NumTokens_, index_t TopK_, index_t M_, index_t N_, index_t K_, index_t StrideA_, index_t StrideScaleA_, index_t StrideB_, index_t StrideScaleB_, std::array< index_t, NumDTensor > StrideDs_, index_t StrideC_, index_t k_batch_, AElementwiseOperation a_element_op_, BElementwiseOperation b_element_op_, CElementwiseOperation c_element_op_)
Definition: gridwise_moe_mx_gemm_bns.hpp:660
const BElementwiseOperation b_element_op
Definition: gridwise_moe_mx_gemm_bns.hpp:730
Definition: gridwise_moe_mx_gemm_bns.hpp:576
index_t M
Definition: gridwise_moe_mx_gemm_bns.hpp:637
index_t TopK
Definition: gridwise_moe_mx_gemm_bns.hpp:636
index_t NPadded
Definition: gridwise_moe_mx_gemm_bns.hpp:648
index_t MPadded
Definition: gridwise_moe_mx_gemm_bns.hpp:647
index_t StrideScaleB
Definition: gridwise_moe_mx_gemm_bns.hpp:643
index_t StrideScaleA
Definition: gridwise_moe_mx_gemm_bns.hpp:641
index_t MBlock
Definition: gridwise_moe_mx_gemm_bns.hpp:653
index_t StrideC
Definition: gridwise_moe_mx_gemm_bns.hpp:645
index_t AK0
Definition: gridwise_moe_mx_gemm_bns.hpp:651
index_t KPadded
Definition: gridwise_moe_mx_gemm_bns.hpp:650
index_t NBlock
Definition: gridwise_moe_mx_gemm_bns.hpp:654
__host__ Problem(index_t NumTokens_, index_t TopK_, index_t M_, index_t N_, index_t K_, index_t StrideA_, index_t StrideScaleA_, index_t StrideB_, index_t StrideScaleB_, std::array< index_t, NumDTensor > StrideDs_, index_t StrideC_, index_t KBatch_)
Definition: gridwise_moe_mx_gemm_bns.hpp:577
index_t StrideA
Definition: gridwise_moe_mx_gemm_bns.hpp:640
index_t StrideB
Definition: gridwise_moe_mx_gemm_bns.hpp:642
index_t KBatch
Definition: gridwise_moe_mx_gemm_bns.hpp:646
index_t BK0
Definition: gridwise_moe_mx_gemm_bns.hpp:652
index_t KRead
Definition: gridwise_moe_mx_gemm_bns.hpp:649
__host__ void Print() const
Definition: gridwise_moe_mx_gemm_bns.hpp:612
index_t K
Definition: gridwise_moe_mx_gemm_bns.hpp:639
index_t N
Definition: gridwise_moe_mx_gemm_bns.hpp:638
index_t NumTokens
Definition: gridwise_moe_mx_gemm_bns.hpp:635
std::array< index_t, NumDTensor > StrideDs
Definition: gridwise_moe_mx_gemm_bns.hpp:644
Definition: gridwise_moe_mx_gemm_bns.hpp:735
index_t a_k_split_offset
Definition: gridwise_moe_mx_gemm_bns.hpp:789
index_t b_k_split_offset
Definition: gridwise_moe_mx_gemm_bns.hpp:790
__device__ SplitKBatchOffset(Argument &karg, index_t k_id)
Definition: gridwise_moe_mx_gemm_bns.hpp:736
index_t b_scale_k_split_offset
Definition: gridwise_moe_mx_gemm_bns.hpp:792
index_t a_scale_k_split_offset
Definition: gridwise_moe_mx_gemm_bns.hpp:791
Definition: gridwise_moe_mx_gemm_bns.hpp:173
static constexpr auto is_scale_mfma
Definition: gridwise_moe_mx_gemm_bns.hpp:206
static constexpr auto I1
Definition: gridwise_moe_mx_gemm_bns.hpp:178
static constexpr index_t scale_pack_size_a
Definition: gridwise_moe_mx_gemm_bns.hpp:1320
static constexpr index_t NumDTensor
Definition: gridwise_moe_mx_gemm_bns.hpp:196
static __host__ auto CalculateMPadded(index_t M)
Definition: gridwise_moe_mx_gemm_bns.hpp:244
static constexpr auto MXdlPack
Definition: gridwise_moe_mx_gemm_bns.hpp:198
static constexpr auto BK0Number
Definition: gridwise_moe_mx_gemm_bns.hpp:192
static constexpr auto BK1Number
Definition: gridwise_moe_mx_gemm_bns.hpp:194
ADataType LDSTypeA
Definition: gridwise_moe_mx_gemm_bns.hpp:174
static constexpr __host__ bool CalculateHasMainKBlockLoop(index_t K)
Definition: gridwise_moe_mx_gemm_bns.hpp:1286
static constexpr bool is_single_rate_mfma
Definition: gridwise_moe_mx_gemm_bns.hpp:205
ThisThreadBlock< BlockSize > ThisThreadBlock
Definition: gridwise_moe_mx_gemm_bns.hpp:232
static constexpr auto I5
Definition: gridwise_moe_mx_gemm_bns.hpp:182
