Python API reference#

Applies to Linux

2024-02-27

10 min read time

shape#

class migraphx.shape(type, lens, strides=None, dyn_dims)#

Describes the shape of a tensor. This includes size, layout, and data type. Use dyn_dims for a dynamic shape.

migraphx.type()#

An integer that represents the type.

Return type:

int

migraphx.lens()#

A list of the lengths of the shape.

Return type:

list[int]

migraphx.strides()#

A list of the strides of the shape.

Return type:

list[int]

migraphx.elements()#

The number of elements in the shape.

Return type:

int

migraphx.dyn_dims()#

The dynamic dimensions of the shape.

Return type:

list[dynamic_dimension]

migraphx.bytes()#

The number of bytes the shape uses.

Return type:

int

migraphx.type_size()#

The number of bytes one element uses

Return type:

int

migraphx.ndim()#

The number of dimensions for the shape.

Return type:

int

migraphx.packed()#

Returns true if the shape is packed.

Return type:

bool

migraphx.transposed()#

Returns true if the shape is transposed.

Return type:

bool

migraphx.broadcasted()#

Returns true if the shape is broadcasted.

Return type:

bool

migraphx.dynamic()#

Returns true if the shape is dynamic.

Return type:

bool

migraphx.standard()#

Returns true if the shape is a standard shape. That is, the shape is both packed and not transposed.

Return type:

bool

migraphx.scalar()#

Returns true if all strides are equal to 0 (scalar tensor).

Return type:

bool

dynamic_dimension#

class migraphx.dynamic_dimension(min, max, optimals)#

Constructs a dynamic_dimension from a minimum, a maximum, and optionally a set of optimals.

migraphx.is_fixed()#

Returns true if the dynamic_dimension is fixed.

:rtype : int

argument#

class migraphx.argument(data)#

Constructs an argument from a python buffer. This can include numpy arrays.

migraphx.data_ptr()#

Returns the address to the underlying argument data.

Return type:

int

migraphx.get_shape()#

Returns the shape of the argument.

Return type:

shape

migraphx.tolist()#

Converts the elements of the argument to a python list.

Return type:

list

migraphx.generate_argument(s, seed=0)#

Generates an argument with random data.

Parameters:
  • s (shape) – Shape of argument to generate.

  • seed (int) – The seed used for random number generation.

Return type:

argument

migraphx.fill_argument(s, value)#

Fills argument of shape s with the given value.

Parameters:
  • s (shape) – Shape of argument to fill.

  • value (int) – Value to fill in the argument.

Return type:

argument

migraphx.create_argument(s, values)#

Creates an argument of shape s with a set of values.

Parameters:
  • s (shape) – Shape of argument to create.

  • values (list) – Values to put in the argument. Must be the same number of elements as the shape.

Return type:

argument

migraphx.argument_from_pointer(shape, address)#

Creates argument from data stored in given address without copy.

Parameters:
  • shape (shape) – Shape of the data stored in address.

  • address (long) – Memory address of data from another source

Return type:

argument

target#

class migraphx.target#

This represents the compilation target.

migraphx.get_target(name)#

Constructs the target.

Parameters:

name (str) – The name of the target to construct. This can either be ‘gpu’ or ‘ref’.

Return type:

target

module#

migraphx.print()#

Prints the contents of the module as list of instructions.

migraphx.add_instruction(op, args, mod_args=[])#

Adds instruction into the module.

Parameters:
  • op (operation) – ‘migraphx.op’ to be added as instruction.

  • args (list[instruction]) – list of inputs to the op.

  • mod_args (list[module]) – optional list of module arguments to the operator.

:rtype instruction

migraphx.add_literal(data)#

Adds constant or literal data of provided shape into the module from python buffer which includes numpy array.

Parameters:

data (py::buffer) – Python buffer or numpy array

:rtype instruction

migraphx.add_parameter(name, shape)#

Adds a parameter to the module with the provided name and shape.

Parameters:
  • name (str) – name of the parameter.

  • shape (shape) – shape of the parameter.

:rtype instruction

migraphx.add_return(args)#

Adds a return instruction into the module.

Parameters:

args (list[instruction]) – instruction arguments which need to be returned from the module.

