
Use ROCm™ on Radeon™ GPUs
Documentation

Advanced Micro Devices, Inc.

Jul 12, 2024

CONTENTS

1 Prerequisites to use ROCm on Radeon desktop GPUs for machine learning development 3
1.1 Supported hardware . 3
1.2 Supported operating systems . 4
1.3 Recommended system configuration . 4

2 How to guides 7
2.1 Linux How to guide - Use ROCm on Radeon GPUs . 7
2.2 WSL How to guide - Use ROCm on Radeon GPUs . 25

3 Usecases 31
3.1 vLLM . 31

4 Compatibility matrices 33
4.1 Linux support matrices by ROCm version . 33
4.2 Compatibility matrices (WSL) . 35

5 Limitations 37
5.1 Multi-GPU configuration . 37
5.2 Windows Subsystem for Linux (WSL) . 37
5.3 6.1.3 release known issues . 38

6 AI community 39

7 Report a bug 41

i

ii

Use ROCm™ on Radeon™ GPUs Documentation

Turn your desktop into aMachine Learning platformwith the latest high-end AMDRadeon™ 7000 series GPUs
AMD has expanded support for Machine Learning Development on RDNA™ 3 GPUs with Radeon™ Software for
Linux 24.10.3 with ROCm™ 6.1.3!
Researchers and developers working with Machine Learning (ML) models and algorithms using PyTorch, ONNX Run-
time, or TensorFlow can now also use ROCm 6.1.3 on Linux® to tap into the parallel computing power of the latest
high-end AMD Radeon 7000 series desktop GPUs, and based on AMD RDNA 3 GPU architecture.
A client solution built on powerful high-end AMD GPUs enables a local, private, and cost-effective workflow to develop
ROCm and train Machine Learning for users who were solely reliant on cloud-based solutions.
More ML performance for your desktop

• With today’s models easily exceeding the capabilities of standard hardware and software not designed for AI, ML
engineers are looking for cost-effective solutions to develop and train their ML-powered applications. Due to the
availability of significantly large GPU memory sizes of 24GB or 48GB, utilization of a local PC or workstation
equipped with the latest high-end AMD Radeon 7000 series GPU offers a robust/potent yet economical option to
meet these expanding ML workflow challenges.

• Latest high-end AMD Radeon 7000 series GPUs are built on the RDNA 3 GPU architecture,
– featuring more than 2x higher AI performance per Compute Unit (CU) compared to the previous generation
– now comes with up to 192 AI accelerators
– offers up to 24GB or 48GB of GPU memory to handle large ML models

Note: Based on AMD internal measurements, November 2022, comparing the Radeon RX 7900 XTX at 2.505 GHz
boost clock with 96 CUs issuing 2X the Bfloat16 math operations per clock vs. the Radeon RX 6900 XT GPU at 2.25
GHz boost clock and 80 CUs issue 1X the Bfloat16 math operations per clock. Results may vary. RX-821.

CONTENTS 1

Use ROCm™ on Radeon™ GPUs Documentation

Migrate your application from the desktop to the datacenter
• ROCm is the open-source software stack for Graphics Processing Unit (GPU) programming. ROCm spans several
domains: General-Purpose computing on GPUs (GPGPU), High Performance Computing (HPC) and heteroge-
neous computing.

• The latest AMD ROCm 6.1.3 software stack for GPU programming unlocks the massively parallel compute power
of these RDNA 3 GPUs for use with various ML frameworks. The same software stack also supports AMD
CDNA™ GPU architecture, so developers can migrate applications from their preferred framework into the dat-
acenter.

Freedom to customize
ROCm is primarily Open-Source Software (OSS) that allows developers the freedom to customize and tailor their GPU
software for their own needs while collaborating with a community of other developers, and helping each other find
solutions in an agile, flexible, rapid and secure manner. AMD ROCm allows users to maximize their GPU hardware
investment. ROCm is designed to help develop, test and deploy GPU accelerated HPC, AI, scientific computing, CAD,
and other applications in a free, open-source, integrated and secure software ecosystem.
Improved interoperability

• Support for PyTorch, one of the leading ML frameworks.
• Support for ONNXRuntime to perform inference on a wider range of source data, including INT8withMIGraphX.
• Support for TensorFlow.

Note: Visit AMD ROCm Documentation for the latest on ROCm.
For the latest driver installation packages, visit Linux Drivers for Radeon Software.

2 CONTENTS

https://rocmdocs.amd.com/
https://www.amd.com/en/support/linux-drivers

CHAPTER

ONE

PREREQUISITES TO USE ROCM ON RADEON DESKTOP GPUS
FOR MACHINE LEARNING DEVELOPMENT

Before starting with the installation, ensure that your system meets the necessary requirements such as supported hard-
ware, a compatible operating system, and the recommended system configuration to ensure optimal performance and
functionality.
See Compatibility matrices for more information.

1.1 Supported hardware

1.1.1 Supported graphics processing units

To successfully install ROCm™ for machine learning development, ensure that your system is operating on a Radeon™
Desktop GPU listed in the Compatibility matrices section.

1.1.2 Recommended memory

The recommended memory to use ROCm on Radeon. These specifications are required for complex AI/ML workloads:
• 64GB Main Memory
• 24GB GPU Video Memory
Note AMD recommends having the same amount of system memory as video memory, as a minimum.

Minimum recommendations

Minimum memory requirements to use ROCm on Radeon. Note that low system memory may cause issues running
inference models.

• 16GB Main Memory
• 8GB GPU Video Memory
Important! These are guidelines only. Note that minimum memory required will vary depending on work-
load.

3

Use ROCm™ on Radeon™ GPUs Documentation

1.2 Supported operating systems

Ensure that your operating system is up-to-date to successfully install ROCm for machine learning development.
Refer to Compatibility matrices for up-to-date operating system compatibility.

1.2.1 Update Ubuntu® operating system

Use the following commands to bring your OS up-to-date:

sudo apt-get update
sudo apt-get dist-upgrade

1.3 Recommended system configuration

This section guides users on how to optimize system configuration for ROCm™ usage, ensuring smooth and performant
ROCm operation.

1.3.1 Disable iGPU

The iGPU is non-essential for AI and ML workloads and not officially supported. Disable iGPU in SBIOS before pro-
ceeding to avoid unknown issues.
Alternatively, use environment variables to select the target GPU.
Here are examples to disable iGPU on some AMD motherboards:

Gigabyte™ X670 AORUS ELITE AX

1. Enter BIOS
Path: Advanced → AMD CBS → NBIO Common Options → GFX Configuration → iGPU Configuration

2. Set iGPU to Disabled

ASUS Prime X670-P WIFI

1. Enter BIOS
Path: Advanced → NB Configuration → Integrated Graphics

2. Set to Disabled
NOTE: This step only applies to AMD motherboards, no action is required for non-AMD motherboards.
There are no minimum motherboard hardware requirements.

4 Chapter 1. Prerequisites to use ROCm on Radeon desktop GPUs for machine learning
development

Use ROCm™ on Radeon™ GPUs Documentation

Alternative option: Use environment variables to select target GPU

An alternative option to disabling the iGPU is to use environment variable to select the GPU.
See GPU Isolation Techniques to specify the device indices you would like to expose to your application.

1.3. Recommended system configuration 5

https://rocm.docs.amd.com/en/latest/understand/gpu_isolation.html

Use ROCm™ on Radeon™ GPUs Documentation

6 Chapter 1. Prerequisites to use ROCm on Radeon desktop GPUs for machine learning
development

CHAPTER

TWO

HOW TO GUIDES

These guides walk you through the various installation processes required to pair ROCm™with the latest high-end AMD
Radeon™ 7000 series desktop GPUs.
Linux
WSL
Linux How to guide

WSL How to guide

2.1 Linux How to guide - Use ROCm on Radeon GPUs

This guide walks you through the various installation processes required to pair ROCm™ with the latest high-end AMD
Radeon™ 7000 series desktop GPUs, and get started on a fully-functional environment for AI and ML development.

2.1.1 Install Radeon software for Linux with ROCm

The ROCm™ Software Stack and other Radeon™ software for Linux components are installed using the
amdgpu-install script to assist you in the installation of a coherent set of stack components.

