Python Reference#
2023-06-14
9 min read time
shape#
- class migraphx.shape(type, lens, strides=None)#
Describes the shape of a tensor. This includes size, layout, and data type/
- migraphx.standard()#
Returns true if the shape is a standard shape. That is, the shape is both packed and not transposed.
- Return type:
argument#
- class migraphx.argument(data)#
Construct an argument from a python buffer. This can include numpy arrays.
- migraphx.generate_argument(s, seed=0)#
Generate an argument with random data.
target#
- class migraphx.target#
This represents the compilation target.
module#
- migraphx.print()#
Prints the contents of the module as list of instructions.
- migraphx.add_instruction(op, args, mod_args=[])#
Adds instruction into the module.
- Parameters:
:rtype instruction
- migraphx.add_literal(data)#
Adds constant or literal data of provided shape into the module from python buffer which includes numpy array.
- Parameters:
data (py::buffer) – Python buffer or numpy array
:rtype instruction
- migraphx.add_parameter(name, shape)#
Adds a parameter to the module with provided name and shape.
:rtype instruction
program#
- class migraphx.program#
Represents the computation graph to be compiled and run.
- migraphx.get_parameter_names()#
Get all the input arguments’ or parameters’ names to the program as a list.
:rtype list[str]
- migraphx.get_parameter_shapes()#
Get the shapes of all the input parameters in the program.
- migraphx.get_output_shapes()#
Get the shapes of the final outputs of the program.
- migraphx.compile(t, offload_copy=True, fast_math=True)#
Compiles the program for the target and optimizes it.
- Parameters:
t (target) – This is the target to compile the program for.
offload_copy (bool) – For targets with offloaded memory(such as the gpu), this will insert instructions during compilation to copy the input parameters to the offloaded memory and to copy the final result from the offloaded memory back to main memory.
fast_math (bool) – Optimize math functions to use faster approximate versions. There may be slight accuracy degredation when enabled.
- migraphx.get_main_module()#
Get main module of the program.
:rtype module
- migraphx.create_module(name)#
Create and add a module of provided name into the program.
:param str name : name of the new module. :rtype module
- migraphx.run(params)#
Run the program.
- migraphx.sort()#
Sort the modules of the program such that instructions appear in topologically sorted order.
- migraphx.quantize_fp16(prog, ins_names=['all'])#
Quantize the program to use fp16.
- migraphx.quantize_int8(prog, t, calibration=[], ins_names=['dot', 'convolution'])#
Quantize the program to use int8.
op#
parse_onnx#
- migraphx.parse_onnx(filename, default_dim_value=1, map_input_dims={}, skip_unknown_operators=false, print_program_on_error=false, max_loop_iterations=10)#
Load and parse an onnx file.
- Parameters:
filename (str) – Path to file.
default_dim_value (str) – default batch size to use (if not specified in onnx file).
map_input_dims (str) – Explicitly specify the dims of an input.
skip_unknown_operators (str) – Continue parsing onnx file if an unknown operator is found.
print_program_on_error (str) – Print program if an error occurs.
max_loop_iterations (int) – Maximum iteration number for the loop operator.
- Return type:
parse_tf#
- migraphx.parse_tf(filename, is_nhwc=True, batch_size=1, map_input_dims=dict(), output_names=[])#
Load and parse an tensorflow protobuf file file.
- Parameters:
filename (str) – Path to file.
is_nhwc (bool) – Use nhwc as default format.
batch_size (str) – default batch size to use (if not specified in protobuf).
map_input_dims (dict[str, list[int]]) – Optional arg to explictly specify dimensions of the inputs.
output_names (list[str]) – Optional argument specify names of the output nodes.
- Return type: