HIP complex math API#
HIP provides built-in support for complex number operations through specialized types and functions, available for both single-precision (float) and double-precision (double) calculations. All complex types and functions are available on both host and device.
For any complex number z, the form is:
where x is the real part and y is the imaginary part.
Complex Number Types#
A brief overview of the specialized data types used to represent complex numbers in HIP, available in both single and double precision formats.
| Type | Description | 
|---|---|
| 
 | Complex number using single-precision (float) values (note:  hipComplexis an alias ofhipFloatComplex) | 
| 
 | Complex number using double-precision (double) values | 
Complex Number Functions#
A comprehensive collection of functions for creating and manipulating complex numbers, organized by functional categories for easy reference.
Type Construction#
Functions for creating complex number objects and extracting their real and imaginary components.
| Function | Description | 
|---|---|
| hipFloatComplexmake_hipFloatComplex(float a,float b) | Creates a complex number (note:  make_hipComplexis an alias ofmake_hipFloatComplex)\(z = a + bi\) | 
| floathipCrealf(hipFloatComplex z) | Returns real part of z \(\Re(z) = x\) | 
| floathipCimagf(hipFloatComplex z) | Returns imaginary part of z \(\Im(z) = y\) | 
| Function | Description | 
|---|---|
| hipDoubleComplexmake_hipDoubleComplex(double a,double b) | Creates a complex number \(z = a + bi\) | 
| doublehipCreal(hipDoubleComplex z) | Returns real part of z \(\Re(z) = x\) | 
| doublehipCimag(hipDoubleComplex z) | Returns imaginary part of z \(\Im(z) = y\) | 
Basic Arithmetic#
Operations for performing standard arithmetic with complex numbers, including addition, subtraction, multiplication, division, and fused multiply-add.
| Function | Description | 
|---|---|
| hipFloatComplexhipCaddf(hipFloatComplex p,hipFloatComplex q) | Addition of two single-precision complex values \((a + bi) + (c + di) = (a + c) + (b + d)i\) | 
| hipFloatComplexhipCsubf(hipFloatComplex p,hipFloatComplex q) | Subtraction of two single-precision complex values \((a + bi) - (c + di) = (a - c) + (b - d)i\) | 
| hipFloatComplexhipCmulf(hipFloatComplex p,hipFloatComplex q) | Multiplication of two single-precision complex values \((a + bi)(c + di) = (ac - bd) + (bc + ad)i\) | 
| hipFloatComplexhipCdivf(hipFloatComplex p,hipFloatComplex q) | Division of two single-precision complex values \(\frac{a + bi}{c + di} = \frac{(ac + bd) + (bc - ad)i}{c^2 + d^2}\) | 
| hipFloatComplexhipCfmaf(hipComplex p,hipComplex q,hipComplex r) | Fused multiply-add of three single-precision complex values \((a + bi)(c + di) + (e + fi)\) | 
| Function | Description | 
|---|---|
| hipDoubleComplexhipCadd(hipDoubleComplex p,hipDoubleComplex q) | Addition of two double-precision complex values \((a + bi) + (c + di) = (a + c) + (b + d)i\) | 
| hipDoubleComplexhipCsub(hipDoubleComplex p,hipDoubleComplex q) | Subtraction of two double-precision complex values \((a + bi) - (c + di) = (a - c) + (b - d)i\) | 
| hipDoubleComplexhipCmul(hipDoubleComplex p,hipDoubleComplex q) | Multiplication of two double-precision complex values \((a + bi)(c + di) = (ac - bd) + (bc + ad)i\) | 
| hipDoubleComplexhipCdiv(hipDoubleComplex p,hipDoubleComplex q) | Division of two double-precision complex values \(\frac{a + bi}{c + di} = \frac{(ac + bd) + (bc - ad)i}{c^2 + d^2}\) | 
| hipDoubleComplexhipCfma(hipDoubleComplex p,hipDoubleComplex q,hipDoubleComplex r) | Fused multiply-add of three double-precision complex values \((a + bi)(c + di) + (e + fi)\) | 
Complex Operations#
Functions for complex-specific calculations, including conjugate determination and magnitude (absolute value) computation.
| Function | Description | 
|---|---|
| hipFloatComplexhipConjf(hipFloatComplex z) | Complex conjugate \(\overline{a + bi} = a - bi\) | 
| floathipCabsf(hipFloatComplex z) | Absolute value (magnitude) \(|a + bi| = \sqrt{a^2 + b^2}\) | 
| floathipCsqabsf(hipFloatComplex z) | Squared absolute value \(|a + bi|^2 = a^2 + b^2\) | 
| Function | Description | 
|---|---|
| hipDoubleComplexhipConj(hipDoubleComplex z) | Complex conjugate \(\overline{a + bi} = a - bi\) | 
| doublehipCabs(hipDoubleComplex z) | Absolute value (magnitude) \(|a + bi| = \sqrt{a^2 + b^2}\) | 
| doublehipCsqabs(hipDoubleComplex z) | Squared absolute value \(|a + bi|^2 = a^2 + b^2\) | 
Type Conversion#
Utility functions for conversion between single-precision and double-precision complex number formats.
| Function | Description | 
|---|---|
| hipFloatComplexhipComplexDoubleToFloat(hipDoubleComplex z) | Converts double-precision to single-precision complex | 
| hipDoubleComplexhipComplexFloatToDouble(hipFloatComplex z) | Converts single-precision to double-precision complex | 
Example Usage#
The following example demonstrates using complex numbers to compute the Discrete Fourier Transform (DFT)
of a simple signal on the GPU. The DFT converts a signal from the time domain to the frequency domain.