• Simplifies the installation of the AMDGPU stack by encapsulating the distribution specific package installation
logic and by using command line options that allows you to specify the:

– Usecase of the AMDGPU stack to be installed (Graphics or Workstation)
– Combination of components (Pro stack, or user selection)

• Performs post-install checks to verify whether the installation was performed successfully.
• Installs the uninstallation script to allow you to remove the whole AMDGPU stack from the system by using a single
command.

The script is provided by the installer package. See Compatibility matrices for support information.

7

Use ROCm™ on Radeon™ GPUs Documentation

Install AMD unified driver package repositories and installer script

Download and install the amdgpu-install script on the system.
Enter the following commands to install the installer script for the latest compatible Ubuntu® version:

sudo apt update
wget https://repo.radeon.com/amdgpu-install/6.1.3/ubuntu/jammy/amdgpu-install_6.1.
↪→60103-1_all.deb
sudo apt install ./amdgpu-install_6.1.60103-1_all.deb

Install AMD unified kernel-mode GPU driver, ROCm, and graphics

After the Unified Driver Deb Package repositories are installed, run the installer script with appropriate --usecase
parameters to install the driver components.
AMD recommends installing the Graphics usecase by default. Only consider the alternative install option if you have an
applicable Workstation usecase scenario.
Enter the following command to display a list of available usecases:

sudo amdgpu-install --list-usecase

Option A: Graphics usecase

AMD recommends installing the Graphics usecase by default.
1. Run the following command to install open source graphics and ROCm.

amdgpu-install -y --usecase=graphics,rocm

Watch for output warning or errors indicating an unsuccessful driver installation.
Note: The -y option installs non-interactively. This step may take several minutes, depending on
internet connection and system speed.

2. Reboot the system.

sudo reboot

See Using the amdgpu-install script for more information.
Next, set Groups permissions.

Option B: Workstation usecase

Only consider the alternative install option if you have an applicable Workstation usecase scenario.
1. Run the following command to install workstation graphics and ROCm.

amdgpu-install -y --usecase=workstation,rocm

Note: The -y option installs non-interactively. This step may take several minutes, depending on internet
connection and system speed.

2. Reboot the system.

8 Chapter 2. How to guides

https://amdgpu-install.readthedocs.io/en/latest/install-script.html

Use ROCm™ on Radeon™ GPUs Documentation

sudo reboot

See Using the amdgpu-install script for more information.
Next, set Groups permissions.

Set Groups permissions

Once the driver is installed, add any current user to the render and video groups to access GPU resources.
Reboot in order for group changes to take effect.

Add user to render and video groups

1. Enter the following command to check groups in the system:

groups

2. Add user to the render and video group using the command:

sudo usermod -a -G render,video $LOGNAME

3. Reboot the system.

sudo reboot

See Setting Permissions for Groups for more information.

Post-install verification checks

Run these post-installation checks to verify that the installation is complete:
1. Verify that the current user is added to the render and video groups.

groups

Expected result:

<username> adm cdrom sudo dip video plugdev render lpadmin lxd sambashare

<username> indicates the current user, and this result will vary in your environment.
2. Check if amdgpu kernel driver is installed.

dkms status

Expected result:

amdgpu/x.x.x-xxxxxxx.xx.xx, x.x.x-xx-generic, x86_64: installed

3. Check if the GPU is listed as an agent.

rocminfo

Expected result:

2.1. Linux How to guide - Use ROCm on Radeon GPUs 9

https://amdgpu-install.readthedocs.io/en/latest/install-script.html
https://rocm.docs.amd.com/projects/install-on-linux/en/latest/how-to/prerequisites.html#setting-permissions-for-groups

Use ROCm™ on Radeon™ GPUs Documentation

[...]

Agent 2

Name: gfx1100
Uuid: GPU-5ecee39292e80c37
Marketing Name: Radeon RX 7900 XTX
Vendor Name: AMD
[...]

[...]

4. Check if the GPU is listed.

clinfo

Expected result:

[...]
Platform Name: AMD Accelerated Parallel Processing

Number of devices: 1
Device Type: CL_DEVICE_TYPE_GPU
Vendor ID: 1002h
Board name: Radeon RX 7900 XTX

[...]

See Installing the all open usecase for additional troubleshooting tips.

Advanced install methods

For advanced install methods, such as Multi-Version and Package Manager, refer to AMD GPU Install Script.

Uninstall ROCm

Run the following command to uninstall the ROCm software stack and other Radeon software for Linux components:

sudo amdgpu-uninstall

Upgrade to newer versions of Radeon software for Linux

The recommended method to upgrade is to uninstall, followed by an install.
Radeon Software for Linux does not support in-place upgrades.

10 Chapter 2. How to guides

https://amdgpu-install.readthedocs.io/en/latest/install-installing.html#installing-the-all-open-use-case
https://rocm.docs.amd.com/en/latest/deploy/linux/installer/index.html

Use ROCm™ on Radeon™ GPUs Documentation

2.1.2 Install PyTorch for ROCm

Refer to this section for the recommended PyTorch via PIP installation method, as well as Docker-based installation.

Option A: PyTorch via PIP installation

AMD recommends the PIP install method to create a PyTorch environment when working with ROCm™ for machine
learning development.

Check Pytorch.org for latest PIP install instructions and availability. See Compatibility matrices for support
information.
Note The latest version of Python module numpy v2.0 is incompatible with the torch wheels for this version.
Downgrade to an older version is required. Example: pip3 install numpy==1.26.4

Install PyTorch via PIP

1. Enter the following command to unpack and begin set up.

sudo apt install python3-pip -y

2. Enter this command to update the pip wheel.

pip3 install --upgrade pip wheel

3. Enter this command to install Torch and Torchvision for ROCm AMD GPU support.

wget https://repo.radeon.com/rocm/manylinux/rocm-rel-6.1.3/torch-2.1.2%2Brocm6.1.
↪→3-cp310-cp310-linux_x86_64.whl
wget https://repo.radeon.com/rocm/manylinux/rocm-rel-6.1.3/torchvision-0.16.1
↪→%2Brocm6.1.3-cp310-cp310-linux_x86_64.whl
wget https://repo.radeon.com/rocm/manylinux/rocm-rel-6.1.3/pytorch_triton_rocm-2.
↪→1.0%2Brocm6.1.3.4d510c3a44-cp310-cp310-linux_x86_64.whl
pip3 uninstall torch torchvision pytorch-triton-rocm numpy
pip3 install torch-2.1.2+rocm6.1.3-cp310-cp310-linux_x86_64.whl torchvision-0.16.
↪→1+rocm6.1.3-cp310-cp310-linux_x86_64.whl pytorch_triton_rocm-2.1.0+rocm6.1.3.
↪→4d510c3a44-cp310-cp310-linux_x86_64.whl numpy==1.26.4

This may take several minutes.
Important! AMD recommends proceeding with ROCm WHLs available at repo.radeon.com. The
ROCm WHLs available at PyTorch.org are not tested extensively by AMD as the WHLs change regu-
larly when the nightly builds are updated.

Next, verify your PyTorch installation.

2.1. Linux How to guide - Use ROCm on Radeon GPUs 11

http://Pytorch.org

Use ROCm™ on Radeon™ GPUs Documentation

Option B: Docker installation

Using Docker provides portability, and access to a prebuilt Docker container that has been rigorously tested within AMD.
Docker also cuts down compilation time, and should perform as expected without installation issues.

Prerequisites to install PyTorch using Docker

Docker for Ubuntu® must be installed.
To install Docker for Ubuntu, enter the following command:

sudo apt install docker.io

Use Docker image with pre-installed PyTorch

Follow these steps for installing using a Docker image.
1. Enter the following command to pull the public PyTorch Docker image.

sudo docker pull rocm/pytorch:rocm6.1.3_ubuntu22.04_py3.10_pytorch_release-2.1.2

Optional: You can also download a specific and supported configuration with different user-space
ROCm versions, PyTorch versions, and supported operating systems.
Refer to hub.docker.com/r/rocm/pytorch to download the PyTorch Docker image.