:rtype instruction

program#

class migraphx.program#

Represents the computation graph to be compiled and run.

migraphx.clone()#

Makes a copy of the program.

Return type:

program

migraphx.get_parameter_names()#

Gets all the input argument’s or parameter’s names to the program as a list.

:rtype list[str]

migraphx.get_parameter_shapes()#

Gets the shapes of all the input parameters in the program.

Return type:

dict[str, shape]

migraphx.get_output_shapes()#

Gets the shapes of the final outputs of the program.

Return type:

list[shape]

migraphx.compile(t, offload_copy=True, fast_math=True, exhaustive_tune=False)#

Compiles the program for the target and optimizes it.

Parameters:
  • t (target) – Compilation target for the program.

  • offload_copy (bool) – For targets with offloaded memory(such as the gpu), this will insert instructions during compilation to copy the input parameters to the offloaded memory and to copy the final result from the offloaded memory back to main memory.

  • fast_math (bool) – Optimize math functions to use faster approximate versions. There may be slight accuracy degredation when enabled.

  • exhaustive_tune – Flag to enable exhaustive search to find the fastest version of generated kernels for selected backend.

migraphx.get_main_module()#

Gets main module of the program.

:rtype module

migraphx.create_module(name)#

Creates and adds a module with the provided name into the program.

:param str name : name of the new module. :rtype module

migraphx.run(params)#

Runs the program.

Parameters:

params (dict[str, argument]) – Map of the input parameters to be used when running the program.

Returns:

The result of the last instruction.

Return type:

list[argument]

migraphx.sort()#

Sorts the modules of the program for the instructions to appear in topologically sorted order.

migraphx.quantize_fp16(prog, ins_names=['all'])#

Quantizes the program to use fp16.

Parameters:
  • prog (program) – Program to quantize.

  • ins_names (list[str]) – List of instructions to quantize.

migraphx.quantize_int8(prog, t, calibration=[], ins_names=['dot', 'convolution'])#

Quantizes the program to use int8.

Parameters:
  • prog (program) – Program to quantize.

  • t (target) – Target to be used to run the calibration data.

  • calibration (list[dict[str, argument]]) – Calibration data used to decide the parameters to the int8 optimization.

  • ins_names (list[str]) – List of instructions to quantize.

op#

parse_onnx#

migraphx.parse_onnx(filename, default_dim_value=1, map_input_dims={}, skip_unknown_operators=false, print_program_on_error=false, max_loop_iterations=10, limit_max_iterations=65535)#

Loads and parses an ONNX file.

Parameters:
  • filename (str) – Path to file.

  • default_dim_value (str) – default dimension to use (if not specified in onnx file).

  • default_dyn_dim_value (dynamic_dimension) – default dynamic_dimension value to use.

  • map_input_dims (str) – Explicitly specify the dims of an input.

  • map_dyn_input_dims (list[dynamic_dimension]) – Explicitly specify the dynamic_dimensions of an input.

  • skip_unknown_operators (str) – Continue parsing onnx file if an unknown operator is found.

  • print_program_on_error (str) – Print program if an error occurs.

  • max_loop_iterations (int) – Maximum iteration number for the loop operator if trip count is not set.

  • limit_max_iterations (int) – Maximum iteration limit for the loop operator.

Return type:

program

parse_tf#

migraphx.parse_tf(filename, is_nhwc=True, batch_size=1, map_input_dims=dict(), output_names=[])#

Loads and parses a tensorflow protobuf file.

Parameters:
  • filename (str) – Path to file.

  • is_nhwc (bool) – Use nhwc as default format.

  • batch_size (str) – default batch size to use (if not specified in protobuf).

  • map_input_dims (dict[str, list[int]]) – Optional arg to explictly specify dimensions of the inputs.

  • output_names (list[str]) – Optional argument specify names of the output nodes.

Return type:

program

load#

migraphx.load(filename, format='msgpack')#

Loads a MIGraphX program.

Parameters:
  • filename (str) – Path to file.

  • format (str) – Format of file. Valid options are msgpack or json.

Return type:

program

save#

migraphx.save(p, filename, format='msgpack')#

Saves a MIGraphX program.

Parameters:
  • p (program) – Program to save.

  • filename (str) – Path to file.

  • format (str) – Format of file. Valid options are msgpack or json.