Image Clasiification using AMD WinML Extension#
This application implements a method to run WinML supported ONNX models using MIVisionX RunTime. This c/c++ implementation does image classification on live camera capture or pre-recorded video stream.
This application is a sample for developing windows application using MIVisionX WinML extension.
Build Instructions#
Pre-requisites#
Windows 10, version
1809
or laterWindows SDK, build
17763
or laterVisual Studio 2019, version
16.11.5
or laterVisual Studio extension for C++/WinRT
Install OpenCL SDK
-
Set
OpenCV_DIR
environment variable toOpenCV/build
folderAdd
OpenCV_DIR\x64\vc14\bin
orOpenCV_DIR\x64\vc15\bin
to yourPATH
Build using Visual Studio 2019
on 64-bit Windows 10#
Use
apps/mivisonx_winml_classifier/winml_classifier.sln
to build for x64 platform
Run#
Step 1. Get ONNX model#
Get the WinML supported Classification ONNX models from onnx github. ONNX version 1.3 is recommended.
The supported models are: inceptionV2, resnet50, vgg19, shufflenet, squeezenet, densenet121, zfnet512.
Step 2. Build the app using winml_classifier.sln on Visual Studio.#
Step 3. Run tests#
Usage:#
Use Command Prompt or Windows Powershell to run the app
.\winml_classifier.exe --inception <FULL_PATH_TO\inception_v2\model.onnx> [OPTIONAL]
--resnet50 <FULL_PATH_TO\resnet50\model.onnx> [OPTIONAL]
--vgg19 <FULL_PATH_TO\vgg19\model.onnx> [OPTIONAL]
--shufflenet <FULL_PATH_TO\shufflenet\model.onnx> [OPTIONAL]
--squeezenet <FULL_PATH_TO\squeezenet\model.onnx> [OPTIONAL]
--densenet <FULL_PATH_TO\densenet\model.onnx> [OPTIONAL]
--zfnet <FULL_PATH_TO\zfnet\model.onnx> [OPTIONAL]
--label FULL_PATH_TO\amd_openvx_extensions\amd_winml\samples\data\Labels.txt [REQUIRED]
--capture 0/ --video <video file> [REQUIRED]
MIVisionX Image Classification#
MIVisionX Image Classification using WinML#
Example:
.\winml_classifier.exe --inception FULL_PATH_TO\inception_v2\model.onnx
--resnet50 FULL_PATH_TO\resnet50\model.onnx
--zfnet FULL_PATH_TO\zfnet\model.onnx
--label FULL_PATH_TO\MIVisionX\amd_openvx_extensions\amd_winml\samples\data\Labels.txt
--capture 0