2. Start a Docker container using the downloaded image.

sudo docker run -it \
--cap-add=SYS_PTRACE \
--security-opt seccomp=unconfined \
--device=/dev/kfd \
--device=/dev/dri \
--group-add video \
--ipc=host \
--shm-size 8G \
rocm/pytorch:rocm6.1.3_ubuntu22.04_py3.10_pytorch_release-2.1.2

This will automatically download the image if it does not exist on the host. You can also pass the -v
argument to mount any data directories from the host onto the container.

Next, verify the PyTorch installation.
See PyTorch Installation for ROCm for more information.

Verify PyTorch installation

Confirm if PyTorch is correctly installed.
1. Verify if Pytorch is installed and detecting the GPU compute device.

python3 -c 'import torch' 2> /dev/null && echo 'Success' || echo 'Failure'

Expected result:

12 Chapter 2. How to guides

https://hub.docker.com/r/rocm/pytorch
https://rocm.docs.amd.com/en/latest/how_to/pytorch_install/pytorch_install.html

Use ROCm™ on Radeon™ GPUs Documentation

Success

2. Enter command to test if the GPU is available.

python3 -c 'import torch; print(torch.cuda.is_available())'

Expected result:

True

3. Enter command to display installed GPU device name.

python3 -c "import torch; print(f'device name [0]:', torch.cuda.get_device_
↪→name(0))"

Expected result: Example: device name [0]: Radeon RX 7900 XTX

device name [0]: <Supported AMD GPU>

4. Enter command to display component information within the current PyTorch environment.

python3 -m torch.utils.collect_env

Expected result:

PyTorch version

ROCM used to build PyTorch

OS

Is CUDA available

GPU model and configuration

HIP runtime version

MIOpen runtime version

Environment set-up is complete, and the system is ready for use with PyTorch to work with machine learning models,
and algorithms.

2.1.3 Install ONNX Runtime for Radeon GPUs

Refer to this section to install ONNX via the PIP installation method.

2.1. Linux How to guide - Use ROCm on Radeon GPUs 13

Use ROCm™ on Radeon™ GPUs Documentation

Overview

Ensure that the following prerequisite installations are successful before proceeding to install ONNX Runtime for use
with ROCm™ on Radeon™ GPUs.

Prerequisites

• Radeon Software for Linux (with ROCm) is installed.
• MIGraphX is installed. This enables ONNX Runtime to build the correct MIGraphX Execution Provider (EP).
• The half library is installed. See Verify if MIGraphX is installed with the half library.
• If the prerequisite installations are successful, proceed to install ONNX Runtime.

NOTE Unless adding custom features, use the pre-built Python wheel files provided in the PIP instal-
lation method.

Verify if MIGraphX is installed with the half library

$ dpkg -l | grep migraphx
$ dpkg -l | grep half

Expected result:

root@aus-navi3x-02:/workspace/AMDMIGraphX# dpkg -l | grep migraphx
ii migraphx 2.9.0 amd64 AMD
↪→'s graph optimizer
ii migraphx-dev 2.9.0 amd64 AMD
↪→'s graph optimizer
ii migraphx-tests 2.9.0 amd64 AMD
↪→'s graph opt

$ dpkg -l | grep half
ii half 1.12.0.60000-91~20.04 amd64 HALF-
↪→PRECISION FLOATING POINT LIBRARY

NOTE Versions may vary between ROCm builds and installed versions of MIGraphX, but the desired result
is the same.
Enter the following install command if the half library is not installed with MIGraphX:

$ dpkg -l | grep migraphx
$ dpkg -l | grep half

NOTE The half library should come packaged with MIGraphX. If not, it can be installed with the following
command:

$ sudo apt install half

14 Chapter 2. How to guides

https://www.amd.com/en/support/linux-drivers

Use ROCm™ on Radeon™ GPUs Documentation

Install ONNX Runtime

Important!
• Use the provided pre-built Python wheel files from the PIP installation method, unless adding custom
features.

• The wheel file contains the MIGraphX and ROCm Execution Providers (EP). Refer to Install MI-
GraphX for ONNX RT for more information.

• Refer to ONNX Runtime Documentation for additional information on ONNX Runtime topics.
• See ONNX Runtime Tutorials to try out real applications and tutorials on how to get started.

Option A: PIP install (Recommended)

Option A: ONNX Runtime install via PIP installation method (Recommended)

AMD recommends the PIP install method to create an ONNX Runtime environment when working with ROCm for
machine learning development.

Note The latest version of Python module numpy v2.0 is incompatible with the ONNX Runtime wheels for
this version. Downgrade to an older version is required. Example: pip3 install numpy==1.26.4

To install via PIP,
Enter this command to download and install the ONNX Runtime wheel.

pip3 uninstall onnxruntime-rocm numpy
pip3 install https://repo.radeon.com/rocm/manylinux/rocm-rel-6.1.3/onnxruntime_rocm-1.
↪→17.0-cp310-cp310-linux_x86_64.whl numpy==1.26.4

Next, verify the ONNX Runtime installation.

Option B: Build from source (Advanced)

Option B: Build from source for your environment, followed by local wheel file installation (Ad-
vanced)

Use this method for advanced customization usecases. This requires the user install the desired ROCm and MIGraphX
versions, and creation of softlink prior to starting the build.

NOTE The build time typically takes ~45 minutes.

Prerequisites to build ONNX from source

• Radeon Software for Linux (with ROCm) is installed
• MigraphX is installed
• Softlink is created

To create a softlink for /opt/rocm, enter the following command:

language = bash
linenumbers = true
ln -s /opt/rocm* /opt/rocm

2.1. Linux How to guide - Use ROCm on Radeon GPUs 15

https://onnxruntime.ai/docs/
https://onnxruntime.ai/docs/tutorials/
https://www.amd.com/en/support/linux-drivers

Use ROCm™ on Radeon™ GPUs Documentation

To build from source,
1. Clone the ONNX Runtime repository into the root directory.

cd /
git clone https://github.com/microsoft/onnxruntime.git

2. Git clone AMDMIGraphX into the home folder.

cd ~
git clone https://github.com/ROCm/AMDMIGraphX.git

3. Create a docker image for MIGraphX.
Note
• Refer to AMDMIGraphX Github for up-to-date ONNX Runtime and MIGraphX dependencies.
• MIGraphX can still be built or installed from apt.
• For MIGraphX package builds via RBuild, refer to these MIGraphx Github instructions to build
within the docker container environment.

• For MIGraphX package builds via CMake, refer to these MIGraphx Github instructions to build
within the docker container environment.

• Use the groups command to ensure that the user is part of the video, render, and docker groups in Linux
to run the docker container.

groups
tthemist@aus-navi3x-02 ~/groups
tthemist sudo video render docker

• Run the following for a simple MIGraphX apt install:

cd AMDMIGraphX
docker build -t migraphx .
docker run --device='/dev/kfd' --device='/dev/dri' -v=`pwd`:/code/AMDMIGraphX␣
↪→-v /onnxruntime:/onnxruntime -w /code/AMDMIGraphX --group-add video -it␣
↪→migraphx
apt install migraphx migraphx-dev half

4. Run rocm-smi to ensure that ROCm is installed and detects the supported GPU(s).

$ rocm-smi

Expected result:

======================================= ROCm System Management Interface␣
↪→=======================================
=== Concise Info␣
↪→===
Device [Model : Revision] Temp Power Partitions SCLK MCLK Fan ␣
↪→ Perf PwrCap VRAM% GPU%

Name (20 chars) (Edge) (Avg) (Mem, Compute)
==
0 [0x0e0d : 0x00] 32.0°C 73.0W N/A, N/A 1526Mhz 96Mhz 31.76
↪→% auto 241.0W 0% 50%

0x7448
==

(continues on next page)

16 Chapter 2. How to guides

https://github.com/ROCm/AMDMIGraphX?tab=readme-ov-file#building-from-source
https://github.com/ROCm/AMDMIGraphX?tab=readme-ov-file#use-the-rocm-build-tool-rbuild
https://github.com/ROCm/AMDMIGraphX?tab=readme-ov-file#use-cmake-to-build-migraphx

Use ROCm™ on Radeon™ GPUs Documentation

(continued from previous page)
=== End of ROCm SMI Log␣
↪→==

5. Configure Git to treat all directories as safe to use and run the build script.

cd AMDMIGraphX
git config --global --add safe.directory "*"
tools/build_and_test_onnxrt.sh

This builds ONNX Runtime and adds ROCm and MIGraphX EP support to the ONNX Runtime in-
terface and requires multiple external repo pieces be checked out automatically prior to the build.