__host__ static __device__ auto MakeBGridDescriptor_BK0_N_BK1(index_t K, index_t KPad, index_t N, index_t NPad, index_t StrideB, index_t BK0)
Definition: gridwise_moe_mx_gemm_bns.hpp:397
BDataType LDSTypeB
Definition: gridwise_moe_mx_gemm_bns.hpp:175
static constexpr __host__ TailNumber CalculateKBlockLoopTailNum(index_t K)
Definition: gridwise_moe_mx_gemm_bns.hpp:1293
decltype(MakeDsGridPointer()) DsGridPointer
Definition: gridwise_moe_mx_gemm_bns.hpp:230
__host__ static __device__ auto MakeAGridDescriptor_AK0_M_AK1(IndexType M, IndexType MPad, IndexType K, IndexType KPad, IndexType StrideA, IndexType AK0)
Definition: gridwise_moe_mx_gemm_bns.hpp:315
static constexpr __host__ bool CheckValidity(const Argument &karg)
Definition: gridwise_moe_mx_gemm_bns.hpp:1108
__host__ static __device__ auto MakeDsGridDescriptor_M_N(index_t M, index_t MPad, index_t N, index_t NPad, std::array< index_t, NumDTensor > StrideDs)
Definition: gridwise_moe_mx_gemm_bns.hpp:552
static __device__ void Run(const index_t *p_sorted_token_ids, const index_t *p_sorted_expert_ids, const index_t *p_max_token_id, const ADataType *p_a_grid, const AScaleDataType *p_a_scale_grid, const BDataType *p_b_grid, const BScaleDataType *p_b_scale_grid, DsGridPointer &p_ds_grid, CDataType *p_c_grid, void *p_shared, const Problem &problem, AElementwiseOperation a_element_op, BElementwiseOperation b_element_op, CElementwiseOperation c_element_op)
Definition: gridwise_moe_mx_gemm_bns.hpp:1330
static constexpr auto I4
Definition: gridwise_moe_mx_gemm_bns.hpp:181
static constexpr __device__ index_t GetSharedMemoryNumberOfByte()
Definition: gridwise_moe_mx_gemm_bns.hpp:1070
static constexpr index_t APackedSize
Definition: gridwise_moe_mx_gemm_bns.hpp:202
static constexpr auto MakeDsGridPointer()
Definition: gridwise_moe_mx_gemm_bns.hpp:219
static constexpr __device__ auto MakeDsGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock(const DsGridDesc &ds_grid_desc_m_n, index_t MBlock, index_t NBlock)
Definition: gridwise_moe_mx_gemm_bns.hpp:564
static __host__ auto CalculateNPadded(index_t N)
Definition: gridwise_moe_mx_gemm_bns.hpp:249
static __host__ auto CalculateAK0Padded(index_t K, index_t K_Batch=1)
Definition: gridwise_moe_mx_gemm_bns.hpp:259
__host__ static constexpr __device__ auto MakeBMmaTileDescriptor_N0_N1_N2_N3_K(const BBlockDesc_BK0_N_BK1 &)
Definition: gridwise_moe_mx_gemm_bns.hpp:498
static constexpr auto I8
Definition: gridwise_moe_mx_gemm_bns.hpp:185
static constexpr auto I7
Definition: gridwise_moe_mx_gemm_bns.hpp:184
static constexpr auto KXdlPack
Definition: gridwise_moe_mx_gemm_bns.hpp:200
__host__ static constexpr __device__ auto MakeCGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock(const CGridDesc &c_grid_desc_m_n, index_t MBlock, index_t NBlock)
Definition: gridwise_moe_mx_gemm_bns.hpp:1301
static constexpr auto I2
Definition: gridwise_moe_mx_gemm_bns.hpp:179
__host__ static constexpr __device__ auto MakeAMmaTileDescriptor_M0_M1_M2_M3_K(const ABlockDesc_AK0_M_AK1 &)
Definition: gridwise_moe_mx_gemm_bns.hpp:488
static constexpr index_t scale_pack_size_b
Definition: gridwise_moe_mx_gemm_bns.hpp:1321
static __host__ auto CalculateKRead(index_t K, index_t K_Batch=1)
Definition: gridwise_moe_mx_gemm_bns.hpp:277
__host__ static constexpr __device__ auto MakeGemmMmaTileDescriptor(const TileDesc_K0_MN_K1 &)
Definition: gridwise_moe_mx_gemm_bns.hpp:299
remove_cvref_t< decltype(BlockGemmMXNBSPipeline_Selector< BlkGemmPipelineVer, BlkGemmPipeSched, BlockSize, ScaleBlockSize, ADataType, AScaleDataType, BDataType, BScaleDataType, ComputeTypeA, AccDataType, decltype(GetABlockDescriptor_AK0PerBlock_MPerBlock_AK1()), decltype(GetBBlockDescriptor_BK0PerBlock_NPerBlock_BK1()), decltype(MakeAMmaTileDescriptor_M0_M1_M2_M3_K(GetABlockDescriptor_AK0PerBlock_MPerBlock_AK1())), decltype(MakeBMmaTileDescriptor_N0_N1_N2_N3_K(GetBBlockDescriptor_BK0PerBlock_NPerBlock_BK1())), ABlockTransferSrcScalarPerVector, BBlockTransferSrcScalarPerVector, MPerBlock, NPerBlock, KPerBlock, MPerXdl, NPerXdl, MXdlPerWave, NXdlPerWave, KPack, IsInputGemm >())> BlockwiseGemmPipe
Definition: gridwise_moe_mx_gemm_bns.hpp:1068
static constexpr auto I6
Definition: gridwise_moe_mx_gemm_bns.hpp:183
static constexpr index_t KPack
Definition: gridwise_moe_mx_gemm_bns.hpp:213
static __host__ auto CalculateBK0Padded(index_t K, index_t K_Batch=1)
Definition: gridwise_moe_mx_gemm_bns.hpp:265
static constexpr auto I3
Definition: gridwise_moe_mx_gemm_bns.hpp:180
static constexpr auto AK1Number
Definition: gridwise_moe_mx_gemm_bns.hpp:193
static constexpr __device__ auto GetBBlockDescriptor_BK0PerBlock_NPerBlock_BK1()
Definition: gridwise_moe_mx_gemm_bns.hpp:912
static constexpr index_t SortedTileSize
Definition: gridwise_moe_mx_gemm_bns.hpp:217
static constexpr auto I9
Definition: gridwise_moe_mx_gemm_bns.hpp:186
__host__ static __device__ auto MakeDGridDescriptor_M_N(index_t M, index_t MPad, index_t N, index_t NPad, index_t StrideC)
Definition: gridwise_moe_mx_gemm_bns.hpp:531
static constexpr auto AK0Number
Definition: gridwise_moe_mx_gemm_bns.hpp:191
static constexpr __device__ auto GetCShuffleBlockDescriptor_MBlock_MPerBlock_NBlock_NPerBlock()
Definition: gridwise_moe_mx_gemm_bns.hpp:1025
static __host__ auto CalculateMBlock(index_t M)
Definition: gridwise_moe_mx_gemm_bns.hpp:284
static constexpr auto CShuffleBlockTransferScalarPerVector_NPerBlock
Definition: gridwise_moe_mx_gemm_bns.hpp:188
static __host__ auto CalculateKPadded(index_t K)
Definition: gridwise_moe_mx_gemm_bns.hpp:254
static constexpr auto NXdlPack
Definition: gridwise_moe_mx_gemm_bns.hpp:199
static __host__ auto CalculateNBlock(index_t N)
Definition: gridwise_moe_mx_gemm_bns.hpp:289
static constexpr index_t BPackedSize
Definition: gridwise_moe_mx_gemm_bns.hpp:203
__host__ static __device__ auto MakeCGridDescriptor_M_N(IndexType M, IndexType MPad, IndexType N, IndexType NPad, IndexType StrideC)
Definition: gridwise_moe_mx_gemm_bns.hpp:507
static __host__ auto CalculateKPadded(index_t K, index_t K_Batch=1)
Definition: gridwise_moe_mx_gemm_bns.hpp:271
static constexpr __device__ auto GetABlockDescriptor_AK0PerBlock_MPerBlock_AK1()
Definition: gridwise_moe_mx_gemm_bns.hpp:795
static __host__ auto CalculateGridSize(index_t M, index_t N)
Definition: gridwise_moe_mx_gemm_bns.hpp:234
static constexpr auto I0
Definition: gridwise_moe_mx_gemm_bns.hpp:177
Definition: xdlops_gemm.hpp:942
static constexpr auto selected_mfma
Definition: xdlops_gemm.hpp:1343
Definition: sequence.hpp:43
Definition: tensor_space_filling_curve.hpp:20
Definition: static_buffer.hpp:75
Blockwise data transfer.
Definition: thread_group_tensor_slice_transfer_v4r1_gather.hpp:48
Blockwise data transfer.
Definition: thread_group_tensor_slice_transfer_v4r1.hpp:46
Definition: thread_group_tensor_slice_transfer_v7r3_scatter.hpp:51
Definition: threadwise_tensor_slice_transfer.hpp:39
Helper structure that facilitates transfer of source (grid) data to destination threads.
Definition: threadwise_tensor_slice_transfer.hpp:234
Definition: tuple.hpp:117
Unsigned representation of a conventional biased Float32 exponent.
Definition: e8m0.hpp:25
Definition: data_type.hpp:41
Definition: integral_constant.hpp:20
Definition: data_type.hpp:186
Definition: functional2.hpp:33
Definition: device_base.hpp:51
Definition: unary_element_wise_operation.hpp:981
Definition: unary_element_wise_operation.hpp:308
Definition: unary_element_wise_operation.hpp:1023
Definition: dtype_vector.hpp:10
#define CK_ENV(name)
Definition: env.hpp:128