MIVisionX Live Image Classification#

This application runs know CNN image classifiers on live or pre-recorded video streams.

MIVisionX Image Classification Control#

MIVisionX Image Classification#

Usage#

Prerequisites#

Build#

git clone https://github.com/ROCm/MIVisionX.git
cd MIVisionX/apps/mivisionx_openvx_classifier
mkdir build
cd build
cmake ../
make

Run#

Usage: ./classifier	--label <label text> [required]
 					--video <video file> / --capture <0> [required]
 					--googlenet <googlenet weights.bin> [optional]
 					--inception <inceptionV4 weights.bin> [optional]
 					--resnet50 <resnet50 weights.bin> [optional]
 					--resnet101 <resnet101 weights.bin> [optional]
 					--resnet152 <resnet152 weights.bin> [optional]
 					--vgg16 <vgg16 weights.bin> [optional]
 					--vgg19 <vgg19 weights.bin> [optional]

Note* All the models are optional, but one of the supported model weights.bin is required

Supported Models#

Generating weights.bin for different Models#

  1. Download or train your caffemodel for the supported models listed above.

Here is the sample download link that contains all the prototxt:

  1. Use MIVisionX Model Compiler to extract weights.bin from the pre-trained caffe models

Note: MIVisionX installs all the model compiler scripts in /opt/rocm/libexec/mivisionx/model_compiler/python/ folder

  • Convert the pre-trained caffemodel into AMD NNIR model:

% python /opt/rocm/libexec/mivisionx/model_compiler/python/caffe_to_nnir.py <net.caffeModel> <nnirOutputFolder> --input-dims <n,c,h,w> [--verbose <0|1>]

Sample:

``` 
% python /opt/rocm/libexec/mivisionx/model_compiler/python/caffe_to_nnir.py VGG_ILSVRC_16_layers.caffemodel VGG16_NNIR --input-dims 1,3,224,224
```
  • Convert an AMD NNIR model into OpenVX C code:

% python /opt/rocm/libexec/mivisionx/model_compiler/python/nnir_to_openvx.py <nnirModelFolder> <nnirModelOutputFolder>

Sample:

``` 
% python /opt/rocm/libexec/mivisionx/model_compiler/python/nnir_to_openvx.py VGG16_NNIR VGG16_OpenVX
```

Note: The weights.bin file will be generated inside the OpenVX folder and you can use that as an input for this project.

–label #

Use labels.txt or simple_labels.txt file in the data folder

–video #

Run classification on pre-recorded video with this option.

–capture <0>#

Run classification on the live camera feed with this option.

Note: –video and –capture options are not supported concurrently

Sample Runs#

Run VGG 16 Classification on Live Video#

  • Step 1: Install all the Prerequisites

Note: MIVisionX installs all the model compiler scripts in /opt/rocm/libexec/mivisionx/model_compiler/python/ folder

  • Step 2: Download pre-trained VGG 16 caffe model - VGG_ILSVRC_16_layers.caffemodel

  • Step 3: Use MIVisionX Model Compiler to extract weights.bin file from the pre-trained caffe model

  • Convert .caffemodel to NNIR

 % python /opt/rocm/libexec/mivisionx/model_compiler/python/caffe_to_nnir.py VGG_ILSVRC_16_layers.caffemodel VGG16_NNIR --input-dims 1,3,224,224
  • Convert NNIR to OpenVX

 % python /opt/rocm/libexec/mivisionx/model_compiler/python/nnir_to_openvx.py VGG16_NNIR VGG16_OpenVX

Note: Use weights.bin generated in VGG16_OpenVX folder to run the classifier on live video

./classifier 	--label PATH_TO/labels.txt 
 				      --capture 0 
 				      --vgg16 PATH_TO/VGG16_OpenVX/weights.bin 

Run Multi-Model Classification on Live Video#

Follow the steps above to generate weigths.bin files for the supported models and run them concurrently on a live video

./classifier  --label PATH_TO/labels.txt 
              --capture 0
              --resnet50 PATH_TO/ResNet50_OpenVX/weights.bin
              --vgg16 PATH_TO/VGG16_OpenVX/weights.bin 
              --vgg19 PATH_TO/VGG19_OpenVX/weights.bin