6. Install ONNX Runtime once MIGraphX is built.

$ pip3 install /onnxruntime/build/Linux/Release/dist/*.whl

Next, verify your ONNX Runtime installation.

Verify ONNX Runtime installation

Confirm if ONNX Runtime is correctly installed.

$ python3
$ import onnxruntime as ort

ort.get_available_providers()

Expected result: The following EPs are displayed.

>>> ort.get_available_providers()
['MIGraphXExecutionProvider', 'ROCMExecutionProvider', 'CPUExecutionProvider']

Environment set-up is complete, and the system is ready for use with ONNX Runtime to work with machine learning
models, and algorithms.

2.1.4 Install TensorFlow for ROCm

TensorFlow is an open-source library for solving machine-learning, deep-learning, and artificial-intelligence problems. It
can be used to solve many problems across different sectors and industries but primarily focuses on training and inference
in neural networks. It is one of the most popular and in-demand frameworks and is very active in open source contribution
and development.

As of ROCm 6.1, tensorflow-rocm packages are found at https://repo.radeon.com/rocm/manylinux. Prior
to ROCm 6.1, packages were found at https://pypi.org/project/tensorflow-rocm. Refer to the following
version support matrix:

ROCm version TensorFlow version
6.1.x 2.13.1, 2.14.0, 2.15.0
6.0.x 2.12, 2.13.1, 2.14.0

2.1. Linux How to guide - Use ROCm on Radeon GPUs 17

https://repo.radeon.com/rocm/manylinux
https://pypi.org/project/tensorflow-rocm

Use ROCm™ on Radeon™ GPUs Documentation

Pre-requisites

• Radeon software for Linux (with ROCm) must be installed.
• MIGraphX must be installed for TensorFlow to build the correct mig execution provider.

Select installation method

Option A: TensorFlow via PIP installation method

AMD recommends the PIP install method to create a TensorFlow environment when working with ROCm for machine
learning development.

Note The latest version of Python module numpy v2.0 is incompatible with the TensorFlow wheels for this
version. Downgrade to an older version is required. Example: pip3 install numpy==1.26.4

To install TensorFlow,
Download and install the TensorFlow wheel.

pip3 uninstall tensorflow-rocm numpy
pip3 install https://repo.radeon.com/rocm/manylinux/rocm-rel-6.1.3/tensorflow_rocm-2.
↪→15.1-cp310-cp310-manylinux_2_28_x86_64.whl numpy==1.26.4

Next, verify your TensorFlow installation.

Option B: Docker installation method

To install ROCm on bare metal, follow ROCm installation options.
Using Docker provides portability and access to a prebuilt Docker container that has been rigorously tested within AMD.
This might also save compilation time and should perform as tested without facing potential installation issues.
To use Docker image with pre-installed TensorFlow

1. Enter the following command to pull the latest public TensorFlow Docker image.

docker pull rocm/tensorflow:latest

2. Run the downloaded image.

docker run -it --network=host --device=/dev/kfd --device=/dev/dri \
--ipc=host --shm-size 16G --group-add video --cap-add=SYS_PTRACE \
--security-opt seccomp=unconfined rocm/tensorflow:latest

This will automatically download the image if it does not exist on the host. You can also pass the -v
argument to mount any data directories from the host onto the container.

Next, verify your TensorFlow installation.
Note See Tensorflow Installation for ROCm for more information.

18 Chapter 2. How to guides

https://rocm.docs.amd.com/projects/install-on-linux/en/latest/tutorial/install-overview.html
https://rocm.docs.amd.com/en/latest/how_to/pytorch_install/pytorch_install.html

Use ROCm™ on Radeon™ GPUs Documentation

Verify TensorFlow installation

To test the TensorFlow installation, run the container image as specified in the previous section Installing TensorFlow.
Ensure you have access to the Python shell in the Docker container.

python3 -c 'import tensorflow' 2> /dev/null && echo 'Success' || echo 'Failure'

Next, run basic TensorFlow example.

Run basic TensorFlow example

The TensorFlow examples repository provides basic examples that exercise the framework’s functionality.
The MNIST database is a collection of handwritten digits that may be used to train a Convolutional Neural Network for
handwriting recognition.
This dataset is included with your TensorFlow installation.

1. Run the following sample code to load the MNIST dataset, then train and evaluate it.

import tensorflow as tf
print("TensorFlow version:", tf.__version__)
mnist = tf.keras.datasets.mnist

(x_train, y_train), (x_test, y_test) = mnist.load_data()
x_train, x_test = x_train / 255.0, x_test / 255.0
model = tf.keras.models.Sequential([
tf.keras.layers.Flatten(input_shape=(28, 28)),
tf.keras.layers.Dense(128, activation='relu'),
tf.keras.layers.Dropout(0.2),
tf.keras.layers.Dense(10)

])
predictions = model(x_train[:1]).numpy()
tf.nn.softmax(predictions).numpy()
loss_fn = tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True)
loss_fn(y_train[:1], predictions).numpy()
model.compile(optimizer='adam',

loss=loss_fn,
metrics=['accuracy'])

model.fit(x_train, y_train, epochs=5)
model.evaluate(x_test, y_test, verbose=2)

2. If successful, you should see the following output indicating the image classifier is now trained to around 98%
accuracy on this dataset.

2.1. Linux How to guide - Use ROCm on Radeon GPUs 19

Use ROCm™ on Radeon™ GPUs Documentation

Environment set-up is complete, and the system is ready for use with TensorFlow to work with machine learning models,
and algorithms.

2.1.5 Install MIGraphX for Radeon GPUs

MIGraphX is AMD’s graph inference engine that accelerates machine learning model inference, and can be used to
accelerate workloads within the Torch MIGraphX and ONNX Runtime backend frameworks.

• Torch-MIGraphX, which integrates MIGraphX with PyTorch
• MIGraphX for ONNX Runtime backend, which integrates MIGraphX with ONNX

ONNX Runtime can be driven by either the ROCm™ Execution Provider (EP) or MIGraphX EP

Introduction to MIGraphX

MIGraphX is a graph optimizer that accelerates the inference for deep learning models. It provides C++ and Python APIs
that are integrated within frameworks like Torch MIGraphX, ONNX Runtime, and other user solutions. The following
process summarizes the procedures that occur under-the-hood during the optimization and real-time compilation process.
MIGraphX accelerates theMachine Learning models by leveraging several graph-level transformations and optimizations.
These optimizations include:

• Operator fusion
• Arithmetic simplifications
• Dead-code elimination
• Common subexpression elimination (CSE)
• Constant propagation

When the aforementioned optimizations are applied, MIGraphX emits code for the AMD GPU by calling to MIOpen,
rocBLAS, or creating HIP kernels for a particular operator. MIGraphX can also target CPUs using DNNL or ZenDNN
libraries.

20 Chapter 2. How to guides

Use ROCm™ on Radeon™ GPUs Documentation

For more information on how to install MIGraphX, refer to AMD MIGraphX Github.

Prerequisites

• Radeon™ Software for Linux (with ROCm) is installed

Install MIGraphX

Install MIGraphX on your computer. Once the install is completed and verified, proceed to install Torch-MIGraphX or
MIGraphX for ONNX Runtime.
Run the following command to install MIGraphX:

$ sudo apt install migraphx

Next, verify MIGraphX installation.

Verify MIGraphX installation

Perform a test to verify the MIGraphX installation.

migraphx-driver perf --test

Expected result:

will complete with no error

Next, proceed to install Torch-MIGraphX or MIGraphX for ONNX Runtime as applicable.

Install Torch-MIGraphX

Install Torch-MIGraphX using the Docker installation method, or build from source.