The kernel function computeDFT shows various HIP complex math operations in action:
- Creating complex numbers with - make_hipFloatComplex
- Performing complex multiplication with - hipCmulf
- Accumulating complex values with - hipCaddf
The example also demonstrates proper use of complex number handling on both host and device, including memory allocation, transfer, and validation of results between CPU and GPU implementations.
#include <hip/hip_runtime.h>
#include <hip/hip_complex.h>
#include <iostream>
#include <vector>
#include <cmath>
#define HIP_CHECK(expression)              \
    {                                      \
        const hipError_t err = expression; \
        if (err != hipSuccess) {           \
            std::cerr << "HIP error: "     \
                    << hipGetErrorString(err) \
                    << " at " << __LINE__ << "\n"; \
            exit(EXIT_FAILURE);            \
        }                                  \
    }
// Kernel to compute DFT
__global__ void computeDFT(const float* input,
                        hipFloatComplex* output,
                        const int N)
{
    int k = blockIdx.x * blockDim.x + threadIdx.x;
    if (k >= N) return;
    hipFloatComplex sum = make_hipFloatComplex(0.0f, 0.0f);
    for (int n = 0; n < N; n++) {
        float angle = -2.0f * M_PI * k * n / N;
        hipFloatComplex w = make_hipFloatComplex(cosf(angle), sinf(angle));
        hipFloatComplex x = make_hipFloatComplex(input[n], 0.0f);
        sum = hipCaddf(sum, hipCmulf(x, w));
    }
    output[k] = sum;
}
// CPU implementation of DFT for verification
std::vector<hipFloatComplex> cpuDFT(const std::vector<float>& input) {
    const int N = input.size();
    std::vector<hipFloatComplex> result(N);
    for (int k = 0; k < N; k++) {
        hipFloatComplex sum = make_hipFloatComplex(0.0f, 0.0f);
        for (int n = 0; n < N; n++) {
            float angle = -2.0f * M_PI * k * n / N;
            hipFloatComplex w = make_hipFloatComplex(cosf(angle), sinf(angle));
            hipFloatComplex x = make_hipFloatComplex(input[n], 0.0f);
            sum = hipCaddf(sum, hipCmulf(x, w));
        }
        result[k] = sum;
    }
    return result;
}
int main() {
    const int N = 256;  // Signal length
    const int blockSize = 256;
    // Generate input signal: sum of two sine waves
    std::vector<float> signal(N);
    for (int i = 0; i < N; i++) {
        float t = static_cast<float>(i) / N;
        signal[i] = sinf(2.0f * M_PI * 10.0f * t) +  // 10 Hz component
                0.5f * sinf(2.0f * M_PI * 20.0f * t);  // 20 Hz component
    }
    // Compute reference solution on CPU
    std::vector<hipFloatComplex> cpu_output = cpuDFT(signal);
    // Allocate device memory
    float* d_signal;
    hipFloatComplex* d_output;
    HIP_CHECK(hipMalloc(&d_signal, N * sizeof(float)));
    HIP_CHECK(hipMalloc(&d_output, N * sizeof(hipFloatComplex)));
    // Copy input to device
    HIP_CHECK(hipMemcpy(d_signal, signal.data(), N * sizeof(float),
                    hipMemcpyHostToDevice));
    // Launch kernel
    dim3 grid((N + blockSize - 1) / blockSize);
    dim3 block(blockSize);
    computeDFT<<<grid, block>>>(d_signal, d_output, N);
    HIP_CHECK(hipGetLastError());
    // Get GPU results
    std::vector<hipFloatComplex> gpu_output(N);
    HIP_CHECK(hipMemcpy(gpu_output.data(), d_output, N * sizeof(hipFloatComplex),
                    hipMemcpyDeviceToHost));
    // Verify results
    bool passed = true;
    const float tolerance = 1e-5f;  // Adjust based on precision requirements
    for (int i = 0; i < N; i++) {
        float diff_real = std::abs(hipCrealf(gpu_output[i]) - hipCrealf(cpu_output[i]));
        float diff_imag = std::abs(hipCimagf(gpu_output[i]) - hipCimagf(cpu_output[i]));
        if (diff_real > tolerance || diff_imag > tolerance) {
            passed = false;
            break;
        }
    }
    std::cout << "DFT Verification: " << (passed ? "PASSED" : "FAILED") << "\n";
    // Cleanup
    HIP_CHECK(hipFree(d_signal));
    HIP_CHECK(hipFree(d_output));
    return passed ? 0 : 1;
}