Option A: Docker installation

Using Docker provides portability, and access to a prebuilt Docker container that has been rigorously tested within AMD.
Docker also cuts down compilation time, and should perform as expected without installation issues.

1. Clone the torch_migraphx repository.

git clone https://github.com/ROCmSoftwarePlatform/torch_migraphx.git

2. Change directory to torch-migraphx.

cd torch-migraphx/

3. Build image using the provided script.

sudo ./build_image.sh

4. Run container.

2.1. Linux How to guide - Use ROCm on Radeon GPUs 21

https://github.com/ROCmSoftwarePlatform/AMDMIGraphX
https://www.amd.com/en/support/linux-drivers

Use ROCm™ on Radeon™ GPUs Documentation

sudo docker run -it --network=host --device=/dev/kfd --device=/dev/dri --group-
↪→add=video --ipc=host --cap-add=SYS_PTRACE --security-opt seccomp=unconfined␣
↪→torch_migraphx

Next, verify the Torch-MIGraphX installation.

Option B: Build from source

To build from source in a custom environment, refer to the torch_migraphx repository for build steps.
Next, verify the Torch-MIGraphX installation.

Verify Torch-MIGraphX installation

Verify if the Torch-MIGraphX installation is successful.
1. Verify if torch_migraphx can be imported as a Python module.

python3 -c 'import torch_migraphx' 2> /dev/null && echo 'Success' || echo 'Failure
↪→'

2. Run unit tests.

pytest ./torch_migraphx/tests

Installation is complete and the system is able to run PyTorch through the python interface library, and scripts that invoke
PyTorch inference sessions.

Install MIGraphX for ONNX Runtime

Install onnxruntime-rocm for ROCm by following these steps.

Prerequisites

• MIGraphX is installed
• Latest PyTorch ROCm release is installed

Check Install PyTorch for ROCm for latest PIP install instructions and availability.
Important! These instructions are validated for an Ubuntu 22.04 environment. Refer to the OS support
matrix for more information.

To install MIGraphX for ONNX Runtime,
1. Verify that the install works correctly by performing a simple inference with MIGraphX.

migraphx-driver perf --test

2. Ensure that the half package is installed.

$ sudo apt install half

3. Install onnxruntime-rocm via Python PIP.

22 Chapter 2. How to guides

https://github.com/ROCmSoftwarePlatform/torch_migraphx?tab=readme-ov-file#install-from-source
https://rocm.docs.amd.com/projects/radeon/en/latest/docs/install/install-pytorch.html

Use ROCm™ on Radeon™ GPUs Documentation

$ pip3 install onnxruntime-rocm -f https://repo.radeon.com/rocm/manylinux/rocm-
↪→rel-6.0/

Next, verify the MIGraphX for ONNX Runtime installation.

Verify MIGraphX installation for ONNX Runtime

Verify that the install works correctly by performing a simple inference with MIGraphX.

$ python3
import onnxruntime as ort
ort.get_available_providers()

Expected result:

>>> import onnxruntime as ort
>>> ort.get_available_providers()
['MIGraphXExecutionProvider', 'ROCMExecutionProvider', 'CPUExecutionProvider']

This indicates that the MIGraphXExecutionProvider and ROCMExecutionProvider are now running on
the system, and the proper ONNX Runtime package has been installed.
Installation is complete and ONNXRuntime is available through the Python interface library, as well as scripts that invoke
ONNX Runtime inference sessions.

For more information on the ONNX Runtime Python library, refer to Get started with ONNX Runtime in
Python.

2.1.6 mGPU setup and configuration

Hardware and software considerations

Refer to the following hardware and software considerations to ensure optimal performance.

Hardware considerations

• PCIe® slots AMD recommends a system with multiple x16 (Gen 4) slots, with optimal performance achieved by
provision of a 1:1 ratio between the number of x16 slots and the number of GPUs used.

Note Functionality is maintained in the instance where only one x16 slot is available, at the cost of some
performance.

• mGPU power setup MultiGPU configurations require adequate amounts of power for all the components re-
quired. Consult AMD Radeon™ RX or AMD Radeon™ PRO for GPU specifications and graphics card power
requirements.

2.1. Linux How to guide - Use ROCm on Radeon GPUs 23

https://onnxruntime.ai/docs/get-started/with-python.html
https://onnxruntime.ai/docs/get-started/with-python.html
https://www.amd.com/en/products/graphics/desktops/radeon.html#specifications
https://www.amd.com/en/products/graphics/workstations.html

Use ROCm™ on Radeon™ GPUs Documentation

Software considerations

There are no differences in software requirements between single-GPU and multi-GPU usage.

mGPU configuration by framework

Note PyTorch, ONNX, and Tensorflow may have additional guidelines regarding mGPU configuration. Re-
fer to official mGPU support documentation of the applicable framework for more information.

mGPU known issues and limitations

AMD has identified common errors when running ROCm™ on Radeon™ multi-GPU configuration at this time, along
with the applicable recommendations.

IOMMU limitations and guidance

For IOMMU limitations and guidance, see Issue #5: Application hangs on Multi-GPU systems.

Windows Subsystem for Linux (WSL) support

Microsoft does not currently support mGPU setup in WSL.

Simultaneous parallel compute workloads

Radeon GPUs does not support large amounts of simultaneous, parallel workloads. It is not recommended to exceed 2
simultaneous compute workloads, with the assumption that workloads are running alongside a graphics environment (eg:
Linux desktop).

Recommended multi-GPU system configuration

PCIe slots connected to the GPU must have identical PCIe lane width or bifurcation settings, and support PCIe 3.0
Atomics.
Refer to How ROCm uses PCIe Atomics for more information.

Example:
✓ - GPU0 PCIe x16 connection + GPU1 PCIe x16 connection
✓ - GPU0 PCIe x8 connection + GPU1 PCIe x8 connection
X - GPU0 PCIe x16 connection + GPU1 PCIe x8 connection
Important!

• Only use PCIe slots connected by the CPU and to avoid PCIe slots connected via chipset. Refer to
product-specific motherboard documentation for PCIe electrical configuration.

• Ensure the system Power Supply Unit (PSU) has sufficient wattage to support multiple GPUs.

24 Chapter 2. How to guides

https://rocm.docs.amd.com/projects/install-on-linux/en/latest/how-to/native-install/install-faq.html
https://rocm.docs.amd.com/en/latest/understand/More-about-how-ROCm-uses-PCIe-Atomics.html

Use ROCm™ on Radeon™ GPUs Documentation

GPU isolation techniques

For more information, see GPU isolation techniques.

PCIe atomic operations

Some consumer grade motherboards may only support the first PCIe slot. For unexpected issues, see How
ROCm uses PCIe atomics.

Errors due to GPU and PCIe configuration

When using two AMD Radeon 7900XTX GPUs, the following HIP error is observed when running PyTorch micro-
benchmarking if any one of the two GPUs are connected to a non-CPU PCIe slot (PCIe on chipset):

RuntimeError: HIP error: the operation cannot be performed in the present state
HIP kernel errors might be asynchronously reported at some other API call, so the␣
↪→stacktrace below might be incorrect.
For debugging consider passing HIP_LAUNCH_BLOCKING=1.
Compile with `TORCH_USE_HIP_DSA` to enable device-side assertions.

Potential GPU reset with some mixed graphics and compute workloads

Working with certain mixed graphics and compute workloads may result in a GPU reset on Radeon GPUs.
Currently identified scenarios include:

• Running multiple ML workloads simultaneously while using the desktop
• Running ML workloads while simultaneously using Blender/HIP

2.2 WSL How to guide - Use ROCm on Radeon GPUs

This guide walks you through the various installation processes required to pair ROCm™ with the latest high-end AMD
Radeon™ 7000 series desktop GPUs, and get started on a fully-functional environment for AI and ML development.

2.2.1 Install Radeon software for WSL with ROCm

The ROCm™ Software Stack and other Radeon™ software for Windows Subsystem for Linux (WSL) components are
installed using the amdgpu-install script to assist you in the installation of a coherent set of stack components.

• Simplifies the installation of the AMDGPU stack by encapsulating the distribution specific package installation
logic and by using command line options that allows you to specify the:

– Usecase of the AMDGPU stack to be installed (WSL)
– Combination of components (Pro stack, or user selection)

• Performs post-install checks to verify whether the installation was performed successfully.
• Installs the uninstallation script to allow you to remove the whole AMDGPU stack from the system by using a single
command.

The script is provided by the installer package. See Compatibility matrices for support information.

2.2. WSL How to guide - Use ROCm on Radeon GPUs 25

https://rocm.docs.amd.com/en/latest/conceptual/gpu-isolation.html
https://rocm.docs.amd.com/en/latest/conceptual/More-about-how-ROCm-uses-PCIe-Atomics.html
https://rocm.docs.amd.com/en/latest/conceptual/More-about-how-ROCm-uses-PCIe-Atomics.html

Use ROCm™ on Radeon™ GPUs Documentation

Prerequisites

• WSL is installed Ensure that WSL is installed before proceeding with ROCm installation.
To install WSL, refer to Windows Subsystem for Linux Documentation.

• Compatible Radeon™ Software for Windows driver is installed WSL requires installation of the following
Windows driver.

To install the compatible driver, refer to AMD Software: Adrenalin Edition™ 24.6.1 for WSL 2.

Install AMD unified driver package repositories and installer script

Download and install the amdgpu-install script on the system.
Enter the following commands to install the installer script for the latest compatible Ubuntu® version:

sudo apt update
wget https://repo.radeon.com/amdgpu-install/6.1.3/ubuntu/jammy/amdgpu-install_6.1.
↪→60103-1_all.deb
sudo apt install ./amdgpu-install_6.1.60103-1_all.deb

Install AMD unified kernel-mode GPU driver, ROCm, and graphics

After the Unified Driver Deb Package repositories are installed, run the installer script with appropriate --usecase
parameters to install the driver components.
AMD recommends installing the WSL usecase by default.
Enter the following command to display a list of available usecases:

sudo amdgpu-install --list-usecase

WSL usecase

AMD recommends installing the WSL usecase by default.
Run the following command to install open source graphics and ROCm.

amdgpu-install -y --usecase=wsl,rocm --no-dkms

Watch for output warning or errors indicating an unsuccessful driver installation.
Note: The -y option installs non-interactively. This step may take several minutes, depending on internet
connection and system speed.

Next, run a post-install verification check.

26 Chapter 2. How to guides

https://learn.microsoft.com/en-us/windows/wsl/
https://www.amd.com/en/resources/support-articles/release-notes/RN-RAD-WIN-24-6-1.html

Use ROCm™ on Radeon™ GPUs Documentation

Post-install verification check

Run a post-installation check to verify that the installation is complete:
Check if the GPU is listed as an agent.

rocminfo

Expected result:

[...]

Agent 2

Name: gfx1100
Marketing Name: Radeon RX 7900 XTX
Vendor Name: AMD
[...]

[...]

Uninstall ROCm

Run the following command to uninstall the ROCm software stack and other Radeon software for Linux components:

sudo amdgpu-uninstall

Upgrade to newer versions of Radeon software for Linux

The recommended method to upgrade is to uninstall, followed by an install.
Radeon Software for Linux does not support in-place upgrades.

2.2.2 Install PyTorch for ROCm

Refer to this section for the recommended PyTorch via PIP installation method, as well as Docker-based installation.

Install methods

AMD recommends the PIP install method to create a PyTorch environment when working with ROCm™ for machine
learning development.
Using Docker provides portability, and access to a prebuilt Docker container that has been rigorously tested within AMD.
Docker also cuts down compilation time, and should perform as expected without installation issues.

2.2. WSL How to guide - Use ROCm on Radeon GPUs 27

Use ROCm™ on Radeon™ GPUs Documentation

Option A: PyTorch via PIP installation

AMD recommends the PIP install method to create a PyTorch environment when working with ROCm™ for machine
learning development.

Check Pytorch.org for latest PIP install instructions and availability. See Compatibility matrices for support
information.
Note The latest version of Python module numpy v2.0 is incompatible with the torch wheels for this version.
Downgrade to an older version is required. Example: pip3 install numpy==1.26.4

Install PyTorch via PIP

1. Enter the following command to unpack and begin set up.

sudo apt install python3-pip -y

2. Enter this command to update the pip wheel.

pip3 install --upgrade pip wheel

3. Enter this command to install Torch and Torchvision for ROCm AMD GPU support.

wget https://repo.radeon.com/rocm/manylinux/rocm-rel-6.1.3/torch-2.1.2%2Brocm6.1.
↪→3-cp310-cp310-linux_x86_64.whl
wget https://repo.radeon.com/rocm/manylinux/rocm-rel-6.1.3/torchvision-0.16.1
↪→%2Brocm6.1.3-cp310-cp310-linux_x86_64.whl
wget https://repo.radeon.com/rocm/manylinux/rocm-rel-6.1.3/pytorch_triton_rocm-2.
↪→1.0%2Brocm6.1.3.4d510c3a44-cp310-cp310-linux_x86_64.whl
pip3 uninstall torch torchvision pytorch-triton-rocm numpy
pip3 install torch-2.1.2+rocm6.1.3-cp310-cp310-linux_x86_64.whl torchvision-0.16.
↪→1+rocm6.1.3-cp310-cp310-linux_x86_64.whl pytorch_triton_rocm-2.1.0+rocm6.1.3.
↪→4d510c3a44-cp310-cp310-linux_x86_64.whl numpy==1.26.4

This may take several minutes.
Important! AMD recommends proceeding with ROCm WHLs available at repo.radeon.com. The
ROCm WHLs available at PyTorch.org are not tested extensively by AMD as the WHLs change regu-
larly when the nightly builds are updated.

4. Update to WSL compatible runtime lib.

location=`pip show torch | grep Location | awk -F ": " '{print $2}'`
cd ${location}/torch/lib/
rm libhsa-runtime64.so*
cp /opt/rocm/lib/libhsa-runtime64.so.1.2 libhsa-runtime64.so

Next, verify your PyTorch installation.

28 Chapter 2. How to guides

http://Pytorch.org

Use ROCm™ on Radeon™ GPUs Documentation

Option B: Docker installation

Using Docker provides portability, and access to a prebuilt Docker container that has been rigorously tested within AMD.
Docker also cuts down compilation time, and should perform as expected without installation issues.

Prerequisites to install PyTorch using Docker

Docker for Ubuntu® must be installed.
To install Docker for Ubuntu, enter the following command:

sudo apt install docker.io

Use Docker image with pre-installed PyTorch

Follow these steps for installing using a Docker image.
1. Enter the following command to pull the public PyTorch Docker image.

sudo docker pull rocm/pytorch:rocm6.1.3_ubuntu22.04_py3.10_pytorch_release-2.1.2

Optional: You can also download a specific and supported configuration with different user-space
ROCm versions, PyTorch versions, and supported operating systems.
Refer to hub.docker.com/r/rocm/pytorch to download the PyTorch Docker image.

2. Start a Docker container using the downloaded image.

sudo docker run -it \
--cap-add=SYS_PTRACE \
--security-opt seccomp=unconfined \
--ipc=host \
--shm-size 8G \
--device=/dev/dxg -v /usr/lib/wsl/lib/libdxcore.so:/usr/lib/libdxcore.so -v /opt/
↪→rocm/lib/libhsa-runtime64.so.1:/opt/rocm/lib/libhsa-runtime64.so.1 \
rocm/pytorch:rocm6.1.3_ubuntu22.04_py3.10_pytorch_release-2.1.2

This will automatically download the image if it does not exist on the host. You can also pass the -v
argument to mount any data directories from the host onto the container.

Next, verify the PyTorch installation.
See PyTorch Installation for ROCm for more information.

Verify PyTorch installation

Confirm if PyTorch is correctly installed.
1. Verify if Pytorch is installed and detecting the GPU compute device.

python3 -c 'import torch' 2> /dev/null && echo 'Success' || echo 'Failure'

Expected result:

Success

2. Enter command to test if the GPU is available.

2.2. WSL How to guide - Use ROCm on Radeon GPUs 29

https://hub.docker.com/r/rocm/pytorch
https://rocm.docs.amd.com/en/latest/how_to/pytorch_install/pytorch_install.html

Use ROCm™ on Radeon™ GPUs Documentation

python3 -c 'import torch; print(torch.cuda.is_available())'

Expected result:

True

3. Enter command to display installed GPU device name.

python3 -c "import torch; print(f'device name [0]:', torch.cuda.get_device_
↪→name(0))"

Expected result: Example: device name [0]: Radeon RX 7900 XTX

device name [0]: <Supported AMD GPU>

4. Enter command to display component information within the current PyTorch environment.

python3 -m torch.utils.collect_env

Expected result:

PyTorch version

ROCM used to build PyTorch

OS

Is CUDA available

GPU model and configuration

HIP runtime version

MIOpen runtime version

Environment set-up is complete, and the system is ready for use with PyTorch to work with machine learning models,
and algorithms.

30 Chapter 2. How to guides

CHAPTER

THREE

USECASES

Refer to the applicable guides to optimize specific usecase performance.

3.1 vLLM

Refer to the applicable guides to optimize vLLM usecase performance.

3.1.1 vLLM Docker image for Llama2 and Llama3

Virtual Large Language Model (vLLM) is a fast and easy-to-use library for LLM inference and serving.
Llama2 and Llama3 support is enabled via a vLLM Docker image that must be built separately (in addition to ROCm)
for the current release.
For additional information, visit the AMD vLLM GitHub page.

Note that this is a benchmarking demo/example. Installation for other vLLM models/configurations may
differ.

Prerequisites

• GitHub is authenticated.

Additional information

• AMD recommends 40GB GPU for 70B usecases.Ensure that your GPU has enough VRAM for the chosen model.
• This example highlights use of the AMD vLLM Docker using Llama-3 70B with GPTQ quantization (as shown at
Computex).However, performance is not limited to this specific Hugging Face model, and other vLLM supported
models can also be used.

31

https://github.com/ROCm/vllm
https://docs.github.com/en/authentication
https://huggingface.co/TechxGenus/Meta-Llama-3-70B-Instruct-GPTQ

Use ROCm™ on Radeon™ GPUs Documentation

Installation steps

Follow these steps to build a vLLM Docker image and start using Llama2 and Llama3.
1. Clone the ROCm/vllm repository.

git clone -b vllm0.4.1_llama_70b_gptq https://github.com/ROCm/vllm.git

2. Change directory to vLLM, and build Docker image.

sudo docker build -f Dockerfile.rocm -t <image_name> .

Note
• The Docker image_name is user defined. Ensure to name your Docker using this value. Exam-
ple: vllm0.4.1_rocm6.1.1_ubuntu20.04_py3.9_image

• Optional: Map the vllm directory from the host to the Docker container.
3. Start the Docker container.

sudo docker run -it --privileged --device=/dev/kfd --device=/dev/dri --
↪→network=host --group-add sudo -w /root/workspace --name <container_name> <image_
↪→name> /bin/bash

Note The container_name is user defined. Ensure to name your Docker using this value.
Example: vllm0.4.1_rocm6.1.1_ubuntu20.04_py3.9_container

4. Clone the vLLM GitHub repository within the Docker container.
This step is not necessary if mapped in Step 2.

git clone -b vllm0.4.1_llama_70b_gptq https://github.com/ROCm/vllm.git

5. Clone the Hugging Face GitHub repository within the Docker container.

git lfs clone https://huggingface.co/TechxGenus/Meta-Llama-3-70B-Instruct-GPTQ

6. Run benchmarks within the Docker container.

python3 vllm/benchmarks/benchmark_latency.py --model /root/workspace/Meta-Llama-3-
↪→70B-Instruct-GPTQ --batch-size 1 --input-len 1024 --output-len 1024

Note Ensure that the model is downloaded and vLLM checkout is set to your current directory within
the container described in Step 3.

Your environment is set up to use Llama2 and Llama3.

32 Chapter 3. Usecases

CHAPTER

FOUR

COMPATIBILITY MATRICES

This section provides information on the compatibility of ROCm™ components, Radeon™ GPUs, and the Radeon
Software for Linux® version (Kernel Fusion Driver) and Windows Subsystem for Linux (WSL).

Note: To rollback support matrices and install instructions for previous versions, click Version List located at the
top-right corner of the screen, or select the version (v:) menu on the bottom-left.

Linux
WSL
Linux Compatibility

WSL Compatibility

4.1 Linux support matrices by ROCm version

4.1.1 ROCm 6.1.3

Compatible OS, GPU, and framework support matrices for the latest ROCm release.
To rollback support matrices and install instructions for previous versions, click Version List located at the
top-right corner of the screen, or select the version (v:) menu on the bottom-left.

OS support matrix

OS Kernel Supported
Ubuntu® 22.04.4 Desktop Version with HWE Ubuntu kernel 6.5 Yes

33

Use ROCm™ on Radeon™ GPUs Documentation

GPU support matrix

ROCm
Ver-
sion

Radeon™ Soft-
ware for Linux®
Version

Supported AMD Radeon™ Hardware

6.1.3 24.10.3 AMD Radeon RX 7900 XTXAMD Radeon RX 7900 XTAMD Radeon RX 7900
GREAMD Radeon PRO W7900AMD Radeon PRO W7900DSAMD Radeon
PRO W7800

Framework + ROCm support matrices

View the ROCm support matrices for PyTorch, ONNX, and TensorFlow frameworks.

PyTorch + ROCm support matrix

PyTorch Version ROCm Version Comments
2.1.2 6.1.3 Official production support. Available from AMD.com.
2.5+/Nightly 6.1 Available from PyTorch.org nightly builds, not tested extensively by AMD.
2.3/Stable 6.0 Not supported for Radeon 7000 series.

AI Data Operations
• FP32
• FP16
• Mixed precision (FP32/FP16)
• INT8

ONNX + ROCm support matrix

ONNX Version ROCm Version Comments
1.17 6.1.3 Official production support. Available from AMD.com.

AI Data Operations
• FP32
• FP16
• INT8 (MIGraphX)
• Mixed precision (FP32/FP16)

Note Refer to Installation Instructions to Get Started with ONNX Runtime for more information.

34 Chapter 4. Compatibility matrices

https://onnxruntime.ai/getting-started

Use ROCm™ on Radeon™ GPUs Documentation

TensorFlow + ROCm support matrix

TensorFlow Version ROCm Version Comments
2.15 6.1.3 Official production support. Available from AMD.com.

AI Data Operations
• FP32
• FP16

4.1.2 Docker support matrix

See Docker Image Support Matrix for the latest version of the software support matrices for ROCm container releases.

4.2 Compatibility matrices (WSL)

4.2.1 ROCm 6.1.3

This section provides information on the compatibility of ROCm™ components, Radeon™ GPUs, and the Radeon
Software for Windows Subsystem for Linux® (WSL).

To rollback support matrices and install instructions for previous versions, click Version List located at the
top-right corner of the screen, or select the version (v:) menu on the bottom-left.

OS support matrix

OS Kernel Supported
Ubuntu 22.04 or Ubuntu 22.04 LTS WSL2-Linux-Kernel 5.15 Yes

Note AMD recommends using Ubuntu 22.04. Refer to How to install Linux on Windows with WSL for
up-to-date OS compatibility information.

GPU support matrix

ROCm
Ver-
sion

Radeon™
Software for
Linux® Ver-
sion

Radeon™ Soft-
ware for Windows
Version

Supported AMD Radeon™ Hardware

6.1.3 24.10.3 AMD Software:
Adrenalin Edition™
24.6.1 for WSL 2

AMD Radeon RX 7900 XTXAMD Radeon RX 7900 XTAMD
Radeon RX 7900 GREAMDRadeon PROW7900AMDRadeon
PRO W7900DSAMD Radeon PRO W7800

4.2. Compatibility matrices (WSL) 35

https://rocm.docs.amd.com/projects/install-on-linux/en/latest/reference/docker-image-support-matrix.html
https://learn.microsoft.com/en-us/windows/wsl/install

Use ROCm™ on Radeon™ GPUs Documentation

Framework + ROCm support matrices

View the ROCm support matrices for PyTorch.

PyTorch + ROCm support matrix

PyTorch Version ROCm Version Comments
2.1.2 6.1.3 Official production support. Available from AMD.com.
2.5+/Nightly 6.1 Available from PyTorch.org nightly builds, not tested extensively by AMD.
2.3/Stable 6.0 Not supported for Radeon 7000 series.

AI Data Operations
• FP32
• FP16
• Mixed precision (FP32/FP16)
• INT8

4.2.2 Docker support matrix

See Docker Image Support Matrix for the latest version of the software support matrices for ROCm container releases.

36 Chapter 4. Compatibility matrices

https://rocm.docs.amd.com/projects/install-on-linux/en/latest/reference/docker-image-support-matrix.html

CHAPTER

FIVE

LIMITATIONS

This section provides information on software and configuration limitations.
Important! Radeon™ PRO Series graphics cards are not designed nor recommended for datacenter usage.
Use in a datacenter setting may adversely affect manageability, efficiency, reliability, and/or performance.
GD-239.
Important! ROCm is not officially supported on any mobile SKUs.

5.1 Multi-GPU configuration

See mGPU known issues and limitations.

5.2 Windows Subsystem for Linux (WSL)

Due to limited validation of ROCm™ on Radeon™ WSL configuration at this time, common errors and applicable
recommendations are identified.

Important! ROCm 6.1.3 release is limited to preview support for WSL configuration.
At this time, only a limited amount of validation has been performed. AMD recommends only proceeding
with advanced know-how and at user discretion.
Visit the AI community to share feedback, and Report a bug if you find any issues.
Note Refer to Microsoft WSL Documentation for latest information on WSL support for mGPU configura-
tions.

5.2.1 ROCm support in WSL environments

ROCm-smi support

Due to WSL architectural limitations for native Linux User Kernel Interface (UKI), rocm-smi is not supported.

Issue Limitations
UKI does not currently support
rocm-smi

No current support for:Active compute processesGPU utilizationModifiable
state features

37

https://community.amd.com/t5/ai/ct-p/amd_ai
https://amdgpu-install.readthedocs.io/en/23.10/install-bugrep.html
https://learn.microsoft.com/en-us/windows/wsl/tutorials/gpu-compute#multiple-gpus

Use ROCm™ on Radeon™ GPUs Documentation

ROCm-profiler support

Not currently supported.

Debugger

Not currently supported.

5.2.2 Running PyTorch in virtual environments

Running PyTorch in virtual environments requires a manual libhsa-runtime64.so update.
When using the WSL usecase and hsa-runtime-rocr4wsl-amdgpu package (installed with PyTorch wheels), users are
required to update to a WSL compatible runtime lib.
Solution:
Enter the following commands:

location=`pip show torch | grep Location | awk -F ": " '{print $2}'`
cd ${location}/torch/lib/
rm libhsa-runtime64.so*
cp /opt/rocm/lib/libhsa-runtime64.so.1.2 libhsa-runtime64.so

5.3 6.1.3 release known issues

• Radeon GPUs do not support large amounts of simultaneous parallel workloads. We do not recommend exceeding
2 simultaneous compute workloads. This assumes workloads are running alongside a graphics environment (eg:
Linux desktop).

• Intermittent gpureset errors may be seen with Automatic 1111 webUI with IOMMU enabled. Refer to the AMD
community knowledge base for suggested resolutions.

• ROCm debugger is unstable and not fully supported in this release.
• “Automatic suspend state when idle” is not recommended when running AI workloads.
• Connecting monitors to multiple GPUs on an Intel Sapphire Rapids powered system may cause displays to not
display correctly. We recommend connecting all the monitors into one GPU. For configurations where monitors
must be plugged into multiple GPUs, please add the following to your grub file: “intel_iommu=on iommu=on”

5.3.1 WSL specific issues

• Some long running rocsparse kernels may trigger a TDR.

38 Chapter 5. Limitations

http://libhsa-runtime64.so/
https://community.amd.com/t5/knowledge-base/tkb-p/amd-rocm-tkb
https://community.amd.com/t5/knowledge-base/tkb-p/amd-rocm-tkb

CHAPTER

SIX

AI COMMUNITY

Want to share your experiences, find answers, or contribute to resolving issues?
Explore the AMD AI Community Forum, where you will find a like-minded community, passionate about all things AI!

39

https://community.amd.com/t5/ai/ct-p/amd_ai

Use ROCm™ on Radeon™ GPUs Documentation

40 Chapter 6. AI community

CHAPTER

SEVEN

REPORT A BUG

Found a defect? Report issues through ROCm GitLab, and contribute to improving our user experience.

41

https://amdgpu-install.readthedocs.io/en/23.10/install-bugrep.html

	Prerequisites to use ROCm on Radeon desktop GPUs for machine learning development
	Supported hardware
	Supported graphics processing units
	Recommended memory
	Minimum recommendations

	Supported operating systems
	Update Ubuntu® operating system

	Recommended system configuration
	Disable iGPU
	Gigabyte™ X670 AORUS ELITE AX
	ASUS Prime X670-P WIFI
	Alternative option: Use environment variables to select target GPU

	How to guides
	Linux How to guide - Use ROCm on Radeon GPUs
	Install Radeon software for Linux with ROCm
	Install AMD unified driver package repositories and installer script
	Install AMD unified kernel-mode GPU driver, ROCm, and graphics
	Set Groups permissions
	Add user to render and video groups

	Post-install verification checks

	Advanced install methods
	Uninstall ROCm
	Upgrade to newer versions of Radeon software for Linux

	Install PyTorch for ROCm
	Verify PyTorch installation

	Install ONNX Runtime for Radeon GPUs
	Overview
	Prerequisites
	Verify if MIGraphX is installed with the half library

	Install ONNX Runtime
	Verify ONNX Runtime installation

	Install TensorFlow for ROCm
	Pre-requisites
	Select installation method
	Verify TensorFlow installation
	Run basic TensorFlow example

	Install MIGraphX for Radeon GPUs
	Introduction to MIGraphX
	Prerequisites

	Install MIGraphX
	Verify MIGraphX installation

	Install Torch-MIGraphX
	Verify Torch-MIGraphX installation

	Install MIGraphX for ONNX Runtime
	Prerequisites
	Verify MIGraphX installation for ONNX Runtime

	mGPU setup and configuration
	Hardware and software considerations
	Hardware considerations
	Software considerations

	mGPU configuration by framework
	mGPU known issues and limitations
	IOMMU limitations and guidance
	Windows Subsystem for Linux (WSL) support
	Simultaneous parallel compute workloads
	Recommended multi-GPU system configuration
	GPU isolation techniques
	PCIe atomic operations
	Errors due to GPU and PCIe configuration
	Potential GPU reset with some mixed graphics and compute workloads

	WSL How to guide - Use ROCm on Radeon GPUs
	Install Radeon software for WSL with ROCm
	Prerequisites
	Install AMD unified driver package repositories and installer script
	Install AMD unified kernel-mode GPU driver, ROCm, and graphics
	WSL usecase
	Post-install verification check

	Uninstall ROCm
	Upgrade to newer versions of Radeon software for Linux

	Install PyTorch for ROCm
	Install methods
	Verify PyTorch installation

	Usecases
	vLLM
	vLLM Docker image for Llama2 and Llama3
	Prerequisites
	Additional information

	Installation steps

	Compatibility matrices
	Linux support matrices by ROCm version
	ROCm 6.1.3
	OS support matrix
	GPU support matrix
	Framework + ROCm support matrices
	PyTorch + ROCm support matrix
	ONNX + ROCm support matrix
	TensorFlow + ROCm support matrix

	Docker support matrix

	Compatibility matrices (WSL)
	ROCm 6.1.3
	OS support matrix
	GPU support matrix
	Framework + ROCm support matrices
	PyTorch + ROCm support matrix

	Docker support matrix

	Limitations
	Multi-GPU configuration
	Windows Subsystem for Linux (WSL)
	ROCm support in WSL environments
	Running PyTorch in virtual environments

	6.1.3 release known issues
	WSL specific issues

	AI community
	Report a bug

