
ROCm Documentation
Release 5.0.1

Advanced Micro Devices, Inc.

May 02, 2024

CONTENTS

1 What is ROCm? 3

2 Quick Start (Linux) 5
2.1 Add Repositories . 5
2.2 Install Drivers . 8
2.3 Install ROCm Runtimes . 9
2.4 Reboot the system . 9

3 Deploy ROCm on Linux 11
3.1 Prepare to Install . 11
3.2 Choose your install method . 11
3.3 See Also . 11
3.4 ROCm Installation Options (Linux) . 11

3.4.1 Package Manager versus AMDGPU Installer? . 12
3.4.2 Single Version ROCm install versus Multi-Version . 12

3.4.2.1 Single-version Installation . 12
3.4.2.2 Multi-version Installation . 12

3.5 Installation Prerequisites (Linux) . 13
3.5.1 Confirm the System Has a Supported Linux Distribution Version 13

3.5.1.1 Check the Linux Distribution and Kernel Version on Your System 13
3.5.1.1.1 Linux Distribution Information . 13
3.5.1.1.2 Kernel Information . 14

3.5.2 Additional package repositories . 14
3.5.3 Kernel headers and development packages . 15
3.5.4 Setting Permissions for Groups . 15

3.6 Installation via Package manager . 16
3.6.1 See Also . 16
3.6.2 Installation (Linux) . 16

3.6.2.1 Understanding the Release-specific AMDGPU and ROCm Repositories on Linux
Distributions . 16

3.6.2.2 Step by Step Instructions . 16
3.6.2.3 Post-install Actions and Verification Process . 21

3.6.2.3.1 Post-install Actions . 21
3.6.2.3.2 Verifying Kernel-mode Driver Installation 22
3.6.2.3.3 Verifying ROCm Installation . 22
3.6.2.3.4 Verifying Package Installation . 22

3.6.3 Upgrade ROCm with the package manager . 23
3.6.3.1 Upgrade Steps . 23

3.6.3.1.1 Update the AMDGPU repository . 23
3.6.3.1.2 Upgrade the kernel-mode driver & reboot 25

i

3.6.3.1.3 Update the ROCm repository . 25
3.6.3.1.4 Upgrade the ROCm packages . 27

3.6.3.2 Verification Process . 27
3.6.4 Uninstallation with package manager (Linux) . 27
3.6.5 Package Manager Integration . 30

3.6.5.1 ROCm Package Naming Conventions . 30
3.6.5.2 Components of ROCm Programming Models . 31
3.6.5.3 Packages in ROCm Programming Models . 32

3.7 AMDGPU Install Script . 33
3.7.1 See Also . 33
3.7.2 Installation with install script . 33

3.7.2.1 Download the Installer Script . 34
3.7.2.2 Use cases . 35
3.7.2.3 Single-version ROCm Installation . 36
3.7.2.4 Multi-version ROCm Installation . 36

3.7.2.4.1 Add Required Repositories . 36
3.7.2.4.2 Install packages . 38

3.7.2.5 Additional options . 38
3.7.2.5.1 Unattended installation . 38
3.7.2.5.2 Skipping kernel mode driver installation 38

3.7.3 Upgrading with the Installer Script (Linux) . 38
3.7.4 Installer Script Uninstallation (Linux) . 38

4 Deploy ROCm Docker containers 41
4.1 Prerequisites . 41
4.2 Accessing GPUs in containers . 41

4.2.1 Restricting a container to a subset of the GPUs . 42
4.2.2 Additional Options . 42

4.3 Docker images in the ROCm ecosystem . 42
4.3.1 Base images . 42
4.3.2 Applications . 42

5 Release Notes 43
5.1 ROCm 5.0.1 . 43

5.1.1 Deprecations and Warnings . 43
5.1.1.1 Refactor of HIPCC/HIPCONFIG . 43

6 Release Notes 45
6.1 ROCm 5.0.1 . 45

6.1.1 Deprecations and Warnings . 45
6.1.1.1 Refactor of HIPCC/HIPCONFIG . 45

6.1.2 Library Changes in ROCM 5.0.1 . 46
6.2 ROCm 5.0.0 . 46

6.2.1 What’s New in This Release . 46
6.2.1.1 HIP Enhancements . 46

6.2.1.1.1 HIP Installation Guide Updates . 46
6.2.1.1.2 Managed Memory Allocation . 46

6.2.1.2 New Environment Variable . 47
6.2.2 Breaking Changes . 48

6.2.2.1 Runtime Breaking Change . 48
6.2.3 Known Issues . 54

6.2.3.1 Incorrect dGPU Behavior When Using AMDVBFlash Tool 54
6.2.3.2 Issue with START Timestamp in ROCProfiler . 54

6.2.3.2.1 Issue . 55

ii

6.2.3.2.2 Current behavior . 55
6.2.3.2.3 Expected behavior . 55
6.2.3.2.4 Recommended Workaround . 55

6.2.3.3 Radeon Pro V620 and W6800 Workstation GPUs 55
6.2.3.3.1 No Support for SMI and ROCDebugger on SRIOV 55

6.2.4 Deprecations and Warnings . 56
6.2.4.1 ROCm Libraries Changes – Deprecations and Deprecation Removal 56
6.2.4.2 HIP API Deprecations and Warnings . 56

6.2.4.2.1 Warning - Arithmetic Operators of HIP Complex and Vector Types 56
6.2.4.3 Warning - Compiler-Generated Code Object Version 4 Deprecation 57
6.2.4.4 Warning - MIOpenTensile Deprecation . 57

6.2.5 Library Changes in ROCM 5.0.0 . 57
6.2.5.1 hipBLAS 0.49.0 . 57

6.2.5.1.1 Added . 57
6.2.5.1.2 Fixed . 58

6.2.5.2 hipCUB 2.10.13 . 58
6.2.5.2.1 Fixed . 58
6.2.5.2.2 Added . 58
6.2.5.2.3 Changed . 58

6.2.5.3 hipFFT 1.0.4 . 58
6.2.5.3.1 Fixed . 58
6.2.5.3.2 Added . 59

6.2.5.4 hipSOLVER 1.2.0 . 59
6.2.5.4.1 Added . 59
6.2.5.4.2 Fixed . 59

6.2.5.5 hipSPARSE 2.0.0 . 59
6.2.5.5.1 Added . 59

6.2.5.6 rccl 2.10.3 . 59
6.2.5.6.1 Added . 59
6.2.5.6.2 Known Issues . 60

6.2.5.7 rocALUTION 2.0.1 . 60
6.2.5.7.1 Changed . 60
6.2.5.7.2 Improved . 60

6.2.5.8 rocBLAS 2.42.0 . 60
6.2.5.8.1 Added . 60
6.2.5.8.2 Optimizations . 60
6.2.5.8.3 Changed . 61
6.2.5.8.4 Fixed . 61

6.2.5.9 rocFFT 1.0.13 . 61
6.2.5.9.1 Optimizations . 61
6.2.5.9.2 Added . 61
6.2.5.9.3 Fixed . 62

6.2.5.10 rocPRIM 2.10.12 . 62
6.2.5.10.1 Fixed . 62
6.2.5.10.2 Added . 62
6.2.5.10.3 Changed . 62
6.2.5.10.4 Known Issues . 63

6.2.5.11 rocRAND 2.10.12 . 63
6.2.5.11.1 Changed . 63

6.2.5.12 rocSOLVER 3.16.0 . 63
6.2.5.12.1 Added . 63
6.2.5.12.2 Optimized . 63
6.2.5.12.3 Changed . 63
6.2.5.12.4 Fixed . 64

iii

6.2.5.13 rocSPARSE 2.0.0 . 64
6.2.5.13.1 Added . 64
6.2.5.13.2 Changed . 64
6.2.5.13.3 Improved . 64

6.2.5.14 rocThrust 2.13.0 . 64
6.2.5.14.1 Added . 64
6.2.5.14.2 Changed . 64

6.2.5.15 Tensile 4.31.0 . 65
6.2.5.15.1 Added . 65
6.2.5.15.2 Optimized . 65
6.2.5.15.3 Changed . 65
6.2.5.15.4 Removed . 65
6.2.5.15.5 Fixed . 65

7 GPU and OS Support (Linux) 67
7.1 Supported Distributions . 67
7.2 Virtualization Support . 67
7.3 GPU Support Table . 67

7.3.1 Support Status . 68
7.4 CPU Support . 68

8 Compatibility 69
8.1 User/Kernel-Space Support Matrix . 69
8.2 Docker Image Support Matrix . 69

8.2.1 ROCm 5.6 . 70
8.2.1.1 PyTorch . 70

8.2.1.1.1 Ubuntu+ rocm5.6_internal_testing +169530b 70
8.2.1.1.2 CentOS7+ rocm5.6_internal_testing +169530b 70
8.2.1.1.3 1.13 +bfeb431 . 70
8.2.1.1.4 1.12 +05d5d04 . 71

8.2.1.2 TensorFlow . 71
8.2.1.2.1 tensorflow_develop-upstream-QA-rocm56 +c88a9f4 71
8.2.1.2.2 r2.11-rocm-enhanced +5be4141 . 71
8.2.1.2.3 r2.10-rocm-enhanced +72789a3 . 72

8.3 3rd Party Support Matrix . 72
8.3.1 Deep Learning . 72
8.3.2 Communication libraries . 72
8.3.3 Algorithm libraries . 73

9 Licensing Terms 75
9.1 Package Licensing . 77

10 All Reference Material 79
10.1 ROCm Software Groups . 79

11 Compilers and Tools 81
11.1 See Also . 81
11.2 Compiler Reference Guide . 81

11.2.1 Introduction to Compiler Reference Guide . 81
11.2.1.1 ROCm Compiler Interfaces . 82

11.2.2 Compiler Options and Features . 84
11.2.2.1 AMD GPU Compilation . 84
11.2.2.2 AMD Optimizations for Zen Architectures . 85

11.2.2.2.1 -famd-opt . 85
11.2.2.2.2 -fstruct-layout=[1,2,3,4,5,6,7] 85

iv

11.2.2.2.3 -fitodcalls . 86
11.2.2.2.4 -fitodcallsbyclone . 86
11.2.2.2.5 -fremap-arrays . 87
11.2.2.2.6 -finline-aggressive . 87
11.2.2.2.7 -fnt-store (non-temporal store) 87
11.2.2.2.8 -fnt-store=aggressive . 87
11.2.2.2.9 Optimizations Through Driver -mllvm <options> 87

11.2.2.2.9.1 -enable-partial-unswitch 87
11.2.2.2.9.2 -aggressive-loop-unswitch 87
11.2.2.2.9.3 -enable-strided-vectorization 88
11.2.2.2.9.4 -enable-epilog-vectorization 88
11.2.2.2.9.5 -enable-redundant-movs . 88
11.2.2.2.9.6 -merge-constant . 88
11.2.2.2.9.7 -function-specialize . 88
11.2.2.2.9.8 -lv-function-specialization 89
11.2.2.2.9.9 -enable-vectorize-compares 89
11.2.2.2.9.10 -inline-recursion=[1,2,3,4] 89
11.2.2.2.9.11 -reduce-array-computations=[1,2,3] 89
11.2.2.2.9.12 -global-vectorize-slp={true,false} 90
11.2.2.2.9.13 -region-vectorize . 90
11.2.2.2.9.14 -enable-x86-prefetching 90
11.2.2.2.9.15 -suppress-fmas . 90
11.2.2.2.9.16 -enable-icm-vrp . 90
11.2.2.2.9.17 -loop-splitting . 90
11.2.2.2.9.18 -enable-ipo-loop-split . 90
11.2.2.2.9.19 -compute-interchange-order 91
11.2.2.2.9.20 -convert-pow-exp-to-int={true,false} 91
11.2.2.2.9.21 -do-lock-reordering={none,normal,aggressive} 91
11.2.2.2.9.22 -fuse-tile-inner-loop . 91
11.2.2.2.9.23 -Hz,1,0x1 [Fortran] . 91

11.2.2.3 Inline ASM Statements . 91
11.2.2.4 Miscellaneous OpenMP Compiler Features . 92

11.2.2.4.1 Offload-arch Tool . 92
11.2.2.4.2 Command-Line Simplification Using offload-arch Flag 93
11.2.2.4.3 Target ID Support for OpenMP . 93
11.2.2.4.4 Multi-image Fat Binary for OpenMP . 94
11.2.2.4.5 Unified Shared Memory (USM) . 95

11.2.2.5 Support Status of Other Clang Options . 95

12 HIP 111
12.1 HIP Runtime . 111
12.2 Porting tools . 111

13 OpenMP Support in ROCm 113
13.1 Introduction . 113

13.1.1 Installation . 113
13.2 OpenMP: Usage . 113

13.2.1 Using rocprof with OpenMP . 114
13.2.2 Using Tracing Options . 114
13.2.3 Environment Variables . 115

13.3 OpenMP: Features . 115
13.3.1 Unified Shared Memory . 115

13.3.1.1 Prerequisites . 115
13.3.1.2 Xnack Capability . 116

v

13.3.1.3 Unified Shared Memory Pragma . 116
13.3.2 OMPT Target Support . 117
13.3.3 Floating Point Atomic Operations . 117
13.3.4 Address Sanitizer (ASan) Tool . 118
13.3.5 No-loop Kernel Generation . 119
13.3.6 Cross-Team Optimized Reductions . 120

14 Math Libraries 121
14.1 rocLIB vs. hipLIB . 121
14.2 Linear Algebra Libraries . 122
14.3 Fast Fourier Transforms . 123
14.4 Random Numbers . 123

15 C++ Primitive Libraries 125

16 Communication Libraries 127

17 AI Libraries 129

18 Computer Vision 131

19 Management Tools 133

20 Validation Tools 135

21 All Explanation Material 137

22 ROCm Compilers Disambiguation 139
22.1 Compiler Terms . 139

23 Using CMake 141
23.1 Finding Dependencies . 141
23.2 Using HIP in CMake . 142

23.2.1 Using the HIP single-source programming model . 142
23.2.2 Consuming ROCm C/C++ Libraries . 142
23.2.3 Consuming the HIP API in C++ code . 143
23.2.4 Compiling device code in C++ language mode . 143
23.2.5 ROCm CMake Packages . 144

23.3 Using CMake Presets . 144
23.3.1 Using HIP with presets . 145

24 Linux Folder Structure Reorganization 149
24.1 Introduction . 149
24.2 Changes from earlier ROCm versions . 150
24.3 ROCm File reorganization transition plan . 150

24.3.1 Wrapper header files . 150
24.3.2 Executable files . 151
24.3.3 Library files . 151
24.3.4 CMake Config files . 151

24.4 Changes required in applications using ROCm . 151
24.5 References . 152

25 GPU Isolation Techniques 153
25.1 Environment Variables . 153

25.1.1 ROCR_VISIBLE_DEVICES . 153
25.1.2 GPU_DEVICE_ORDINAL . 153

vi

25.1.3 HIP_VISIBLE_DEVICES . 154
25.1.4 CUDA_VISIBLE_DEVICES . 154
25.1.5 OMP_DEFAULT_DEVICE . 154

25.2 Docker . 154
25.3 GPU Passthrough to Virtual Machines . 154

26 GPU Architectures 155
26.1 Architecture Guides . 155
26.2 ISA Documentation . 155
26.3 White Papers . 156
26.4 AMD Instinct Hardware . 156

26.4.1 AMD CDNA 2 Micro-architecture . 156
26.4.2 Node-level Architecture . 158

26.5 AMD Instinct™ MI100 Hardware . 160
26.5.1 System Architecture . 160
26.5.2 Micro-architecture . 160

27 How ROCm uses PCIe Atomics 163
27.1 ROCm PCIe Feature and Overview BAR Memory . 163

27.1.1 BAR Memory Overview . 164
27.2 Excepts form Overview of Changes to PCI Express 3.0 . 165

27.2.1 By Mike Jackson, Senior Staff Architect, MindShare, Inc. 165
27.2.2 Atomic Operations – Goal: . 165
27.2.3 ID-based Ordering – Goal: . 166

28 All How-To Material 167

29 Tuning Guides 169
29.1 High Performance Computing . 169
29.2 Workstation . 170
29.3 MI200 High Performance Computing and Tuning Guide . 170

29.3.1 System Settings . 170
29.3.1.1 System BIOS Settings . 170

29.3.1.1.1 NBIO Link Clock Frequency . 171
29.3.1.1.2 Memory Configuration . 172

29.3.1.2 Operating System Settings . 172
29.3.1.2.1 CPU Core State - “C States” . 172
29.3.1.2.2 AMD-IOPM-UTIL . 172
29.3.1.2.3 Systems with 256 CPU Threads - IOMMU Configuration 173

29.3.2 System Management . 174
29.3.2.1 Hardware Verification with ROCm . 174
29.3.2.2 Testing Inter-device Bandwidth . 177

29.4 MI100 High Performance Computing and Tuning Guide . 180
29.4.1 System Settings . 180

29.4.1.1 System BIOS Settings . 180
29.4.1.1.1 NBIO Link Clock Frequency . 181
29.4.1.1.2 Memory Configuration . 181

29.4.1.2 Operating System Settings . 181
29.4.1.2.1 CPU Core State - “C States” . 181
29.4.1.2.2 AMD-IOPM-UTIL . 182
29.4.1.2.3 Systems with 256 CPU Threads - IOMMU Configuration 183

29.4.2 System Management . 183
29.4.2.1 Hardware Verification with ROCm . 183
29.4.2.2 Testing Inter-device Bandwidth . 184

29.5 RDNA2 Workstation Tuning Guide . 189

vii

29.5.1 System Settings . 189
29.5.1.1 System BIOS Settings . 189
29.5.1.2 Operating System Settings . 189
29.5.1.3 Guest OS installation . 190

30 Deep Learning Guide 193
30.1 Frameworks Installation . 194
30.2 Magma Installation for ROCm . 194

30.2.1 MAGMA for ROCm . 194
30.2.1.1 Using MAGMA for PyTorch . 194
30.2.1.2 Build MAGMA from Source . 194

30.2.2 References . 195
30.3 PyTorch Installation for ROCm . 195

30.3.1 PyTorch . 195
30.3.1.1 Installing PyTorch . 196

30.3.1.1.1 Option 1 (Recommended): Use Docker Image with PyTorch Pre-Installed 196
30.3.1.1.2 Option 2: Install PyTorch Using Wheels Package 196
30.3.1.1.3 Option 3: Install PyTorch Using PyTorch ROCm Base Docker Image . . . 197
30.3.1.1.4 Option 4: Install Using PyTorch Upstream Docker File 199

30.3.1.2 Test the PyTorch Installation . 200
30.3.1.3 Run a Basic PyTorch Example . 201

30.3.2 References . 201
30.4 TensorFlow Installation for ROCm . 202

30.4.1 TensorFlow . 202
30.4.1.1 Installing TensorFlow . 202

30.4.1.1.1 Option 1: Install TensorFlow Using Docker Image 202
30.4.1.1.2 Option 2: Install TensorFlow Using Wheels Package 203

30.4.1.2 Test the TensorFlow Installation . 204
30.4.1.3 Run a Basic TensorFlow Example . 204

30.4.2 References . 205

31 GPU-Enabled MPI 207
31.1 Building UCX . 207
31.2 Install UCX . 208
31.3 Install Open MPI . 208
31.4 ROCm-enabled OSU . 208
31.5 Intra-node Run . 209
31.6 Collective Operations . 209

32 System Debugging Guide 213
32.1 ROCm Language and System Level Debug, Flags, and Environment Variables 213
32.2 ROCr Error Code . 213
32.3 Command to Dump Firmware Version and Get Linux Kernel Version 213
32.4 Debug Flags . 214
32.5 ROCr Level Environment Variables for Debug . 214
32.6 Turn Off Page Retry on GFX9/Vega Devices . 214
32.7 HIP Environment Variables 3.x . 214

32.7.1 OpenCL Debug Flags . 214
32.8 PCIe-Debug . 214

33 Machine Learning, Deep Learning, and Artificial Intelligence 215
33.1 Inception V3 with PyTorch . 215

33.1.1 Deep Learning Training . 215
33.1.2 Training Phases . 216
33.1.3 Case Studies . 217

viii

33.1.3.1 Inception v3 with PyTorch . 217
33.1.3.1.1 Evaluating a Pre-Trained Model . 217
33.1.3.1.2 Training Inception v3 . 218

33.1.3.2 Custom Model with CIFAR-10 on PyTorch . 224
33.1.3.3 Case Study: TensorFlow with Fashion MNIST . 228
33.1.3.4 Case Study: TensorFlow with Text Classification 234

33.1.4 References . 241

34 About ROCm Documentation 243
34.1 ReadTheDocs . 243
34.2 Doxygen . 243
34.3 Sphinx . 243

34.3.1 MyST . 243
34.3.2 Sphinx Theme . 244
34.3.3 Sphinx Design . 244
34.3.4 Sphinx External TOC . 244
34.3.5 Breathe . 244

34.4 rocm-docs-core pip package . 244

35 Contributing to ROCm Docs 245
35.1 Supported Formats . 245
35.2 Filenames and folder structure . 245
35.3 How to provide feedback for for ROCm documentation . 246

35.3.1 Pull Request . 246
35.3.2 GitHub Issue . 246
35.3.3 Email Feedback . 246

35.4 Language and Style . 246
35.5 Building Documentation . 246

35.5.1 Command line documentation builds . 246
35.5.2 Pull Requests documentation builds . 247
35.5.3 Build the docs using VS Code . 247

35.5.3.1 Configuring VS Code . 247

Index 251

ix

x

ROCm Documentation, Release 5.0.1

What is ROCm?

ROCm is an open-source stack for GPU computation. ROCm is primarily Open-Source Software (OSS) that allows
developers the freedom to customize and tailor their GPU software for their own needs while collaborating with a
community of other developers, and helping each other find solutions in an agile, flexible, rapid and secure manner.
more. . .

Deploy ROCm

• Deploy ROCm on Linux

• Deploy ROCm Docker containers

Release Info

• Release Notes

• GPU and OS Support

• Known Issues

• Compatibility

• Licensing

APIs and Reference

• Compilers and Development Tools

• HIP

• OpenMP

• Math Libraries

• C++ Primitives Libraries

• Communication Libraries

• AI Libraries

• Computer Vision

• Management Tools

• Validation Tools

Understand ROCm

• Compiler Disambiguation

• Using CMake

• Linux Folder Structure Reorganization

• GPU Isolation Techniques

• GPU Architecture

How to Guides

• System Tuning for Various Architectures

• GPU Aware MPI

CONTENTS 1

https://github.com/RadeonOpenCompute/ROCm/labels/Verified%20Issue

ROCm Documentation, Release 5.0.1

• Setting up for Deep Learning with ROCm

– Magma Installation

– PyTorch Installation

– TensorFlow Installation

• System Level Debugging

Tutorials & Examples

• Examples

• ML, DL, and AI

– Inception V3 with PyTorch

2 CONTENTS

https://github.com/amd/rocm-examples

CHAPTER

ONE

WHAT IS ROCM?

ROCm is an open-source stack for GPU computation. ROCm is primarily Open-Source Software (OSS) that allows
developers the freedom to customize and tailor their GPU software for their own needs while collaborating with a
community of other developers, and helping each other find solutions in an agile, flexible, rapid and secure manner.

ROCm is a collection of drivers, development tools and APIs enabling GPU programming from the low-level kernel
to end-user applications. ROCm is powered by AMD’s Heterogeneous-computing Interface for Portability (HIP), an
OSS C++ GPU programming environment and its corresponding runtime. HIP allows ROCm developers to create
portable applications on different platforms by deploying code on a range of platforms, from dedicated gaming GPUs
to exascale HPC clusters. ROCm supports programming models such as OpenMP and OpenCL, and includes all the
necessary OSS compilers, debuggers and libraries. ROCm is fully integrated into ML frameworks such as PyTorch and
TensorFlow. ROCm can be deployed in many ways, including through the use of containers such as Docker, Spack,
and your own build from source.

ROCm’s goal is to allow our users to maximize their GPU hardware investment. ROCm is designed to help develop,
test and deploy GPU accelerated HPC, AI, scientific computing, CAD, and other applications in a free, open-source,
integrated and secure software ecosystem.

3

ROCm Documentation, Release 5.0.1

4 Chapter 1. What is ROCm?

CHAPTER

TWO

QUICK START (LINUX)

2.1 Add Repositories

Ubuntu

1. Download and convert the package signing key

Make the directory if it doesn't exist yet.
This location is recommended by the distribution maintainers.
sudo mkdir --parents --mode=0755 /etc/apt/keyrings
Download the key, convert the signing-key to a full
keyring required by apt and store in the keyring directory
wget https://repo.radeon.com/rocm/rocm.gpg.key -O - | \

gpg --dearmor | sudo tee /etc/apt/keyrings/rocm.gpg > /dev/null

2. Add the repositories

Ubuntu 20.04

Kernel driver repository for focal
sudo tee /etc/apt/sources.list.d/amdgpu.list <<'EOF'
deb [arch=amd64 signed-by=/etc/apt/keyrings/rocm.gpg] https://repo.radeon.com/amdgpu/
→˓latest/ubuntu focal main
EOF
ROCm repository for focal
sudo tee /etc/apt/sources.list.d/rocm.list <<'EOF'
deb [arch=amd64 signed-by=/etc/apt/keyrings/rocm.gpg] https://repo.radeon.com/rocm/apt/
→˓debian focal main
EOF

5

ROCm Documentation, Release 5.0.1

Ubuntu 22.04

Kernel driver repository for jammy
sudo tee /etc/apt/sources.list.d/amdgpu.list <<'EOF'
deb [arch=amd64 signed-by=/etc/apt/keyrings/rocm.gpg] https://repo.radeon.com/amdgpu/
→˓latest/ubuntu jammy main
EOF
ROCm repository for jammy
sudo tee /etc/apt/sources.list.d/rocm.list <<'EOF'
deb [arch=amd64 signed-by=/etc/apt/keyrings/rocm.gpg] https://repo.radeon.com/rocm/apt/
→˓debian jammy main
echo -e 'Package: *\nPin: release o=repo.radeon.com\nPin-Priority: 600' | sudo tee /etc/
→˓apt/preferences.d/rocm-pin-600
EOF

3. Update the list of packages

sudo apt update

Red Hat Enterprise Linux

1. Add the repositories

RHEL 8.6

Add the amdgpu module repository for RHEL 8.6
sudo tee /etc/yum.repos.d/amdgpu.repo <<'EOF'
[amdgpu]
name=amdgpu
baseurl=https://repo.radeon.com/amdgpu/latest/rhel/8.6/main/x86_64
enabled=1
gpgcheck=1
gpgkey=https://repo.radeon.com/rocm/rocm.gpg.key
EOF
Add the rocm repository for RHEL 8
sudo tee /etc/yum.repos.d/rocm.repo <<'EOF'
[rocm]
name=rocm
baseurl=https://repo.radeon.com/rocm/rhel8/latest/main
enabled=1
priority=50
gpgcheck=1
gpgkey=https://repo.radeon.com/rocm/rocm.gpg.key
EOF

6 Chapter 2. Quick Start (Linux)

ROCm Documentation, Release 5.0.1

RHEL 8.7

Add the amdgpu module repository for RHEL 8.7
sudo tee /etc/yum.repos.d/amdgpu.repo <<'EOF'
[amdgpu]
name=amdgpu
baseurl=https://repo.radeon.com/amdgpu/latest/rhel/8.7/main/x86_64
enabled=1
gpgcheck=1
gpgkey=https://repo.radeon.com/rocm/rocm.gpg.key
EOF
Add the rocm repository for RHEL 8
sudo tee /etc/yum.repos.d/rocm.repo <<'EOF'
[rocm]
name=rocm
baseurl=https://repo.radeon.com/rocm/rhel8/latest/main
enabled=1
priority=50
gpgcheck=1
gpgkey=https://repo.radeon.com/rocm/rocm.gpg.key
EOF

RHEL 9.1

Add the amdgpu module repository for RHEL 9.1
sudo tee /etc/yum.repos.d/amdgpu.repo <<'EOF'
[amdgpu]
name=amdgpu
baseurl=https://repo.radeon.com/amdgpu/latest/rhel/9.1/main/x86_64
enabled=1
gpgcheck=1
gpgkey=https://repo.radeon.com/rocm/rocm.gpg.key
EOF
Add the rocm repository for RHEL 9
sudo tee /etc/yum.repos.d/rocm.repo <<'EOF'
[rocm]
name=rocm
baseurl=https://repo.radeon.com/rocm/rhel9/latest/main
enabled=1
priority=50
gpgcheck=1
gpgkey=https://repo.radeon.com/rocm/rocm.gpg.key
EOF

2.1. Add Repositories 7

ROCm Documentation, Release 5.0.1

2. Clean cached files from enabled repositories

sudo yum clean all

SUSE Linux Enterprise Server

1. Add the repositories

SLES 15 SP4

Add the amdgpu module repository for SLES 15.4
sudo tee /etc/zypp/repos.d/amdgpu.repo <<'EOF'
[amdgpu]
name=amdgpu
baseurl=https://repo.radeon.com/amdgpu/latest/sle/15.4/main/x86_64
enabled=1
gpgcheck=1
gpgkey=https://repo.radeon.com/rocm/rocm.gpg.key
EOF
Add the rocm repository for SLES
sudo tee /etc/zypp/repos.d/rocm.repo <<'EOF'
[rocm]
name=rocm
baseurl=https://repo.radeon.com/rocm/zyp/zypper
enabled=1
priority=50
gpgcheck=1
gpgkey=https://repo.radeon.com/rocm/rocm.gpg.key
EOF

2. Update the new repository

sudo zypper ref

2.2 Install Drivers

Install the amdgpu-dkms kernel module, aka driver, on your system.

Ubuntu

sudo apt install amdgpu-dkms

8 Chapter 2. Quick Start (Linux)

ROCm Documentation, Release 5.0.1

Red Hat Enterprise Linux

sudo yum install amdgpu-dkms

SUSE Linux Enterprise Server

sudo zypper install amdgpu-dkms

2.3 Install ROCm Runtimes

Install the rocm-hip-libraries meta-package. This contains dependencies for most common ROCm applications.

Ubuntu

sudo apt install rocm-hip-libraries

Red Hat Enterprise Linux

sudo yum install rocm-hip-libraries

SUSE Linux Enterprise Server

sudo zypper install rocm-hip-libraries

2.4 Reboot the system

Loading the new driver requires a reboot of the system.

sudo reboot

2.3. Install ROCm Runtimes 9

ROCm Documentation, Release 5.0.1

10 Chapter 2. Quick Start (Linux)

CHAPTER

THREE

DEPLOY ROCM ON LINUX

Start with Quick Start (Linux) or follow the detailed instructions below.

3.1 Prepare to Install

Prerequisites The prerequisites page lists the required steps before installation.

Install Choices Package manager vs AMDGPU Installer

Standard Packages vs Multi-Version Packages

3.2 Choose your install method

Package Manager Directly use your distribution’s package manager to install ROCm.

AMDGPU Installer Use an installer tool that orchestrates changes via the package manager.

3.3 See Also

• GPU and OS Support (Linux)

3.4 ROCm Installation Options (Linux)

Users installing ROCm must choose between various installation options. A new user should follow the Quick Start
guide.

11

ROCm Documentation, Release 5.0.1

3.4.1 Package Manager versus AMDGPU Installer?

ROCm supports two methods for installation:

• Directly using the Linux distribution’s package manager

• The amdgpu-install script

There is no difference in the final installation state when choosing either option.

Using the distribution’s package manager lets the user install, upgrade and uninstall using familiar commands and
workflows. Third party ecosystem support is the same as your OS package manager.

The amdgpu-install script is a wrapper around the package manager. The same packages are installed by this script
as the package manager system.

The installer automates the installation process for the AMDGPU and ROCm stack. It handles the complete installa-
tion process for ROCm, including setting up the repository, cleaning the system, updating, and installing the desired
drivers and meta-packages. Users who are less familiar with the package manager can choose this method for ROCm
installation.

3.4.2 Single Version ROCm install versus Multi-Version

ROCm packages are versioned with both semantic versioning that is package specific and a ROCm release version.

3.4.2.1 Single-version Installation

The single-version ROCm installation refers to the following:

• Installation of a single instance of the ROCm release on a system

• Use of non-versioned ROCm meta-packages

3.4.2.2 Multi-version Installation

The multi-version installation refers to the following:

• Installation of multiple instances of the ROCm stack on a system. Extending the package name and its depen-
dencies with the release version adds the ability to support multiple versions of packages simultaneously.

• Use of versioned ROCm meta-packages.

Attention: ROCm packages that were previously installed from a single-version installation must be removed
before proceeding with the multi-version installation to avoid conflicts.

Note: Multiversion install is not available for the kernel driver module, also referred to as AMDGPU.

The following image demonstrates the difference between single-version and multi-version ROCm installation types:

12 Chapter 3. Deploy ROCm on Linux

ROCm Documentation, Release 5.0.1

Fig. 3.1: ROCm Installation Types

3.5 Installation Prerequisites (Linux)

You must perform the following steps before installing ROCm and check if the system meets all the requirements to
proceed with the installation.

3.5.1 Confirm the System Has a Supported Linux Distribution Version

The ROCm installation is supported only on specific Linux distributions and kernel versions.

3.5.1.1 Check the Linux Distribution and Kernel Version on Your System

This section discusses obtaining information about the Linux distribution and kernel version.

3.5.1.1.1 Linux Distribution Information

Verify the Linux distribution using the following steps:

1. To obtain the Linux distribution information, type the following command on your system from the Command
Line Interface (CLI):

uname -m && cat /etc/*release

2. Confirm that the obtained Linux distribution information matches with those listed in Supported Distributions.

Example: Running the command above on an Ubuntu system results in the following output:

x86_64
DISTRIB_ID=Ubuntu
DISTRIB_RELEASE=20.04
DISTRIB_CODENAME=focal
DISTRIB_DESCRIPTION="Ubuntu 20.04.5 LTS"

3.5. Installation Prerequisites (Linux) 13

ROCm Documentation, Release 5.0.1

3.5.1.1.2 Kernel Information

Verify the kernel version using the following steps:

1. To check the kernel version of your Linux system, type the following command:

uname -srmv

Example: The output of the command above lists the kernel version in the following format:

Linux 5.15.0-46-generic #44~20.04.5-Ubuntu SMP Fri Jun 24 13:27:29 UTC 2022 x86_64

2. Confirm that the obtained kernel version information matches with system requirements as listed in Supported
Distributions.

3.5.2 Additional package repositories

On some distributions the ROCm packages depend on packages outside the default package repositories. These extra
repositories need to be enabled before installation. Follow the instructions below based on your distributions.

Ubuntu

All packages are available in the default Ubuntu repositories, therefore no additional repositories need to be added.

Red Hat Enterprise Linux

1. Add the EPEL repository

RHEL 8

wget https://dl.fedoraproject.org/pub/epel/epel-release-latest-8.noarch.rpm
sudo rpm -ivh epel-release-latest-8.noarch.rpm

RHEL 9

wget https://dl.fedoraproject.org/pub/epel/epel-release-latest-9.noarch.rpm
sudo rpm -ivh epel-release-latest-9.noarch.rpm

2. Enable the CodeReady Linux Builder repository

Run the following command and follow the instructions.

sudo crb enable

14 Chapter 3. Deploy ROCm on Linux

ROCm Documentation, Release 5.0.1

SUSE Linux Enterprise Server 15

Add the perl languages repository.

zypper addrepo https://download.opensuse.org/repositories/devel:languages:perl/SLE_15_
→˓SP4/devel:languages:perl.repo

3.5.3 Kernel headers and development packages

The driver package uses DKMS (Dynamic Kernel Module Support) to build the amdgpu-dkms module (driver) for
the installed kernels. This requires the Linux kernel headers and modules to be installed for each. Usually these are
automatically installed with the kernel, but if you have multiple kernel versions or you have downloaded the kernel
images and not the kernel meta-packages then they must be manually installed.

To install for the currently active kernel run the command corresponding to your distribution.

Ubuntu

sudo apt install "linux-headers-$(uname -r)" "linux-modules-extra-$(uname -r)"

Red Hat Enterprise Linux

sudo yum install kernel-headers kernel-devel

SUSE Linux Enterprise Server

sudo zypper install kernel-default-devel

3.5.4 Setting Permissions for Groups

This section provides steps to add any current user to a video group to access GPU resources. Use of the video group
is recommended for all ROCm-supported operating systems.

1. To check the groups in your system, issue the following command:

groups

2. Add yourself to the render and video group using the command:

sudo usermod -a -G render,video $LOGNAME

To add all future users to the video and render groups by default, run the following commands:

echo 'ADD_EXTRA_GROUPS=1' | sudo tee -a /etc/adduser.conf
echo 'EXTRA_GROUPS=video' | sudo tee -a /etc/adduser.conf
echo 'EXTRA_GROUPS=render' | sudo tee -a /etc/adduser.conf

3.5. Installation Prerequisites (Linux) 15

https://en.wikipedia.org/wiki/Dynamic_Kernel_Module_Support

ROCm Documentation, Release 5.0.1

3.6 Installation via Package manager

Install How to install ROCm?

Upgrade Instructions for upgrading an existing ROCm installation.

Uninstall Steps for removing ROCm packages libraries and tools.

Package Manager Integration Information about packages.

3.6.1 See Also

• GPU and OS Support (Linux)

3.6.2 Installation (Linux)

3.6.2.1 Understanding the Release-specific AMDGPU and ROCm Repositories on Linux Distribu-
tions

The release-specific repositories consist of packages from a specific release of versions of AMDGPU and ROCm. The
repositories are not updated for the latest packages with subsequent releases. When a new ROCm release is available,
the new repository, specific to that release, is added. You can select a specific release to install, update the previously
installed single version to the later available release, or add the latest version of ROCm along with the currently installed
version by using the multi-version ROCm packages.

3.6.2.2 Step by Step Instructions

Ubuntu

1. Download and convert the package signing key

Make the directory if it doesn't exist yet.
This location is recommended by the distribution maintainers.
sudo mkdir --parents --mode=0755 /etc/apt/keyrings
Download the key, convert the signing-key to a full
keyring required by apt and store in the keyring directory
wget https://repo.radeon.com/rocm/rocm.gpg.key -O - | \

gpg --dearmor | sudo tee /etc/apt/keyrings/rocm.gpg > /dev/null

Note: The GPG key may change; ensure it is updated when installing a new release. If the key signature veri-
fication fails while updating, re-add the key from the ROCm to the apt repository as mentioned above. The cur-
rent rocm.gpg.key is not available in a standard key ring distribution but has the following SHA1 sum hash:
73f5d8100de6048aa38a8b84cd9a87f05177d208 rocm.gpg.key

16 Chapter 3. Deploy ROCm on Linux

ROCm Documentation, Release 5.0.1

2. Add the AMDGPU Repository and Install the Kernel-mode Driver

Tip: If you have a version of the kernel-mode driver installed, you may skip this section.

To add the AMDGPU repository, follow these steps:

Ubuntu 18.04

amdgpu repository for bionic
echo 'deb [arch=amd64 signed-by=/etc/apt/keyrings/rocm.gpg] https://repo.radeon.com/
→˓amdgpu/21.50.1/ubuntu bionic main' \

| sudo tee /etc/apt/sources.list.d/amdgpu.list
sudo apt update

Ubuntu 20.04

amdgpu repository for focal
echo 'deb [arch=amd64 signed-by=/etc/apt/keyrings/rocm.gpg] https://repo.radeon.com/
→˓amdgpu/21.50.1/ubuntu focal main' \

| sudo tee /etc/apt/sources.list.d/amdgpu.list
sudo apt update

Install the kernel mode driver and reboot the system using the following commands:

sudo apt install amdgpu-dkms
sudo reboot

3. Add the ROCm Repository

To add the ROCm repository, use the following steps:

Ubuntu 18.04

ROCm repositories for bionic
for ver in 5.0 5.0.1; do
echo "deb [arch=amd64 signed-by=/etc/apt/keyrings/rocm.gpg] https://repo.radeon.com/rocm/
→˓apt/$ver bionic main" \

| sudo tee --append /etc/apt/sources.list.d/rocm.list
done
echo -e 'Package: *\nPin: release o=repo.radeon.com\nPin-Priority: 600' \

| sudo tee /etc/apt/preferences.d/rocm-pin-600
sudo apt update

3.6. Installation via Package manager 17

ROCm Documentation, Release 5.0.1

Ubuntu 20.04

ROCm repositories for focal
for ver in 5.0 5.0.1; do
echo "deb [arch=amd64 signed-by=/etc/apt/keyrings/rocm.gpg] https://repo.radeon.com/rocm/
→˓apt/$ver focal main" \

| sudo tee --append /etc/apt/sources.list.d/rocm.list
done
echo -e 'Package: *\nPin: release o=repo.radeon.com\nPin-Priority: 600' \

| sudo tee /etc/apt/preferences.d/rocm-pin-600
sudo apt update

4. Install packages

Install packages of your choice in a single-version ROCm install or in a multi-version ROCm install fashion. For more
information on what single/multi-version installations are, refer to Single Version ROCm install versus Multi-Version.
For a comprehensive list of meta-packages, refer to Meta-packages and Their Descriptions.

• Sample Single-version installation

sudo apt install rocm-hip-sdk

• Sample Multi-version installation

sudo apt install rocm-hip-sdk5.0.1

Red Hat Enterprise Linux

1. Add the AMDGPU Stack Repository and Install the Kernel-mode Driver

Tip: If you have a version of the kernel-mode driver installed, you may skip this section.

RHEL 7.9

sudo tee /etc/yum.repos.d/amdgpu.repo <<EOF
[amdgpu]
name=amdgpu
baseurl=https://repo.radeon.com/amdgpu/21.50.1/rhel/7.9/main/x86_64/
enabled=1
priority=50
gpgcheck=1
gpgkey=https://repo.radeon.com/rocm/rocm.gpg.key
EOF
sudo yum clean all

18 Chapter 3. Deploy ROCm on Linux

ROCm Documentation, Release 5.0.1

RHEL 8.4

sudo tee /etc/yum.repos.d/amdgpu.repo <<EOF
[amdgpu]
name=amdgpu
baseurl=https://repo.radeon.com/amdgpu/21.50.1/rhel/8.4/main/x86_64/
enabled=1
priority=50
gpgcheck=1
gpgkey=https://repo.radeon.com/rocm/rocm.gpg.key
EOF
sudo yum clean all

RHEL 8.5

sudo tee /etc/yum.repos.d/amdgpu.repo <<EOF
[amdgpu]
name=amdgpu
baseurl=https://repo.radeon.com/amdgpu/21.50.1/rhel/8.5/main/x86_64/
enabled=1
priority=50
gpgcheck=1
gpgkey=https://repo.radeon.com/rocm/rocm.gpg.key
EOF
sudo yum clean all

Install the kernel mode driver and reboot the system using the following commands:

sudo yum install amdgpu-dkms
sudo reboot

2. Add the ROCm Stack Repository

To add the ROCm repository, use the following steps, based on your distribution:

RHEL 7

for ver in 5.0 5.0.1; do
sudo tee --append /etc/yum.repos.d/rocm.repo <<EOF
[ROCm-$ver]
name=ROCm$ver
baseurl=https://repo.radeon.com/rocm/yum/$ver/main
enabled=1
priority=50
gpgcheck=1
gpgkey=https://repo.radeon.com/rocm/rocm.gpg.key
EOF
done
sudo yum clean all

3.6. Installation via Package manager 19

ROCm Documentation, Release 5.0.1

RHEL 8

for ver in 5.0 5.0.1; do
sudo tee --append /etc/yum.repos.d/rocm.repo <<EOF
[ROCm-$ver]
name=ROCm$ver
baseurl=https://repo.radeon.com/rocm/rhel8/$ver/main
enabled=1
priority=50
gpgcheck=1
gpgkey=https://repo.radeon.com/rocm/rocm.gpg.key
EOF
done
sudo yum clean all

3. Install packages

Install packages of your choice in a single-version ROCm install or in a multi-version ROCm install fashion. For more
information on what single/multi-version installations are, refer to Single Version ROCm install versus Multi-Version.
For a comprehensive list of meta-packages, refer to Meta-packages and Their Descriptions.

• Sample Single-version installation

sudo yum install rocm-hip-sdk

• Sample Multi-version installation

sudo yum install rocm-hip-sdk5.0.1

SUSE Linux Enterprise Server 15

1. Add the AMDGPU Repository and Install the Kernel-mode Driver

Tip: If you have a version of the kernel-mode driver installed, you may skip this section.

Service Pack 3

sudo tee /etc/zypp/repos.d/amdgpu.repo <<EOF
[amdgpu]
name=amdgpu
baseurl=https://repo.radeon.com/amdgpu/21.50.1/sle/15.3/main/x86_64
enabled=1
gpgcheck=1
gpgkey=https://repo.radeon.com/rocm/rocm.gpg.key
EOF
sudo zypper ref

Install the kernel mode driver and reboot the system using the following commands:

20 Chapter 3. Deploy ROCm on Linux

ROCm Documentation, Release 5.0.1

sudo zypper --gpg-auto-import-keys install amdgpu-dkms
sudo reboot

2. Add the ROCm Stack Repository

To add the ROCm repository, use the following steps:

for ver in 5.0 5.0.1; do
sudo tee --append /etc/zypp/repos.d/rocm.repo <<EOF
[ROCm-$ver]
name=ROCm$ver
name=rocm
baseurl=https://repo.radeon.com/rocm/zyp/$ver/main
enabled=1
gpgcheck=1
gpgkey=https://repo.radeon.com/rocm/rocm.gpg.key
EOF
done
sudo zypper ref

3. Install packages

Install packages of your choice in a single-version ROCm install or in a multi-version ROCm install fashion. For more
information on what single/multi-version installations are, refer to Single Version ROCm install versus Multi-Version.
For a comprehensive list of meta-packages, refer to Meta-packages and Their Descriptions.

• Sample Single-version installation

sudo zypper --gpg-auto-import-keys install rocm-hip-sdk

• Sample Multi-version installation

sudo zypper --gpg-auto-import-keys install rocm-hip-sdk5.0.1

3.6.2.3 Post-install Actions and Verification Process

The post-install actions listed here are optional and depend on your use case, but are generally useful. Verification of
the install is advised.

3.6.2.3.1 Post-install Actions

1. Instruct the system linker where to find the shared objects (.so files) for ROCm applications.

sudo tee --append /etc/ld.so.conf.d/rocm.conf <<EOF
/opt/rocm/lib
/opt/rocm/lib64
EOF
sudo ldconfig

3.6. Installation via Package manager 21

ROCm Documentation, Release 5.0.1

Note: Multi-version installations require extra care. Having multiple versions on the system linker library search
path is unadvised. One must take care both at compile-time and at run-time to assure that the proper libraries
are picked up. You can override ld.so.conf entries on a case-by-case basis using the LD_LIBRARY_PATH
environmental variable.

2. Add binary paths to the PATH environment variable.

export PATH=$PATH:/opt/rocm-5.0.1/bin:/opt/rocm-5.0.1/opencl/bin

Attention: When using CMake to build applications, having the ROCm install location on the
PATH subtly affects how ROCm libraries are searched for. See Config Mode Search Procedure and
CMAKE_FIND_USE_SYSTEM_ENVIRONMENT_PATH for details.

(Entries in the PATH minus bin and sbin are added to library search paths, therefore this convenience will
affect builds and result in ROCm libraries almost always being found. This may be an issue when you’re
developing these libraries or want to use self-built versions of them.)

3.6.2.3.2 Verifying Kernel-mode Driver Installation

Check the installation of the kernel-mode driver by typing the command given below:

dkms status

3.6.2.3.3 Verifying ROCm Installation

After completing the ROCm installation, execute the following commands on the system to verify if the installation is
successful. If you see your GPUs listed by both commands, the installation is considered successful:

/opt/rocm/bin/rocminfo
OR
/opt/rocm/opencl/bin/clinfo

3.6.2.3.4 Verifying Package Installation

To ensure the packages are installed successfully, use the following commands:

Ubuntu

sudo apt list --installed

22 Chapter 3. Deploy ROCm on Linux

https://cmake.org/cmake/help/latest/command/find_package.html#config-mode-search-procedure
https://cmake.org/cmake/help/latest/variable/CMAKE_FIND_USE_SYSTEM_ENVIRONMENT_PATH.html

ROCm Documentation, Release 5.0.1

Red Hat Enterprise Linux

sudo yum list installed

SUSE Linux Enterprise Server

sudo zypper search --installed-only

3.6.3 Upgrade ROCm with the package manager

This section explains how to upgrade the existing AMDGPU driver and ROCm packages to the latest version using
your OS’s distributed package manager.

Note: Package upgrade is applicable to single-version packages only. If the preference is to install an updated version
of the ROCm along with the currently installed version, refer to the Installation (Linux) page.

3.6.3.1 Upgrade Steps

3.6.3.1.1 Update the AMDGPU repository

Execute the commands below based on your distribution to point the amdgpu repository to the new release.

Ubuntu

Ubuntu 18.04

amdgpu repository for bionic
echo 'deb [arch=amd64 signed-by=/etc/apt/keyrings/rocm.gpg] https://repo.radeon.com/
→˓amdgpu/21.50.1/ubuntu bionic main' \

| sudo tee /etc/apt/sources.list.d/amdgpu.list
sudo apt update

Ubuntu 20.04

amdgpu repository for focal
echo 'deb [arch=amd64 signed-by=/etc/apt/keyrings/rocm.gpg] https://repo.radeon.com/
→˓amdgpu/21.50.1/ubuntu focal main' \

| sudo tee /etc/apt/sources.list.d/amdgpu.list
sudo apt update

3.6. Installation via Package manager 23

ROCm Documentation, Release 5.0.1

Red Hat Enterprise Linux

RHEL 7.9

sudo tee /etc/yum.repos.d/amdgpu.repo <<EOF
[amdgpu]
name=amdgpu
baseurl=https://repo.radeon.com/amdgpu/21.50.1/rhel/7.9/main/x86_64/
enabled=1
priority=50
gpgcheck=1
gpgkey=https://repo.radeon.com/rocm/rocm.gpg.key
EOF
sudo yum clean all

RHEL 8.4

sudo tee /etc/yum.repos.d/amdgpu.repo <<EOF
[amdgpu]
name=amdgpu
baseurl=https://repo.radeon.com/amdgpu/21.50.1/rhel/8.4/main/x86_64/
enabled=1
priority=50
gpgcheck=1
gpgkey=https://repo.radeon.com/rocm/rocm.gpg.key
EOF
sudo yum clean all

RHEL 8.5

sudo tee /etc/yum.repos.d/amdgpu.repo <<EOF
[amdgpu]
name=amdgpu
baseurl=https://repo.radeon.com/amdgpu/21.50.1/rhel/8.5/main/x86_64/
enabled=1
priority=50
gpgcheck=1
gpgkey=https://repo.radeon.com/rocm/rocm.gpg.key
EOF
sudo yum clean all

24 Chapter 3. Deploy ROCm on Linux

ROCm Documentation, Release 5.0.1

SUSE Linux Enterprise Server 15

Service Pack 3

sudo tee /etc/zypp/repos.d/amdgpu.repo <<EOF
[amdgpu]
name=amdgpu
baseurl=https://repo.radeon.com/amdgpu/21.50.1/sle/15.3/main/x86_64
enabled=1
gpgcheck=1
gpgkey=https://repo.radeon.com/rocm/rocm.gpg.key
EOF
sudo zypper ref

3.6.3.1.2 Upgrade the kernel-mode driver & reboot

Upgrade the kernel mode driver and reboot the system using the following commands based on your distribution:

Ubuntu

sudo apt install amdgpu-dkms
sudo reboot

Red Hat Enterprise Linux

sudo yum install amdgpu-dkms
sudo reboot

SUSE Linux Enterprise Server 15

sudo zypper --gpg-auto-import-keys install amdgpu-dkms
sudo reboot

3.6.3.1.3 Update the ROCm repository

Execute the commands below based on your distribution to point the rocm repository to the new release.

3.6. Installation via Package manager 25

ROCm Documentation, Release 5.0.1

Ubuntu

Ubuntu 18.04

echo "deb [arch=amd64 signed-by=/etc/apt/keyrings/rocm.gpg] https://repo.radeon.com/rocm/
→˓apt/5.0.1 bionic main" \

| sudo tee /etc/apt/sources.list.d/rocm.list
echo -e 'Package: *\nPin: release o=repo.radeon.com\nPin-Priority: 600' \

| sudo tee /etc/apt/preferences.d/rocm-pin-600
sudo apt update

Ubuntu 20.04

echo "deb [arch=amd64 signed-by=/etc/apt/keyrings/rocm.gpg] https://repo.radeon.com/rocm/
→˓apt/5.0.1 focal main" \

| sudo tee /etc/apt/sources.list.d/rocm.list
echo -e 'Package: *\nPin: release o=repo.radeon.com\nPin-Priority: 600' \

| sudo tee /etc/apt/preferences.d/rocm-pin-600
sudo apt update

Red Hat Enterprise Linux

RHEL 7

sudo tee /etc/yum.repos.d/rocm.repo <<EOF
[ROCm-5.0.1]
name=ROCm5.0.1
baseurl=https://repo.radeon.com/rocm/yum/5.0.1/main
enabled=1
priority=50
gpgcheck=1
gpgkey=https://repo.radeon.com/rocm/rocm.gpg.key
EOF
sudo yum clean all

RHEL 8

sudo tee /etc/yum.repos.d/rocm.repo <<EOF
[ROCm-5.0.1]
name=ROCm5.0.1
baseurl=https://repo.radeon.com/rocm/rhel8/5.0.1/main
enabled=1
priority=50
gpgcheck=1
gpgkey=https://repo.radeon.com/rocm/rocm.gpg.key
EOF
sudo yum clean all

26 Chapter 3. Deploy ROCm on Linux

ROCm Documentation, Release 5.0.1

SUSE Linux Enterprise Server 15

sudo tee /etc/zypp/repos.d/rocm.repo <<EOF
[ROCm-5.0.1]
name=ROCm5.0.1
name=rocm
baseurl=https://repo.radeon.com/rocm/zyp/5.0.1/main
enabled=1
gpgcheck=1
gpgkey=https://repo.radeon.com/rocm/rocm.gpg.key
EOF
sudo zypper ref

3.6.3.1.4 Upgrade the ROCm packages

Your packages can be upgraded now through their meta-packages, see the following example based on your distribution:

Ubuntu

sudo apt install --only-upgrade rocm-hip-sdk

Red Hat Enterprise Linux

sudo yum update rocm-hip-sdk

Suse Linux Enterprise Server 15

sudo zypper --gpg-auto-import-keys update rocm-hip-sdk

3.6.3.2 Verification Process

To verify if the upgrade is successful, refer to the Post-install Actions and Verification Process given in the Installation
section.

3.6.4 Uninstallation with package manager (Linux)

This section describes how to uninstall ROCm with the Linux distribution’s package manager. This method should be
used if ROCm was installed via the package manager. If the installer script was used for installation, then it should be
used for uninstallation too, refer to Installer Script Uninstallation (Linux).

3.6. Installation via Package manager 27

ROCm Documentation, Release 5.0.1

Ubuntu

Uninstalling Specific Meta-packages

Uninstall single-version ROCm packages
sudo apt autoremove <package-name>
Uninstall multiversion ROCm packages
sudo apt autoremove <package-name with release version>

Complete Uninstallation of ROCm Packages

Uninstall single-version ROCm packages
sudo apt autoremove rocm-core
Uninstall multiversion ROCm packages
sudo apt autoremove rocm-core<release version>

Uninstall Kernel-mode Driver

sudo apt autoremove amdgpu-dkms

Remove ROCm and AMDGPU Repositories

1. Execute these commands:

sudo rm /etc/apt/sources.list.d/<rocm_repository-name>.list
sudo rm /etc/apt/sources.list.d/<amdgpu_repository-name>.list

2. Clear the cache and clean the system.

sudo rm -rf /var/cache/apt/*
sudo apt-get clean all

3. Restart the system.

sudo reboot

Red Hat Enterprise Linux

Uninstalling Specific Meta-packages

Uninstall single-version ROCm packages
sudo yum remove <package-name>
Uninstall multiversion ROCm packages
sudo yum remove <package-name with release version>

28 Chapter 3. Deploy ROCm on Linux

ROCm Documentation, Release 5.0.1

Complete Uninstallation of ROCm Packages

Uninstall single-version ROCm packages
sudo yum remove rocm-core
Uninstall multiversion ROCm packages
sudo yum remove rocm-core<release version>

Uninstall Kernel-mode Driver

sudo yum autoremove amdgpu-dkms

Remove ROCm and AMDGPU Repositories

1. Execute these commands:

sudo rm -rf /etc/yum.repos.d/<rocm_repository-name> # Remove only rocm repo
sudo rm -rf /etc/yum.repos.d/<amdgpu_repository-name> # Remove only amdgpu repo

2. Clear the cache and clean the system.

sudo rm -rf /var/cache/yum #Remove the cache
sudo yum clean all

3. Restart the system.

sudo reboot

SUSE Linux Enterprise Server 15

Uninstalling Specific Meta-packages

Uninstall all single-version ROCm packages
sudo zypper remove <package-name>
Uninstall all multiversion ROCm packages
sudo zypper remove <package-name with release version>

Complete Uninstallation of ROCm Packages

Uninstall all single-version ROCm packages
sudo zypper remove rocm-core
Uninstall all multiversion ROCm packages
sudo zypper remove rocm-core<release version>

3.6. Installation via Package manager 29

ROCm Documentation, Release 5.0.1

Uninstall Kernel-mode Driver

sudo zypper remove --clean-deps amdgpu-dkms

Remove ROCm and AMDGPU Repositories

1. Execute these commands:

sudo zypper removerepo <rocm_repository-name>
sudo zypper removerepo <amdgpu_repository-name>

2. Clear the cache and clean the system.

sudo zypper clean --all

3. Restart the system.

sudo reboot

3.6.5 Package Manager Integration

This section provides information about the required meta-packages for the following AMD ROCm programming
models:

• Heterogeneous-Computing Interface for Portability (HIP)

• OpenCL™

• OpenMP™

3.6.5.1 ROCm Package Naming Conventions

A meta-package is a grouping of related packages and dependencies used to support a specific use case.

Example: Running HIP applications

All meta-packages exist in both versioned and non-versioned forms.

• Non-versioned packages – For a single-version installation of the ROCm stack

• Versioned packages – For multi-version installations of the ROCm stack

Fig. 3.2 demonstrates the single and multi-version ROCm packages’ naming structure, including examples for various
Linux distributions. See terms below:

Module - It is the part of the package that represents the name of the ROCm component.

Example: The examples mentioned in the image represent the ROCm HIP module.

Module version - It is the version of the library released in that package. It should increase with a newer release.

Release version - It shows the ROCm release version when the package was released.

Example: 50400 points to the ROCm 5.4.0 release.

Build id - It represents the Jenkins build number for that release.

Arch - It shows the architecture for which the package was created.

30 Chapter 3. Deploy ROCm on Linux

ROCm Documentation, Release 5.0.1

Fig. 3.2: ROCm Release Package Naming

Distro - It describes the distribution for which the package was created. It is valid only for rpm packages.

Example: el8 represents RHEL 8.x packages.

3.6.5.2 Components of ROCm Programming Models

Fig. 3.3 demonstrates the high-level layered architecture of ROCm programming models and their meta-packages. All
meta-packages are a combination of required packages and libraries.

Example:

• rocm-hip-runtime is used to deploy on supported machines to execute HIP applications.

• rocm-hip-sdk contains runtime components to deploy and execute HIP applications.

Note: rocm-llvm is not a meta-package but a single package that installs the ROCm clang compiler files.

3.6. Installation via Package manager 31

ROCm Documentation, Release 5.0.1

Fig. 3.3: ROCm Meta Packages

Table 3.1: Meta-packages and Their Descriptions

Meta-packages Description
rocm-language-runtime The ROCm runtime
rocm-hip-runtime Run HIP applications written for the AMD platform
rocm-opencl-runtime Run OpenCL-based applications on the AMD platform
rocm-hip-runtime-devel Develop applications on HIP or port from CUDA
rocm-opencl-sdk Develop applications in OpenCL for the AMD platform
rocm-hip-libraries HIP libraries optimized for the AMD platform
rocm-hip-sdk Develop or port HIP applications and libraries for the AMD platform
rocm-developer-tools Debug and profile HIP applications
rocm-ml-sdk Develop and run Machine Learning applications with optimized for AMD
rocm-ml-libraries Key Machine Learning libraries, specifically MIOpen
rocm-openmp-sdk Develop OpenMP-based applications for the AMD platform
rocm-openmp-runtime Run OpenMP-based applications for the AMD platform

3.6.5.3 Packages in ROCm Programming Models

This section discusses the available meta-packages and their packages. The following image visualizes the meta-
packages and their associated packages in a ROCm programming model.

• Meta-packages can include another meta-package.

• rocm-core package is common across all the meta-packages.

• Meta-packages and associated packages are represented in the same color.

Note: Fig. 3.4 is for informational purposes only, as the individual packages in a meta-package are subject to change.
Install meta-packages, and not individual packages, to avoid conflicts.

32 Chapter 3. Deploy ROCm on Linux

ROCm Documentation, Release 5.0.1

Fig. 3.4: Associated Packages

3.7 AMDGPU Install Script

Install How to install ROCm?

Upgrade Instructions for upgrading an existing ROCm installation.

Uninstall Steps for removing ROCm packages libraries and tools.

3.7.1 See Also

• GPU and OS Support (Linux)

3.7.2 Installation with install script

Prior to beginning, please ensure you have the prerequisites installed.

3.7. AMDGPU Install Script 33

ROCm Documentation, Release 5.0.1

3.7.2.1 Download the Installer Script

To download and install the amdgpu-install script on the system, use the following commands based on your distri-
bution.

Ubuntu

Ubuntu 18.04

sudo apt update
wget https://repo.radeon.com/amdgpu-install/21.50.1/ubuntu/bionic/amdgpu-install_21.50.1.
→˓50001-1_all.deb
sudo apt install ./amdgpu-install_21.50.1.50001-1_all.deb

Ubuntu 20.04

sudo apt update
wget https://repo.radeon.com/amdgpu-install/21.50.1/ubuntu/focal/amdgpu-install_21.50.1.
→˓50001-1_all.deb
sudo apt install ./amdgpu-install_21.50.1.50001-1_all.deb

Red Hat Enterprise Linux

RHEL 7.9

sudo yum install https://repo.radeon.com/amdgpu-install/21.50.1/rhel/7.9/amdgpu-install-
→˓21.50.1.50001-1.el7.noarch.rpm

RHEL 8.4

sudo yum install https://repo.radeon.com/amdgpu-install/21.50.1/rhel/8.4/amdgpu-install-
→˓21.50.1.50001-1.el7.noarch.rpm

RHEL 8.5

sudo yum install https://repo.radeon.com/amdgpu-install/21.50.1/rhel/8.5/amdgpu-install-
→˓21.50.1.50001-1.el7.noarch.rpm

34 Chapter 3. Deploy ROCm on Linux

ROCm Documentation, Release 5.0.1

SUSE Linux Enterprise Server 15

Service Pack 3

sudo zypper --no-gpg-checks install https://repo.radeon.com/amdgpu-install/21.50.1/sle/
→˓15/amdgpu-install-21.50.1.50001-1.noarch.rpm

3.7.2.2 Use cases

Instead of installing individual applications or libraries the installer script groups packages into specific use cases,
matching typical workflows and runtimes.

To display a list of available use cases execute the command:

sudo amdgpu-install --list-usecase

The available use-cases will be printed in a format similar to the example output below.

If --usecase option is not present, the default selection is "graphics,opencl,hip"

Available use cases:
rocm(for users and developers requiring full ROCm stack)
- OpenCL (ROCr/KFD based) runtime
- HIP runtimes
- Machine learning framework
- All ROCm libraries and applications
- ROCm Compiler and device libraries
- ROCr runtime and thunk
lrt(for users of applications requiring ROCm runtime)
- ROCm Compiler and device libraries
- ROCr runtime and thunk
opencl(for users of applications requiring OpenCL on Vega or
later products)
- ROCr based OpenCL
- ROCm Language runtime

openclsdk (for application developers requiring ROCr based OpenCL)
- ROCr based OpenCL
- ROCm Language runtime
- development and SDK files for ROCr based OpenCL

hip(for users of HIP runtime on AMD products)
- HIP runtimes
hiplibsdk (for application developers requiring HIP on AMD products)
- HIP runtimes
- ROCm math libraries
- HIP development libraries

To install use cases specific to your requirements, use the installer amdgpu-install as follows:

• To install a single use case add it with the --usecase option:

sudo amdgpu-install --usecase=rocm

3.7. AMDGPU Install Script 35

ROCm Documentation, Release 5.0.1

• For multiple use cases separate them with commas:

sudo amdgpu-install --usecase=hiplibsdk,rocm

3.7.2.3 Single-version ROCm Installation

By default (without the --rocmrelease option) the installer script will install packages in the single-version layout.

3.7.2.4 Multi-version ROCm Installation

For the multi-version ROCm installation you must use the installer script from the latest release of ROCm that you wish
to install.

Example: If you want to install ROCm releases 5.0.0 and 5.0.1 simultaneously, you are required to download the
installer from the latest ROCm release v5.0.1.

3.7.2.4.1 Add Required Repositories

You must add the ROCm repositories manually for all ROCm releases you want to install except the latest one. The
amdgpu-install script automatically adds the required repositories for the latest release.

Run the following commands based on your distribution to add the repositories:

Ubuntu

Ubuntu 18.04

for ver in 5.0; do
echo "deb [arch=amd64 signed-by=/etc/apt/trusted.gpg.d/rocm-keyring.gpg] https://repo.
→˓radeon.com/rocm/apt/$ver bionic main" \
| sudo tee /etc/apt/sources.list.d/rocm.list

done
echo -e 'Package: *\nPin: release o=repo.radeon.com\nPin-Priority: 600' \
| sudo tee /etc/apt/preferences.d/rocm-pin-600

sudo apt update

Ubuntu 20.04

for ver in 5.0; do
echo "deb [arch=amd64 signed-by=/etc/apt/trusted.gpg.d/rocm-keyring.gpg] https://repo.
→˓radeon.com/rocm/apt/$ver focal main" \
| sudo tee /etc/apt/sources.list.d/rocm.list

done
echo -e 'Package: *\nPin: release o=repo.radeon.com\nPin-Priority: 600' \

| sudo tee /etc/apt/preferences.d/rocm-pin-600
sudo apt update

36 Chapter 3. Deploy ROCm on Linux

ROCm Documentation, Release 5.0.1

Red Hat Enterprise Linux

RHEL 7

for ver in 5.0; do
sudo tee --append /etc/yum.repos.d/rocm.repo <<EOF
[ROCm-$ver]
name=ROCm$ver
baseurl=https://repo.radeon.com/rocm/yum/$ver/main
enabled=1
priority=50
gpgcheck=1
gpgkey=https://repo.radeon.com/rocm/rocm.gpg.key
EOF
done
sudo yum clean all

RHEL 8

for ver in 5.0;
sudo tee --append /etc/yum.repos.d/rocm.repo <<EOF
[ROCm-$ver]
name=ROCm$ver
baseurl=https://repo.radeon.com/rocm/rhel8/$ver/main
enabled=1
priority=50
gpgcheck=1
gpgkey=https://repo.radeon.com/rocm/rocm.gpg.key
EOF
done
sudo yum clean all

SUSE Linux Enterprise Server 15

Service Pack 3

for ver in 5.0; do
sudo tee --append /etc/zypp/repos.d/rocm.repo <<EOF
name=rocm
baseurl=https://repo.radeon.com/rocm/$ver/sle/15/main/x86_64
enabled=1
gpgcheck=1
gpgkey=https://repo.radeon.com/rocm/rocm.gpg.key
EOF
done
sudo zypper ref

3.7. AMDGPU Install Script 37

ROCm Documentation, Release 5.0.1

3.7.2.4.2 Install packages

Use the installer script as given below:

sudo amdgpu-install --usecase=rocm --rocmrelease=<release-number-1>
sudo amdgpu-install --usecase=rocm --rocmrelease=<release-number-2>
sudo amdgpu-install --usecase=rocm --rocmrelease=<release-number-3>

Following are examples of ROCm multi-version installation. The kernel-mode driver, associated with the ROCm
release v5.3, will be installed as its latest release in the list.

sudo amdgpu-install --usecase=rocm --rocmrelease=5.0.0
sudo amdgpu-install --usecase=rocm --rocmrelease=5.0.1

3.7.2.5 Additional options

3.7.2.5.1 Unattended installation

Adding -y as a parameter to amdgpu-install skips user prompts (for automation). Example: amdgpu-install -y
--usecase=rocm

3.7.2.5.2 Skipping kernel mode driver installation

The installer script tries to install the kernel mode driver along with the requested use cases. This might be unnecessary
as in the case of docker containers or you may wish to keep a specific version when using multi-version installation,
and not have the last installed version overwrite the kernel mode driver.

To skip the installation of the kernel-mode driver add the --no-dkms option when calling the installer script.

3.7.3 Upgrading with the Installer Script (Linux)

The upgrade procedure with the installer script is exactly the same as installing for 1st time use. Refer to the Installation
with install script section on the exact procedure to follow.

3.7.4 Installer Script Uninstallation (Linux)

To uninstall all ROCm packages and the kernel-mode driver the following commands can be used.

Uninstalling Single-Version Install

sudo amdgpu-install --uninstall

38 Chapter 3. Deploy ROCm on Linux

ROCm Documentation, Release 5.0.1

Uninstalling a Specific ROCm Release

sudo amdgpu-install --uninstall --rocmrelease=<release-number>

Uninstalling all ROCm Releases

sudo amdgpu-install --uninstall --rocmrelease=all

3.7. AMDGPU Install Script 39

ROCm Documentation, Release 5.0.1

40 Chapter 3. Deploy ROCm on Linux

CHAPTER

FOUR

DEPLOY ROCM DOCKER CONTAINERS

4.1 Prerequisites

Docker containers share the kernel with the host operating system, therefore the ROCm kernel-mode driver must be
installed on the host. Please refer to using-the-package-manager on installing amdgpu-dkms. The other user-space
parts (like the HIP-runtime or math libraries) of the ROCm stack will be loaded from the container image and don’t
need to be installed to the host.

4.2 Accessing GPUs in containers

In order to access GPUs in a container (to run applications using HIP, OpenCL or OpenMP offloading) explicit access
to the GPUs must be granted.

The ROCm runtimes make use of multiple device files:

• /dev/kfd: the main compute interface shared by all GPUs

• /dev/dri/renderD<node>: direct rendering interface (DRI) devices for each GPU. <node> is a number for
each card in the system starting from 128.

Exposing these devices to a container is done by using the --device option, i.e. to allow access to all GPUs expose
/dev/kfd and all /dev/dri/renderD devices:

docker run --device /dev/kfd --device /dev/renderD128 --device /dev/renderD129 ...

More conveniently, instead of listing all devices, the entire /dev/dri folder can be exposed to the new container:

docker run --device /dev/kfd --device /dev/dri

Note that this gives more access than strictly required, as it also exposes the other device files found in that folder to
the container.

41

https://docs.docker.com/engine/reference/commandline/run/#device

ROCm Documentation, Release 5.0.1

4.2.1 Restricting a container to a subset of the GPUs

If a /dev/dri/renderD device is not exposed to a container then it cannot use the GPU associated with it; this allows
to restrict a container to any subset of devices.

For example to allow the container to access the first and third GPU start it like:

docker run --device /dev/kfd --device /dev/dri/renderD128 --device /dev/dri/renderD130
→˓<image>

4.2.2 Additional Options

The performance of an application can vary depending on the assignment of GPUs and CPUs to the task. Typically,
numactl is installed as part of many HPC applications to provide GPU/CPU mappings. This Docker runtime option
supports memory mapping and can improve performance.

--security-opt seccomp=unconfined

This option is recommended for Docker Containers running HPC applications.

docker run --device /dev/kfd --device /dev/dri --security-opt seccomp=unconfined ...

4.3 Docker images in the ROCm ecosystem

4.3.1 Base images

https://github.com/RadeonOpenCompute/ROCm-docker hosts images useful for users wishing to build their own con-
tainers leveraging ROCm. The built images are available from Docker Hub. In particular rocm/rocm-terminal is a
small image with the prerequisites to build HIP applications, but does not include any libraries.

4.3.2 Applications

AMD provides pre-built images for various GPU-ready applications through its Infinity Hub at https://www.amd.com/
en/technologies/infinity-hub. Examples for invoking each application and suggested parameters used for benchmarking
are also provided there.

42 Chapter 4. Deploy ROCm Docker containers

https://github.com/RadeonOpenCompute/ROCm-docker
https://hub.docker.com/u/rocm
https://www.amd.com/en/technologies/infinity-hub
https://www.amd.com/en/technologies/infinity-hub

CHAPTER

FIVE

RELEASE NOTES

The release notes for the ROCm platform.

5.1 ROCm 5.0.1

5.1.1 Deprecations and Warnings

5.1.1.1 Refactor of HIPCC/HIPCONFIG

In prior ROCm releases, by default, the hipcc/hipconfig Perl scripts were used to identify and set target compiler options,
target platform, compiler, and runtime appropriately.

In ROCm v5.0.1, hipcc.bin and hipconfig.bin have been added as the compiled binary implementations of the hipcc
and hipconfig. These new binaries are currently a work-in-progress, considered, and marked as experimental. ROCm
plans to fully transition to hipcc.bin and hipconfig.bin in the a future ROCm release. The existing hipcc and hip-
config Perl scripts are renamed to hipcc.pl and hipconfig.pl respectively. New top-level hipcc and hipconfig Perl
scripts are created, which can switch between the Perl script or the compiled binary based on the environment variable
HIPCC_USE_PERL_SCRIPT.

In ROCm 5.0.1, by default, this environment variable is set to use hipcc and hipconfig through the Perl scripts.

Subsequently, Perl scripts will no longer be available in ROCm in a future release.

43

ROCm Documentation, Release 5.0.1

44 Chapter 5. Release Notes

CHAPTER

SIX

RELEASE NOTES

The release notes for the ROCm platform.

6.1 ROCm 5.0.1

6.1.1 Deprecations and Warnings

6.1.1.1 Refactor of HIPCC/HIPCONFIG

In prior ROCm releases, by default, the hipcc/hipconfig Perl scripts were used to identify and set target compiler options,
target platform, compiler, and runtime appropriately.

In ROCm v5.0.1, hipcc.bin and hipconfig.bin have been added as the compiled binary implementations of the hipcc
and hipconfig. These new binaries are currently a work-in-progress, considered, and marked as experimental. ROCm
plans to fully transition to hipcc.bin and hipconfig.bin in the a future ROCm release. The existing hipcc and hip-
config Perl scripts are renamed to hipcc.pl and hipconfig.pl respectively. New top-level hipcc and hipconfig Perl
scripts are created, which can switch between the Perl script or the compiled binary based on the environment variable
HIPCC_USE_PERL_SCRIPT.

In ROCm 5.0.1, by default, this environment variable is set to use hipcc and hipconfig through the Perl scripts.

Subsequently, Perl scripts will no longer be available in ROCm in a future release.

45

ROCm Documentation, Release 5.0.1

6.1.2 Library Changes in ROCM 5.0.1

Library Version
hipBLAS 0.49.0
hipCUB 2.10.13
hipFFT 1.0.4
hipSOLVER 1.2.0
hipSPARSE 2.0.0
rccl 2.10.3
rocALUTION 2.0.1
rocBLAS 2.42.0
rocFFT 1.0.13
rocPRIM 2.10.12
rocRAND 2.10.12
rocSOLVER 3.16.0
rocSPARSE 2.0.0
rocThrust 2.13.0
Tensile 4.31.0

6.2 ROCm 5.0.0

6.2.1 What’s New in This Release

6.2.1.1 HIP Enhancements

The ROCm v5.0 release consists of the following HIP enhancements.

6.2.1.1.1 HIP Installation Guide Updates

The HIP Installation Guide is updated to include building HIP from source on the NVIDIA platform.

Refer to the HIP Installation Guide v5.0 for more details.

6.2.1.1.2 Managed Memory Allocation

Managed memory, including the __managed__ keyword, is now supported in the HIP combined host/device compila-
tion. Through unified memory allocation, managed memory allows data to be shared and accessible to both the CPU
and GPU using a single pointer. The allocation is managed by the AMD GPU driver using the Linux Heterogeneous
Memory Management (HMM) mechanism. The user can call managed memory API hipMallocManaged to allocate a
large chunk of HMM memory, execute kernels on a device, and fetch data between the host and device as needed.

Note

In a HIP application, it is recommended to do a capability check before calling the managed memory APIs.
For example,

46 Chapter 6. Release Notes

https://github.com/ROCmSoftwarePlatform/hipBLAS/releases/tag/rocm-5.0.1
https://github.com/ROCmSoftwarePlatform/hipCUB/releases/tag/rocm-5.0.1
https://github.com/ROCmSoftwarePlatform/hipFFT/releases/tag/rocm-5.0.1
https://github.com/ROCmSoftwarePlatform/hipSOLVER/releases/tag/rocm-5.0.1
https://github.com/ROCmSoftwarePlatform/hipSPARSE/releases/tag/rocm-5.0.1
https://github.com/ROCmSoftwarePlatform/rccl/releases/tag/rocm-5.0.1
https://github.com/ROCmSoftwarePlatform/rocALUTION/releases/tag/rocm-5.0.1
https://github.com/ROCmSoftwarePlatform/rocBLAS/releases/tag/rocm-5.0.1
https://github.com/ROCmSoftwarePlatform/rocFFT/releases/tag/rocm-5.0.1
https://github.com/ROCmSoftwarePlatform/rocPRIM/releases/tag/rocm-5.0.1
https://github.com/ROCmSoftwarePlatform/rocRAND/releases/tag/rocm-5.0.1
https://github.com/ROCmSoftwarePlatform/rocSOLVER/releases/tag/rocm-5.0.1
https://github.com/ROCmSoftwarePlatform/rocSPARSE/releases/tag/rocm-5.0.1
https://github.com/ROCmSoftwarePlatform/rocThrust/releases/tag/rocm-5.0.1
https://github.com/ROCmSoftwarePlatform/Tensile/releases/tag/rocm-5.0.1

ROCm Documentation, Release 5.0.1

int managed_memory = 0;
HIPCHECK(hipDeviceGetAttribute(&managed_memory,
hipDeviceAttributeManagedMemory,p_gpuDevice));

if (!managed_memory) {
printf ("info: managed memory access not supported on the device %d\n␣

→˓Skipped\n", p_gpuDevice);
}
else {
HIPCHECK(hipSetDevice(p_gpuDevice));
HIPCHECK(hipMallocManaged(&Hmm, N * sizeof(T)));

. . .
}

Note

The managed memory capability check may not be necessary; however, if HMM is not supported, managed
malloc will fall back to using system memory. Other managed memory API calls will, then, have

Refer to the HIP API documentation for more details on managed memory APIs.

For the application, see

https://github.com/ROCm-Developer-Tools/HIP/blob/rocm-4.5.x/tests/src/runtimeApi/memory/hipMallocManaged.
cpp

6.2.1.2 New Environment Variable

The following new environment variable is added in this release:

En-
vi-
ron-
ment
Vari-
able

Value Description

HSA_COOP_CU_COUNT0
or
1
(de-
fault
is
0)

Some processors support more CUs than can reliably be used in a coopera-
tive dispatch. Setting the environment variable HSA_COOP_CU_COUNT to 1
will cause ROCr to return the correct CU count for cooperative groups through
the HSA_AMD_AGENT_INFO_COOPERATIVE_COMPUTE_UNIT_COUNT at-
tribute of hsa_agent_get_info(). Setting HSA_COOP_CU_COUNT to other val-
ues, or leaving it unset, will cause ROCr to return the same CU count for the at-
tributes HSA_AMD_AGENT_INFO_COOPERATIVE_COMPUTE_UNIT_COUNT and
HSA_AMD_AGENT_INFO_COMPUTE_UNIT_COUNT. Future ROCm releases will make
HSA_COOP_CU_COUNT=1 the default.

6.2. ROCm 5.0.0 47

https://github.com/ROCm-Developer-Tools/HIP/blob/rocm-4.5.x/tests/src/runtimeApi/memory/hipMallocManaged.cpp
https://github.com/ROCm-Developer-Tools/HIP/blob/rocm-4.5.x/tests/src/runtimeApi/memory/hipMallocManaged.cpp

ROCm Documentation, Release 5.0.1

6.2.2 Breaking Changes

6.2.2.1 Runtime Breaking Change

Re-ordering of the enumerated type in hip_runtime_api.h to better match NV. See below for the difference in enumerated
types.

ROCm software will be affected if any of the defined enums listed below are used in the code. Applications built with
ROCm v5.0 enumerated types will work with a ROCm 4.5.2 driver. However, an undefined behavior error will occur
with a ROCm v4.5.2 application that uses these enumerated types with a ROCm 5.0 runtime.

typedef enum hipDeviceAttribute_t {
- hipDeviceAttributeMaxThreadsPerBlock, ///< Maximum number of threads per␣
→˓block.
- hipDeviceAttributeMaxBlockDimX, ///< Maximum x-dimension of a block.
- hipDeviceAttributeMaxBlockDimY, ///< Maximum y-dimension of a block.
- hipDeviceAttributeMaxBlockDimZ, ///< Maximum z-dimension of a block.
- hipDeviceAttributeMaxGridDimX, ///< Maximum x-dimension of a grid.
- hipDeviceAttributeMaxGridDimY, ///< Maximum y-dimension of a grid.
- hipDeviceAttributeMaxGridDimZ, ///< Maximum z-dimension of a grid.
- hipDeviceAttributeMaxSharedMemoryPerBlock, ///< Maximum shared memory available␣
→˓per block in
- ///< bytes.
- hipDeviceAttributeTotalConstantMemory, ///< Constant memory size in bytes.
- hipDeviceAttributeWarpSize, ///< Warp size in threads.
- hipDeviceAttributeMaxRegistersPerBlock, ///< Maximum number of 32-bit registers␣
→˓available to a
- ///< thread block. This number is shared␣
→˓by all thread
- ///< blocks simultaneously resident on a
- ///< multiprocessor.
- hipDeviceAttributeClockRate, ///< Peak clock frequency in kilohertz.
- hipDeviceAttributeMemoryClockRate, ///< Peak memory clock frequency in␣
→˓kilohertz.
- hipDeviceAttributeMemoryBusWidth, ///< Global memory bus width in bits.
- hipDeviceAttributeMultiprocessorCount, ///< Number of multiprocessors on the␣
→˓device.
- hipDeviceAttributeComputeMode, ///< Compute mode that device is currently␣
→˓in.
- hipDeviceAttributeL2CacheSize, ///< Size of L2 cache in bytes. 0 if the device␣
→˓doesn't have L2
- ///< cache.
- hipDeviceAttributeMaxThreadsPerMultiProcessor, ///< Maximum resident threads per
- ///< multiprocessor.
- hipDeviceAttributeComputeCapabilityMajor, ///< Major compute capability␣
→˓version number.
- hipDeviceAttributeComputeCapabilityMinor, ///< Minor compute capability␣
→˓version number.
- hipDeviceAttributeConcurrentKernels, ///< Device can possibly execute multiple␣
→˓kernels
- ///< concurrently.
- hipDeviceAttributePciBusId, ///< PCI Bus ID.
- hipDeviceAttributePciDeviceId, ///< PCI Device ID.
- hipDeviceAttributeMaxSharedMemoryPerMultiprocessor, ///< Maximum Shared Memory Per

(continues on next page)

48 Chapter 6. Release Notes

ROCm Documentation, Release 5.0.1

(continued from previous page)

- ///< Multiprocessor.
- hipDeviceAttributeIsMultiGpuBoard, ///< Multiple GPU devices.
- hipDeviceAttributeIntegrated, ///< iGPU
- hipDeviceAttributeCooperativeLaunch, ///< Support cooperative launch
- hipDeviceAttributeCooperativeMultiDeviceLaunch, ///< Support cooperative␣
→˓launch on multiple devices
- hipDeviceAttributeMaxTexture1DWidth, ///< Maximum number of elements in 1D images
- hipDeviceAttributeMaxTexture2DWidth, ///< Maximum dimension width of 2D images␣
→˓in image elements
- hipDeviceAttributeMaxTexture2DHeight, ///< Maximum dimension height of 2D images␣
→˓in image elements
- hipDeviceAttributeMaxTexture3DWidth, ///< Maximum dimension width of 3D images␣
→˓in image elements
- hipDeviceAttributeMaxTexture3DHeight, ///< Maximum dimensions height of 3D images␣
→˓in image elements
- hipDeviceAttributeMaxTexture3DDepth, ///< Maximum dimensions depth of 3D images␣
→˓in image elements
+ hipDeviceAttributeCudaCompatibleBegin = 0,

- hipDeviceAttributeHdpMemFlushCntl, ///< Address of the HDP_MEM_COHERENCY_FLUSH_
→˓CNTL register
- hipDeviceAttributeHdpRegFlushCntl, ///< Address of the HDP_REG_COHERENCY_FLUSH_
→˓CNTL register
+ hipDeviceAttributeEccEnabled = hipDeviceAttributeCudaCompatibleBegin, ///< Whether␣
→˓ECC support is enabled.
+ hipDeviceAttributeAccessPolicyMaxWindowSize, ///< Cuda only. The maximum␣
→˓size of the window policy in bytes.
+ hipDeviceAttributeAsyncEngineCount, ///< Cuda only. Asynchronous␣
→˓engines number.
+ hipDeviceAttributeCanMapHostMemory, ///< Whether host memory can be␣
→˓mapped into device address space
+ hipDeviceAttributeCanUseHostPointerForRegisteredMem,///< Cuda only. Device can␣
→˓access host registered memory
+ ///< at the same virtual␣
→˓address as the CPU
+ hipDeviceAttributeClockRate, ///< Peak clock frequency in␣
→˓kilohertz.
+ hipDeviceAttributeComputeMode, ///< Compute mode that device␣
→˓is currently in.
+ hipDeviceAttributeComputePreemptionSupported, ///< Cuda only. Device supports␣
→˓Compute Preemption.
+ hipDeviceAttributeConcurrentKernels, ///< Device can possibly␣
→˓execute multiple kernels concurrently.
+ hipDeviceAttributeConcurrentManagedAccess, ///< Device can coherently␣
→˓access managed memory concurrently with the CPU
+ hipDeviceAttributeCooperativeLaunch, ///< Support cooperative launch
+ hipDeviceAttributeCooperativeMultiDeviceLaunch, ///< Support cooperative launch␣
→˓on multiple devices
+ hipDeviceAttributeDeviceOverlap, ///< Cuda only. Device can␣
→˓concurrently copy memory and execute a kernel.
+ ///< Deprecated. Use instead␣
→˓asyncEngineCount.

(continues on next page)

6.2. ROCm 5.0.0 49

ROCm Documentation, Release 5.0.1

(continued from previous page)

+ hipDeviceAttributeDirectManagedMemAccessFromHost, ///< Host can directly access␣
→˓managed memory on
+ ///< the device without␣
→˓migration
+ hipDeviceAttributeGlobalL1CacheSupported, ///< Cuda only. Device supports␣
→˓caching globals in L1
+ hipDeviceAttributeHostNativeAtomicSupported, ///< Cuda only. Link between␣
→˓the device and the host supports native atomic operations
+ hipDeviceAttributeIntegrated, ///< Device is integrated GPU
+ hipDeviceAttributeIsMultiGpuBoard, ///< Multiple GPU devices.
+ hipDeviceAttributeKernelExecTimeout, ///< Run time limit for kernels␣
→˓executed on the device
+ hipDeviceAttributeL2CacheSize, ///< Size of L2 cache in bytes.␣
→˓0 if the device doesn't have L2 cache.
+ hipDeviceAttributeLocalL1CacheSupported, ///< caching locals in L1 is␣
→˓supported
+ hipDeviceAttributeLuid, ///< Cuda only. 8-byte locally␣
→˓unique identifier in 8 bytes. Undefined on TCC and non-Windows platforms
+ hipDeviceAttributeLuidDeviceNodeMask, ///< Cuda only. Luid device␣
→˓node mask. Undefined on TCC and non-Windows platforms
+ hipDeviceAttributeComputeCapabilityMajor, ///< Major compute capability␣
→˓version number.
+ hipDeviceAttributeManagedMemory, ///< Device supports allocating␣
→˓managed memory on this system
+ hipDeviceAttributeMaxBlocksPerMultiProcessor, ///< Cuda only. Max block size␣
→˓per multiprocessor
+ hipDeviceAttributeMaxBlockDimX, ///< Max block size in width.
+ hipDeviceAttributeMaxBlockDimY, ///< Max block size in height.
+ hipDeviceAttributeMaxBlockDimZ, ///< Max block size in depth.
+ hipDeviceAttributeMaxGridDimX, ///< Max grid size in width.
+ hipDeviceAttributeMaxGridDimY, ///< Max grid size in height.
+ hipDeviceAttributeMaxGridDimZ, ///< Max grid size in depth.
+ hipDeviceAttributeMaxSurface1D, ///< Maximum size of 1D surface.
+ hipDeviceAttributeMaxSurface1DLayered, ///< Cuda only. Maximum␣
→˓dimensions of 1D layered surface.
+ hipDeviceAttributeMaxSurface2D, ///< Maximum dimension (width,␣
→˓height) of 2D surface.
+ hipDeviceAttributeMaxSurface2DLayered, ///< Cuda only. Maximum␣
→˓dimensions of 2D layered surface.
+ hipDeviceAttributeMaxSurface3D, ///< Maximum dimension (width,␣
→˓height, depth) of 3D surface.
+ hipDeviceAttributeMaxSurfaceCubemap, ///< Cuda only. Maximum␣
→˓dimensions of Cubemap surface.
+ hipDeviceAttributeMaxSurfaceCubemapLayered, ///< Cuda only. Maximum␣
→˓dimension of Cubemap layered surface.
+ hipDeviceAttributeMaxTexture1DWidth, ///< Maximum size of 1D texture.
+ hipDeviceAttributeMaxTexture1DLayered, ///< Cuda only. Maximum␣
→˓dimensions of 1D layered texture.
+ hipDeviceAttributeMaxTexture1DLinear, ///< Maximum number of elements␣
→˓allocatable in a 1D linear texture.
+ ///< Use␣
→˓cudaDeviceGetTexture1DLinearMaxWidth() instead on Cuda.

(continues on next page)

50 Chapter 6. Release Notes

ROCm Documentation, Release 5.0.1

(continued from previous page)

+ hipDeviceAttributeMaxTexture1DMipmap, ///< Cuda only. Maximum size of␣
→˓1D mipmapped texture.
+ hipDeviceAttributeMaxTexture2DWidth, ///< Maximum dimension width of␣
→˓2D texture.
+ hipDeviceAttributeMaxTexture2DHeight, ///< Maximum dimension hight of␣
→˓2D texture.
+ hipDeviceAttributeMaxTexture2DGather, ///< Cuda only. Maximum␣
→˓dimensions of 2D texture if gather operations performed.
+ hipDeviceAttributeMaxTexture2DLayered, ///< Cuda only. Maximum␣
→˓dimensions of 2D layered texture.
+ hipDeviceAttributeMaxTexture2DLinear, ///< Cuda only. Maximum␣
→˓dimensions (width, height, pitch) of 2D textures bound to pitched memory.
+ hipDeviceAttributeMaxTexture2DMipmap, ///< Cuda only. Maximum␣
→˓dimensions of 2D mipmapped texture.
+ hipDeviceAttributeMaxTexture3DWidth, ///< Maximum dimension width of␣
→˓3D texture.
+ hipDeviceAttributeMaxTexture3DHeight, ///< Maximum dimension height␣
→˓of 3D texture.
+ hipDeviceAttributeMaxTexture3DDepth, ///< Maximum dimension depth of␣
→˓3D texture.
+ hipDeviceAttributeMaxTexture3DAlt, ///< Cuda only. Maximum␣
→˓dimensions of alternate 3D texture.
+ hipDeviceAttributeMaxTextureCubemap, ///< Cuda only. Maximum␣
→˓dimensions of Cubemap texture
+ hipDeviceAttributeMaxTextureCubemapLayered, ///< Cuda only. Maximum␣
→˓dimensions of Cubemap layered texture.
+ hipDeviceAttributeMaxThreadsDim, ///< Maximum dimension of a␣
→˓block
+ hipDeviceAttributeMaxThreadsPerBlock, ///< Maximum number of threads␣
→˓per block.
+ hipDeviceAttributeMaxThreadsPerMultiProcessor, ///< Maximum resident threads␣
→˓per multiprocessor.
+ hipDeviceAttributeMaxPitch, ///< Maximum pitch in bytes␣
→˓allowed by memory copies
+ hipDeviceAttributeMemoryBusWidth, ///< Global memory bus width in␣
→˓bits.
+ hipDeviceAttributeMemoryClockRate, ///< Peak memory clock␣
→˓frequency in kilohertz.
+ hipDeviceAttributeComputeCapabilityMinor, ///< Minor compute capability␣
→˓version number.
+ hipDeviceAttributeMultiGpuBoardGroupID, ///< Cuda only. Unique ID of␣
→˓device group on the same multi-GPU board
+ hipDeviceAttributeMultiprocessorCount, ///< Number of multiprocessors␣
→˓on the device.
+ hipDeviceAttributeName, ///< Device name.
+ hipDeviceAttributePageableMemoryAccess, ///< Device supports coherently␣
→˓accessing pageable memory
+ ///< without calling␣
→˓hipHostRegister on it
+ hipDeviceAttributePageableMemoryAccessUsesHostPageTables, ///< Device accesses␣
→˓pageable memory via the host's page tables
+ hipDeviceAttributePciBusId, ///< PCI Bus ID.

(continues on next page)

6.2. ROCm 5.0.0 51

ROCm Documentation, Release 5.0.1

(continued from previous page)

+ hipDeviceAttributePciDeviceId, ///< PCI Device ID.
+ hipDeviceAttributePciDomainID, ///< PCI Domain ID.
+ hipDeviceAttributePersistingL2CacheMaxSize, ///< Cuda11 only. Maximum l2␣
→˓persisting lines capacity in bytes
+ hipDeviceAttributeMaxRegistersPerBlock, ///< 32-bit registers available␣
→˓to a thread block. This number is shared
+ ///< by all thread blocks␣
→˓simultaneously resident on a multiprocessor.
+ hipDeviceAttributeMaxRegistersPerMultiprocessor, ///< 32-bit registers available␣
→˓per block.
+ hipDeviceAttributeReservedSharedMemPerBlock, ///< Cuda11 only. Shared memory␣
→˓reserved by CUDA driver per block.
+ hipDeviceAttributeMaxSharedMemoryPerBlock, ///< Maximum shared memory␣
→˓available per block in bytes.
+ hipDeviceAttributeSharedMemPerBlockOptin, ///< Cuda only. Maximum shared␣
→˓memory per block usable by special opt in.
+ hipDeviceAttributeSharedMemPerMultiprocessor, ///< Cuda only. Shared memory␣
→˓available per multiprocessor.
+ hipDeviceAttributeSingleToDoublePrecisionPerfRatio, ///< Cuda only. Performance␣
→˓ratio of single precision to double precision.
+ hipDeviceAttributeStreamPrioritiesSupported, ///< Cuda only. Whether to␣
→˓support stream priorities.
+ hipDeviceAttributeSurfaceAlignment, ///< Cuda only. Alignment␣
→˓requirement for surfaces
+ hipDeviceAttributeTccDriver, ///< Cuda only. Whether device␣
→˓is a Tesla device using TCC driver
+ hipDeviceAttributeTextureAlignment, ///< Alignment requirement for␣
→˓textures
+ hipDeviceAttributeTexturePitchAlignment, ///< Pitch alignment␣
→˓requirement for 2D texture references bound to pitched memory;
+ hipDeviceAttributeTotalConstantMemory, ///< Constant memory size in␣
→˓bytes.
+ hipDeviceAttributeTotalGlobalMem, ///< Global memory available on␣
→˓devicice.
+ hipDeviceAttributeUnifiedAddressing, ///< Cuda only. An unified␣
→˓address space shared with the host.
+ hipDeviceAttributeUuid, ///< Cuda only. Unique ID in 16␣
→˓byte.
+ hipDeviceAttributeWarpSize, ///< Warp size in threads.

- hipDeviceAttributeMaxPitch, ///< Maximum pitch in bytes allowed by␣
→˓memory copies
- hipDeviceAttributeTextureAlignment, ///<Alignment requirement for textures
- hipDeviceAttributeTexturePitchAlignment, ///<Pitch alignment requirement for 2D␣
→˓texture references bound to pitched memory;
- hipDeviceAttributeKernelExecTimeout, ///<Run time limit for kernels executed on␣
→˓the device
- hipDeviceAttributeCanMapHostMemory, ///<Device can map host memory into device␣
→˓address space
- hipDeviceAttributeEccEnabled, ///<Device has ECC support enabled
+ hipDeviceAttributeCudaCompatibleEnd = 9999,
+ hipDeviceAttributeAmdSpecificBegin = 10000,

(continues on next page)

52 Chapter 6. Release Notes

ROCm Documentation, Release 5.0.1

(continued from previous page)

- hipDeviceAttributeCooperativeMultiDeviceUnmatchedFunc, ///< Supports␣
→˓cooperative launch on multiple
- ///devices with␣
→˓unmatched functions
- hipDeviceAttributeCooperativeMultiDeviceUnmatchedGridDim, ///< Supports␣
→˓cooperative launch on multiple
- ///devices with␣
→˓unmatched grid dimensions
- hipDeviceAttributeCooperativeMultiDeviceUnmatchedBlockDim, ///< Supports␣
→˓cooperative launch on multiple
- ///devices with␣
→˓unmatched block dimensions
- hipDeviceAttributeCooperativeMultiDeviceUnmatchedSharedMem, ///< Supports␣
→˓cooperative launch on multiple
- ///devices with␣
→˓unmatched shared memories
- hipDeviceAttributeAsicRevision, ///< Revision of the GPU in this device
- hipDeviceAttributeManagedMemory, ///< Device supports allocating managed␣
→˓memory on this system
- hipDeviceAttributeDirectManagedMemAccessFromHost, ///< Host can directly access␣
→˓managed memory on
- /// the device without migration
- hipDeviceAttributeConcurrentManagedAccess, ///< Device can coherently access␣
→˓managed memory
- /// concurrently with the CPU
- hipDeviceAttributePageableMemoryAccess, ///< Device supports coherently␣
→˓accessing pageable memory
- /// without calling hipHostRegister on␣
→˓it
- hipDeviceAttributePageableMemoryAccessUsesHostPageTables, ///< Device accesses␣
→˓pageable memory via
- /// the host's page tables
- hipDeviceAttributeCanUseStreamWaitValue ///< '1' if Device supports␣
→˓hipStreamWaitValue32() and
- ///< hipStreamWaitValue64() , '0' otherwise.
+ hipDeviceAttributeClockInstructionRate = hipDeviceAttributeAmdSpecificBegin, ///<␣
→˓Frequency in khz of the timer used by the device-side "clock*"
+ hipDeviceAttributeArch, ///< Device architecture
+ hipDeviceAttributeMaxSharedMemoryPerMultiprocessor, ///< Maximum Shared␣
→˓Memory PerMultiprocessor.
+ hipDeviceAttributeGcnArch, ///< Device gcn␣
→˓architecture
+ hipDeviceAttributeGcnArchName, ///< Device gcnArch␣
→˓name in 256 bytes
+ hipDeviceAttributeHdpMemFlushCntl, ///< Address of the HDP_
→˓MEM_COHERENCY_FLUSH_CNTL register
+ hipDeviceAttributeHdpRegFlushCntl, ///< Address of the HDP_
→˓REG_COHERENCY_FLUSH_CNTL register
+ hipDeviceAttributeCooperativeMultiDeviceUnmatchedFunc, ///< Supports␣
→˓cooperative launch on multiple
+ ///< devices with␣

(continues on next page)

6.2. ROCm 5.0.0 53

ROCm Documentation, Release 5.0.1

(continued from previous page)

→˓unmatched functions
+ hipDeviceAttributeCooperativeMultiDeviceUnmatchedGridDim, ///< Supports␣
→˓cooperative launch on multiple
+ ///< devices with␣
→˓unmatched grid dimensions
+ hipDeviceAttributeCooperativeMultiDeviceUnmatchedBlockDim, ///< Supports␣
→˓cooperative launch on multiple
+ ///< devices with␣
→˓unmatched block dimensions
+ hipDeviceAttributeCooperativeMultiDeviceUnmatchedSharedMem, ///< Supports␣
→˓cooperative launch on multiple
+ ///< devices with␣
→˓unmatched shared memories
+ hipDeviceAttributeIsLargeBar, ///< Whether it is␣
→˓LargeBar
+ hipDeviceAttributeAsicRevision, ///< Revision of the␣
→˓GPU in this device
+ hipDeviceAttributeCanUseStreamWaitValue, ///< '1' if Device␣
→˓supports hipStreamWaitValue32() and
+ ///<␣
→˓hipStreamWaitValue64() , '0' otherwise.

+ hipDeviceAttributeAmdSpecificEnd = 19999,
+ hipDeviceAttributeVendorSpecificBegin = 20000,
+ // Extended attributes for vendors
} hipDeviceAttribute_t;

enum hipComputeMode {

6.2.3 Known Issues

6.2.3.1 Incorrect dGPU Behavior When Using AMDVBFlash Tool

The AMDVBFlash tool, used for flashing the VBIOS image to dGPU, does not communicate with the ROM Controller
specifically when the driver is present. This is because the driver, as part of its runtime power management feature,
puts the dGPU to a sleep state.

As a workaround, users can run amdgpu.runpm=0, which temporarily disables the runtime power management feature
from the driver and dynamically changes some power control-related sysfs files.

6.2.3.2 Issue with START Timestamp in ROCProfiler

Users may encounter an issue with the enabled timestamp functionality for monitoring one or multiple counters.
ROCProfiler outputs the following four timestamps for each kernel:

• Dispatch

• Start

• End

• Complete

54 Chapter 6. Release Notes

ROCm Documentation, Release 5.0.1

6.2.3.2.1 Issue

This defect is related to the Start timestamp functionality, which incorrectly shows an earlier time than the Dispatch
timestamp.

To reproduce the issue,

1. Enable timing using the –timestamp on flag.

2. Use the -i option with the input filename that contains the name of the counter(s) to monitor.

3. Run the program.

4. Check the output result file.

6.2.3.2.2 Current behavior

BeginNS is lower than DispatchNS, which is incorrect.

6.2.3.2.3 Expected behavior

The correct order is:

Dispatch < Start < End < Complete

Users cannot use ROCProfiler to measure the time spent on each kernel because of the incorrect timestamp with counter
collection enabled.

6.2.3.2.4 Recommended Workaround

Users are recommended to collect kernel execution timestamps without monitoring counters, as follows:

1. Enable timing using the –timestamp on flag, and run the application.

2. Rerun the application using the -i option with the input filename that contains the name of the counter(s) to
monitor, and save this to a different output file using the -o flag.

3. Check the output result file from step 1.

4. The order of timestamps correctly displays as: DispathNS < BeginNS < EndNS < CompleteNS

5. Users can find the values of the collected counters in the output file generated in step 2.

6.2.3.3 Radeon Pro V620 and W6800 Workstation GPUs

6.2.3.3.1 No Support for SMI and ROCDebugger on SRIOV

System Management Interface (SMI) and ROCDebugger are not supported in the SRIOV environment on any GPU.
For more information, refer to the Systems Management Interface documentation.

6.2. ROCm 5.0.0 55

ROCm Documentation, Release 5.0.1

6.2.4 Deprecations and Warnings

6.2.4.1 ROCm Libraries Changes – Deprecations and Deprecation Removal

• The hipFFT.h header is now provided only by the hipFFT package. Up to ROCm 5.0, users would get hipFFT.h
in the rocFFT package too.

• The GlobalPairwiseAMG class is now entirely removed, users should use the PairwiseAMG class instead.

• The rocsparse_spmm signature in 5.0 was changed to match that of rocsparse_spmm_ex. In 5.0, roc-
sparse_spmm_ex is still present, but deprecated. Signature diff for rocsparse_spmm rocsparse_spmm in 5.0

rocsparse_status rocsparse_spmm(rocsparse_handle handle,
rocsparse_operation trans_A,
rocsparse_operation trans_B,
const void* alpha,
const rocsparse_spmat_descr mat_A,
const rocsparse_dnmat_descr mat_B,
const void* beta,
const rocsparse_dnmat_descr mat_C,
rocsparse_datatype compute_type,
rocsparse_spmm_alg alg,
rocsparse_spmm_stage stage,
size_t* buffer_size,
void* temp_buffer);

rocSPARSE_spmm in 4.0

rocsparse_status rocsparse_spmm(rocsparse_handle handle,
rocsparse_operation trans_A,
rocsparse_operation trans_B,
const void* alpha,
const rocsparse_spmat_descr mat_A,
const rocsparse_dnmat_descr mat_B,
const void* beta,
const rocsparse_dnmat_descr mat_C,
rocsparse_datatype compute_type,
rocsparse_spmm_alg alg,
size_t* buffer_size,
void* temp_buffer);

6.2.4.2 HIP API Deprecations and Warnings

6.2.4.2.1 Warning - Arithmetic Operators of HIP Complex and Vector Types

In this release, arithmetic operators of HIP complex and vector types are deprecated.

• As alternatives to arithmetic operators of HIP complex types, users can use arithmetic operators of
std::complex types.

• As alternatives to arithmetic operators of HIP vector types, users can use the operators of the native clang vector
type associated with the data member of HIP vector types.

During the deprecation, two macros _HIP_ENABLE_COMPLEX_OPERATORS and _HIP_ENABLE_VECTOR_OPERATORS
are provided to allow users to conditionally enable arithmetic operators of HIP complex or vector types.

56 Chapter 6. Release Notes

ROCm Documentation, Release 5.0.1

Note, the two macros are mutually exclusive and, by default, set to Off.

The arithmetic operators of HIP complex and vector types will be removed in a future release.

Refer to the HIP API Guide for more information.

6.2.4.3 Warning - Compiler-Generated Code Object Version 4 Deprecation

Support for loading compiler-generated code object version 4 will be deprecated in a future release with no release
announcement and replaced with code object 5 as the default version.

The current default is code object version 4.

6.2.4.4 Warning - MIOpenTensile Deprecation

MIOpenTensile will be deprecated in a future release.

6.2.5 Library Changes in ROCM 5.0.0

Library Version
hipBLAS 0.49.0
hipCUB 2.10.13
hipFFT 1.0.4
hipSOLVER 1.2.0
hipSPARSE 2.0.0
rccl 2.10.3
rocALUTION 2.0.1
rocBLAS 2.42.0
rocFFT 1.0.13
rocPRIM 2.10.12
rocRAND 2.10.12
rocSOLVER 3.16.0
rocSPARSE 2.0.0
rocThrust 2.13.0
Tensile 4.31.0

6.2.5.1 hipBLAS 0.49.0

hipBLAS 0.49.0 for ROCm 5.0.0

6.2.5.1.1 Added

• Added rocSOLVER functions to hipblas-bench

• Added option ROCM_MATHLIBS_API_USE_HIP_COMPLEX to opt-in to use hipFloatComplex and hipDou-
bleComplex

• Added compilation warning for future trmm changes

• Added documentation to hipblas.h

• Added option to forgo pivoting for getrf and getri when ipiv is nullptr

6.2. ROCm 5.0.0 57

https://github.com/ROCmSoftwarePlatform/hipBLAS/releases/tag/rocm-5.0.0
https://github.com/ROCmSoftwarePlatform/hipCUB/releases/tag/rocm-5.0.0
https://github.com/ROCmSoftwarePlatform/hipFFT/releases/tag/rocm-5.0.0
https://github.com/ROCmSoftwarePlatform/hipSOLVER/releases/tag/rocm-5.0.0
https://github.com/ROCmSoftwarePlatform/hipSPARSE/releases/tag/rocm-5.0.0
https://github.com/ROCmSoftwarePlatform/rccl/releases/tag/rocm-5.0.0
https://github.com/ROCmSoftwarePlatform/rocALUTION/releases/tag/rocm-5.0.0
https://github.com/ROCmSoftwarePlatform/rocBLAS/releases/tag/rocm-5.0.0
https://github.com/ROCmSoftwarePlatform/rocFFT/releases/tag/rocm-5.0.0
https://github.com/ROCmSoftwarePlatform/rocPRIM/releases/tag/rocm-5.0.0
https://github.com/ROCmSoftwarePlatform/rocRAND/releases/tag/rocm-5.0.0
https://github.com/ROCmSoftwarePlatform/rocSOLVER/releases/tag/rocm-5.0.0
https://github.com/ROCmSoftwarePlatform/rocSPARSE/releases/tag/rocm-5.0.0
https://github.com/ROCmSoftwarePlatform/rocThrust/releases/tag/rocm-5.0.0
https://github.com/ROCmSoftwarePlatform/Tensile/releases/tag/rocm-5.0.0

ROCm Documentation, Release 5.0.1

• Added code coverage option

6.2.5.1.2 Fixed

• Fixed use of incorrect ‘HIP_PATH’ when building from source.

• Fixed windows packaging

• Allowing negative increments in hipblas-bench

• Removed boost dependency

6.2.5.2 hipCUB 2.10.13

hipCUB 2.10.13 for ROCm 5.0.0

6.2.5.2.1 Fixed

• Added missing includes to hipcub.hpp

6.2.5.2.2 Added

• Bfloat16 support to test cases (device_reduce & device_radix_sort)

• Device merge sort

• Block merge sort

• API update to CUB 1.14.0

6.2.5.2.3 Changed

• The SetupNVCC.cmake automatic target selector select all of the capabalities of all available card for NVIDIA
backend.

6.2.5.3 hipFFT 1.0.4

hipFFT 1.0.4 for ROCm 5.0.0

6.2.5.3.1 Fixed

• Add calls to rocFFT setup/cleanup.

• Cmake fixes for clients and backend support.

58 Chapter 6. Release Notes

ROCm Documentation, Release 5.0.1

6.2.5.3.2 Added

• Added support for Windows 10 as a build target.

6.2.5.4 hipSOLVER 1.2.0

hipSOLVER 1.2.0 for ROCm 5.0.0

6.2.5.4.1 Added

• Added functions

– sytrf

∗ hipsolverSsytrf_bufferSize, hipsolverDsytrf_bufferSize, hipsolverCsytrf_bufferSize, hip-
solverZsytrf_bufferSize

∗ hipsolverSsytrf, hipsolverDsytrf, hipsolverCsytrf, hipsolverZsytrf

6.2.5.4.2 Fixed

• Fixed use of incorrect HIP_PATH when building from source (#40). Thanks @jakub329homola!

6.2.5.5 hipSPARSE 2.0.0

hipSPARSE 2.0.0 for ROCm 5.0.0

6.2.5.5.1 Added

• Added (conjugate) transpose support for csrmv, hybmv and spmv routines

6.2.5.6 rccl 2.10.3

RCCL 2.10.3 for ROCm 5.0.0

6.2.5.6.1 Added

• Compatibility with NCCL 2.10.3

6.2. ROCm 5.0.0 59

https://github.com/jakub329homola

ROCm Documentation, Release 5.0.1

6.2.5.6.2 Known Issues

• Managed memory is not currently supported for clique-based kernels

6.2.5.7 rocALUTION 2.0.1

rocALUTION 2.0.1 for ROCm 5.0.0

6.2.5.7.1 Changed

• Removed deprecated GlobalPairwiseAMG class, please use PairwiseAMG instead.

• Changed to C++ 14 Standard

6.2.5.7.2 Improved

• Added sanitizer option

• Improved documentation

6.2.5.8 rocBLAS 2.42.0

rocBLAS 2.42.0 for ROCm 5.0.0

6.2.5.8.1 Added

• Added rocblas_get_version_string_size convenience function

• Added rocblas_xtrmm_outofplace, an out-of-place version of rocblas_xtrmm

• Added hpl and trig initialization for gemm_ex to rocblas-bench

• Added source code gemm. It can be used as an alternative to Tensile for debugging and development

• Added option ROCM_MATHLIBS_API_USE_HIP_COMPLEX to opt-in to use hipFloatComplex and hipDou-
bleComplex

6.2.5.8.2 Optimizations

• Improved performance of non-batched and batched single-precision GER for size m > 1024. Performance en-
hanced by 5-10% measured on a MI100 (gfx908) GPU.

• Improved performance of non-batched and batched HER for all sizes and data types. Performance enhanced by
2-17% measured on a MI100 (gfx908) GPU.

60 Chapter 6. Release Notes

ROCm Documentation, Release 5.0.1

6.2.5.8.3 Changed

• Instantiate templated rocBLAS functions to reduce size of librocblas.so

• Removed static library dependency on msgpack

• Removed boost dependencies for clients

6.2.5.8.4 Fixed

• Option to install script to build only rocBLAS clients with a pre-built rocBLAS library

• Correctly set output of nrm2_batched_ex and nrm2_strided_batched_ex when given bad input

• Fix for dgmm with side == rocblas_side_left and a negative incx

• Fixed out-of-bounds read for small trsm

• Fixed numerical checking for tbmv_strided_batched

6.2.5.9 rocFFT 1.0.13

rocFFT 1.0.13 for ROCm 5.0.0

6.2.5.9.1 Optimizations

• Improved many plans by removing unnecessary transpose steps.

• Optimized scheme selection for 3D problems.

– Imposed less restrictions on 3D_BLOCK_RC selection. More problems can use 3D_BLOCK_RC and have
some performance gain.

– Enabled 3D_RC. Some 3D problems with SBCC-supported z-dim can use less kernels and get benefit.

– Force –length 336 336 56 (dp) use faster 3D_RC to avoid it from being skipped by conservative threshold
test.

• Optimized some even-length R2C/C2R cases by doing more operations in-place and combining pre/post pro-
cessing into Stockham kernels.

• Added radix-17.

6.2.5.9.2 Added

• Added new kernel generator for select fused-2D transforms.

6.2. ROCm 5.0.0 61

ROCm Documentation, Release 5.0.1

6.2.5.9.3 Fixed

• Improved large 1D transform decompositions.

6.2.5.10 rocPRIM 2.10.12

rocPRIM 2.10.12 for ROCm 5.0.0

6.2.5.10.1 Fixed

• Enable bfloat16 tests and reduce threshold for bfloat16

• Fix device scan limit_size feature

• Non-optimized builds no longer trigger local memory limit errors

6.2.5.10.2 Added

• Added scan size limit feature

• Added reduce size limit feature

• Added transform size limit feature

• Add block_load_striped and block_store_striped

• Add gather_to_blocked to gather values from other threads into a blocked arrangement

• The block sizes for device merge sorts initial block sort and its merge steps are now separate in its kernel config

– the block sort step supports multiple items per thread

6.2.5.10.3 Changed

• size_limit for scan, reduce and transform can now be set in the config struct instead of a parameter

• Device_scan and device_segmented_scan: inclusive_scan now uses the input-type as accumulator-type,
exclusive_scan uses initial-value-type.

– This particularly changes behaviour of small-size input types with large-size output types (e.g. short input,
int output).

– And low-res input with high-res output (e.g. float input, double output)

• Revert old Fiji workaround, because they solved the issue at compiler side

• Update README cmake minimum version number

• Block sort support multiple items per thread

– currently only powers of two block sizes, and items per threads are supported and only for full blocks

• Bumped the minimum required version of CMake to 3.16

62 Chapter 6. Release Notes

ROCm Documentation, Release 5.0.1

6.2.5.10.4 Known Issues

• Unit tests may soft hang on MI200 when running in hipMallocManaged mode.

• device_segmented_radix_sort, device_scan unit tests failing for HIP on Windows

• ReduceEmptyInput cause random faulire with bfloat16

6.2.5.11 rocRAND 2.10.12

rocRAND 2.10.12 for ROCm 5.0.0

6.2.5.11.1 Changed

• No updates or changes for ROCm 5.0.0.

6.2.5.12 rocSOLVER 3.16.0

rocSOLVER 3.16.0 for ROCm 5.0.0

6.2.5.12.1 Added

• Symmetric matrix factorizations:

– LASYF

– SYTF2, SYTRF (with batched and strided_batched versions)

• Added rocsolver_get_version_string_size to help with version string queries

• Added rocblas_layer_mode_ex and the ability to print kernel calls in the trace and profile logs

• Expanded batched and strided_batched sample programs.

6.2.5.12.2 Optimized

• Improved general performance of LU factorization

• Increased parallelism of specialized kernels when compiling from source, reducing build times on multi-core
systems.

6.2.5.12.3 Changed

• The rocsolver-test client now prints the rocSOLVER version used to run the tests, rather than the version used to
build them

• The rocsolver-bench client now prints the rocSOLVER version used in the benchmark

6.2. ROCm 5.0.0 63

ROCm Documentation, Release 5.0.1

6.2.5.12.4 Fixed

• Added missing stdint.h include to rocsolver.h

6.2.5.13 rocSPARSE 2.0.0

rocSPARSE 2.0.0 for ROCm 5.0.0

6.2.5.13.1 Added

• csrmv, coomv, ellmv, hybmv for (conjugate) transposed matrices

• csrmv for symmetric matrices

6.2.5.13.2 Changed

• spmm_ex is now deprecated and will be removed in the next major release

6.2.5.13.3 Improved

• Optimization for gtsv

6.2.5.14 rocThrust 2.13.0

rocThrust 2.13.0 for ROCm 5.0.0

6.2.5.14.1 Added

• Updated to match upstream Thrust 1.13.0

• Updated to match upstream Thrust 1.14.0

• Added async scan

6.2.5.14.2 Changed

• Scan algorithms: inclusive_scan now uses the input-type as accumulator-type, exclusive_scan uses initial-
value-type.

– This particularly changes behaviour of small-size input types with large-size output types (e.g. short input,
int output).

– And low-res input with high-res output (e.g. float input, double output)

64 Chapter 6. Release Notes

ROCm Documentation, Release 5.0.1

6.2.5.15 Tensile 4.31.0

Tensile 4.31.0 for ROCm 5.0.0

6.2.5.15.1 Added

• DirectToLds support (x2/x4)

• DirectToVgpr support for DGEMM

• Parameter to control number of files kernels are merged into to better parallelize kernel compilation

• FP16 alternate implementation for HPA HGEMM on aldebaran

6.2.5.15.2 Optimized

• Add DGEMM NN custom kernel for HPL on aldebaran

6.2.5.15.3 Changed

• Update tensile_client executable to std=c++14

6.2.5.15.4 Removed

• Remove unused old Tensile client code

6.2.5.15.5 Fixed

• Fix hipErrorInvalidHandle during benchmarks

• Fix addrVgpr for atomic GSU

• Fix for Python 3.8: add case for Constant nodeType

• Fix architecture mapping for gfx1011 and gfx1012

• Fix PrintSolutionRejectionReason verbiage in KernelWriter.py

• Fix vgpr alignment problem when enabling flat buffer load

6.2. ROCm 5.0.0 65

ROCm Documentation, Release 5.0.1

66 Chapter 6. Release Notes

CHAPTER

SEVEN

GPU AND OS SUPPORT (LINUX)

7.1 Supported Distributions

AMD ROCm™ Platform supports the following Linux distributions.

Distribution Processor Architectures Validated Kernel
CentOS 8.3 x86-64 4.18
CentOS 7.9 x86-64 3.10
RHEL 8.5, 8.4 x86-64 4.18
RHEL 7.9 x86-64 3.10
SLES 15 SP3 x86-64 5.3.18
Ubuntu 20.04.3 LTS x86-64 5.8
Ubuntu 18.04.5 LTS x86-64 5.4.0

7.2 Virtualization Support

ROCm supports virtualization for select GPUs only as shown below.

Hypervi-
sor

Ver-
sion

GPU Validated Guest OS (validated kernel)

VMWare ESXi 8 MI250 Ubuntu 20.04 (5.15.0-56-generic)
VMWare ESXi 8 MI210 Ubuntu 20.04 (5.15.0-56-generic), SLES 15 SP4 (5.14.21-150400.24.

18-default)
VMWare ESXi 7 MI210 Ubuntu 20.04 (5.15.0-56-generic), SLES 15 SP4 (5.14.21-150400.24.

18-default)

7.3 GPU Support Table

AMD Instinct™

Use Driver Shipped with ROCm

67

ROCm Documentation, Release 5.0.1

Product Name Architecture LLVM Target Support
AMD Instinct™ MI250X CDNA2 gfx90a
AMD Instinct™ MI250 CDNA2 gfx90a
AMD Instinct™ MI210 CDNA2 gfx90a
AMD Instinct™ MI100 CDNA gfx908
AMD Instinct™ MI50 GCN5.1 gfx906
AMD Instinct™ MI25 GCN5.0 gfx900

Radeon Pro™

Use Radeon Pro Driver

Name Architecture LLVM Target Support
AMD Radeon™ Pro W6800 RDNA2 gfx1030
AMD Radeon™ Pro V620 RDNA2 gfx1030
AMD Radeon™ Pro VII GCN5.1 gfx906

Radeon™

Use Radeon Pro Driver

Name Architecture LLVM Target Support
AMD Radeon™ VII GCN5.1 gfx906

7.3.1 Support Status

• : Supported - AMD enables these GPUs in our software distributions for the corresponding ROCm product.

• : Deprecated - Support will be removed in a future release.

• : Unsupported - This configuration is not enabled in our software distributions.

7.4 CPU Support

ROCm requires CPUs that support PCIe™ Atomics. Modern CPUs after the release of 1st generation AMD Zen CPU
and Intel™ Haswell support PCIe Atomics.

68 Chapter 7. GPU and OS Support (Linux)

https://www.llvm.org/docs/AMDGPUUsage.html#processors
https://www.amd.com/en/support/linux-drivers
https://www.llvm.org/docs/AMDGPUUsage.html#processors
https://www.amd.com/en/support/linux-drivers
https://www.llvm.org/docs/AMDGPUUsage.html#processors

CHAPTER

EIGHT

COMPATIBILITY

User space & Kernel Fusion Driver Forward and backward compatibility of ROCm user space components and the
kernel space Kernel Fusion Driver (KFD).

• User/Kernel-Space Support Matrix

Docker Image Support ROCm releases several Docker container images.

• Docker Image Support Matrix

3rd Party Support Several 3rd party libraries ship with ROCm enablement as well as several ROCm components
provide interfaces compatible with 3rd party solutions.

• 3rd Party Support Matrix

8.1 User/Kernel-Space Support Matrix

ROCm™ provides forward and backward compatibility between the Kernel Fusion Driver (KFD) and its user space
software for +/- 2 releases. This table shows the compatibility combinations that are currently supported.

KFD Tested user space versions
5.0.2 5.1.0, 5.2.0
5.1.0 5.0.2
5.1.3 5.2.0, 5.3.0
5.2.0 5.0.2, 5.1.3

8.2 Docker Image Support Matrix

The software support matrices for ROCm container releases is listed.

69

ROCm Documentation, Release 5.0.1

8.2.1 ROCm 5.6

8.2.1.1 PyTorch

8.2.1.1.1 Ubuntu+ rocm5.6_internal_testing +169530b

• ROCm5.6

• Python 3.8

• Torch 2.0.0

• Apex 0.1

• Torchvision 0.15.1

• Tensorboard 2.12.0

• MAGMA

• UCX 1.10.0

• OMPI 4.0.3

• OFED 5.4.3

8.2.1.1.2 CentOS7+ rocm5.6_internal_testing +169530b

• ROCm5.6

• Python 3.8

• Torch 2.0.0

• Apex 0.1

• Torchvision 0.15.1

• Tensorboard 2.12.0

• MAGMA

8.2.1.1.3 1.13 +bfeb431

• ROCm5.6

• Python 3.8

• Torch 1.13.1

• Apex 0.1

• Torchvision 0.14.0

• Tensorboard 2.12.0

• MAGMA

• UCX 1.10.0

• OMPI 4.0.3

• OFED 5.4.3

70 Chapter 8. Compatibility

https://repo.radeon.com/rocm/apt/latest/
https://www.python.org/downloads/release/python-380/
https://github.com/ROCmSoftwarePlatform/pytorch/tree/rocm5.6_internal_testing
https://github.com/ROCmSoftwarePlatform/apex/tree/v0.1
https://github.com/pytorch/vision/tree/v0.15.1
https://github.com/tensorflow/tensorboard/tree/2.12.0
https://bitbucket.org/icl/magma/src/master/
https://github.com/openucx/ucx/tree/v1.10.0
https://github.com/open-mpi/ompi/tree/v4.0.3
https://content.mellanox.com/ofed/MLNX_OFED-5.3-1.0.5.0/MLNX_OFED_LINUX-5.3-1.0.5.0-ubuntu20.04-x86_64.tgz
https://repo.radeon.com/rocm/apt/latest/
https://www.python.org/downloads/release/python-380/
https://github.com/ROCmSoftwarePlatform/pytorch/tree/rocm5.6_internal_testing
https://github.com/ROCmSoftwarePlatform/apex/tree/v0.1
https://github.com/pytorch/vision/tree/v0.15.1
https://github.com/tensorflow/tensorboard/tree/2.12.0
https://bitbucket.org/icl/magma/src/master/
https://repo.radeon.com/rocm/apt/latest/
https://www.python.org/downloads/release/python-380/
https://github.com/ROCmSoftwarePlatform/pytorch/tree/release/1.13
https://github.com/ROCmSoftwarePlatform/apex/tree/v0.1
https://github.com/pytorch/vision/tree/v0.14.0
https://github.com/tensorflow/tensorboard/tree/2.12.0
https://bitbucket.org/icl/magma/src/master/
https://github.com/openucx/ucx/tree/v1.10.0
https://github.com/open-mpi/ompi/tree/v4.0.3
https://content.mellanox.com/ofed/MLNX_OFED-5.3-1.0.5.0/MLNX_OFED_LINUX-5.3-1.0.5.0-ubuntu20.04-x86_64.tgz

ROCm Documentation, Release 5.0.1

8.2.1.1.4 1.12 +05d5d04

• ROCm5.6

• Python 3.8

• Torch 1.12.1

• Apex 0.1

• Torchvision 0.13.1

• Tensorboard 2.12.0

• MAGMA

• UCX 1.10.0

• OMPI 4.0.3

• OFED 5.4.3

8.2.1.2 TensorFlow

8.2.1.2.1 tensorflow_develop-upstream-QA-rocm56 +c88a9f4

• ROCm5.6

• Python 3.9

• tensorflow-rocm 2.13.0

• OFED 5.3

• OMPI 4.0.7

• Horovod 0.27.0

• Tensorboard 2.12.0

8.2.1.2.2 r2.11-rocm-enhanced +5be4141

• ROCm5.6

• Python 3.9

• tensorflow-rocm 2.11.0

• OFED 5.3

• OMPI 4.0.7

• Horovod 0.27.0

• Tensorboard 2.11.2

8.2. Docker Image Support Matrix 71

https://repo.radeon.com/rocm/apt/latest/
https://www.python.org/downloads/release/python-380/
https://github.com/ROCmSoftwarePlatform/pytorch/tree/release/1.12
https://github.com/ROCmSoftwarePlatform/apex/tree/v0.1
https://github.com/pytorch/vision/tree/v0.13.1
https://github.com/tensorflow/tensorboard/tree/2.12.0
https://bitbucket.org/icl/magma/src/master/
https://github.com/openucx/ucx/tree/v1.10.0
https://github.com/open-mpi/ompi/tree/v4.0.3
https://content.mellanox.com/ofed/MLNX_OFED-5.3-1.0.5.0/MLNX_OFED_LINUX-5.3-1.0.5.0-ubuntu20.04-x86_64.tgz
https://repo.radeon.com/rocm/apt/latest/
https://www.python.org/downloads/release/python-390/
https://content.mellanox.com/ofed/MLNX_OFED-5.3-1.0.5.0/MLNX_OFED_LINUX-5.3-1.0.5.0-ubuntu20.04-x86_64.tgz
https://github.com/open-mpi/ompi/tree/v4.0.7
https://github.com/horovod/horovod/tree/v0.27.0
https://github.com/tensorflow/tensorboard/tree/2.12.0
https://repo.radeon.com/rocm/apt/latest/
https://www.python.org/downloads/release/python-390/
https://pypi.org/project/tensorflow-rocm/2.11.0.540/
https://content.mellanox.com/ofed/MLNX_OFED-5.3-1.0.5.0/MLNX_OFED_LINUX-5.3-1.0.5.0-ubuntu20.04-x86_64.tgz
https://github.com/open-mpi/ompi/tree/v4.0.7
https://github.com/horovod/horovod/tree/v0.27.0
https://github.com/tensorflow/tensorboard/tree/2.11.2

ROCm Documentation, Release 5.0.1

8.2.1.2.3 r2.10-rocm-enhanced +72789a3

• ROCm5.6

• Python 3.9

• tensorflow-rocm 2.10.1

• OFED 5.3

• OMPI 4.0.7

• Horovod 0.27.0

• Tensorboard 2.10.1

8.3 3rd Party Support Matrix

ROCm™ supports various 3rd party libraries and frameworks. Supported versions are tested and known to work.
Non-supported versions of 3rd parties may also work, but aren’t tested.

8.3.1 Deep Learning

ROCm releases support the most recent and two prior releases of PyTorch and TensorFlow

ROCm PyTorch TensorFlow MAGMA
5.0.2 1.8, 1.9, 1.10 2.6, 2.7, 2.8

5.1.3 1.9, 1.10, 1.11 2.7, 2.8, 2.9

5.2.x 1.10, 1.11, 1.12 2.8, 2.9, 2.9

5.3.x 1.10.1, 1.11, 1.12.1, 1.13 2.8, 2.9, 2.10

5.4.x 1.10.1, 1.11, 1.12.1, 1.13 2.8, 2.9, 2.10, 2.11 2.5.4

8.3.2 Communication libraries

ROCm supports OpenUCX an “an open-source, production-grade communication framework for data-centric and high-
performance applications”.

UCX version ROCm 5.4 and older ROCm 5.5 and newer
-1.14.0 COMPATIBLE INCOMPATIBLE
1.14.1+ COMPATIBLE COMPATIBLE

72 Chapter 8. Compatibility

https://repo.radeon.com/rocm/apt/latest/
https://www.python.org/downloads/release/python-390/
https://pypi.org/project/tensorflow-rocm/2.10.1.540/
https://content.mellanox.com/ofed/MLNX_OFED-5.3-1.0.5.0/MLNX_OFED_LINUX-5.3-1.0.5.0-ubuntu20.04-x86_64.tgz
https://github.com/open-mpi/ompi/tree/v4.0.7
https://github.com/horovod/horovod/tree/v0.27.0
https://github.com/tensorflow/tensorboard/tree/2.10.1
https://github.com/pytorch/pytorch/releases/
https://github.com/tensorflow/tensorflow/releases/
https://icl.utk.edu/magma/index.html
https://openucx.org/

ROCm Documentation, Release 5.0.1

8.3.3 Algorithm libraries

ROCm releases provide algorithm libraries with interfaces compatible with contemporary CUDA / NVIDIA HPC SDK
alternatives.

• Thrust → rocThrust

• CUB → hipCUB

ROCm Thrust / CUB HPC SDK
5.0.2 1.14 21.9
5.1.3 1.15 22.1
5.2.x 1.15 22.2, 22.3

For the latest documentation of these libraries, refer to the associated documentation.

8.3. 3rd Party Support Matrix 73

ROCm Documentation, Release 5.0.1

74 Chapter 8. Compatibility

CHAPTER

NINE

LICENSING TERMS

ROCm™ is released by Advanced Micro Devices, Inc. and is licensed per component separately. The following table
is a list of ROCm components with links to their respective license terms. These components may include third party
components subject to additional licenses. Please review individual repositories for more information. The table shows
ROCm components, the name of license and link to the license terms. The table is ordered to follow ROCm’s manifest
file.

Component License
ROCK-Kernel-Driver GPL 2.0 WITH Linux-syscall-note
ROCT-Thunk-Interface MIT
ROCR-Runtime The University of Illinois/NCSA
rocm_smi_lib The University of Illinois/NCSA
rocm-cmake MIT
rocminfo The University of Illinois/NCSA
rocprofiler MIT
roctracer MIT
ROCm-OpenCL-Runtime MIT
ROCm-OpenCL-Runtime/api/opencl/khronos/icd Apache 2.0
clang-ocl MIT
HIP MIT
hipamd MIT
ROCclr MIT
HIPIFY MIT
HIPCC MIT
llvm-project Apache
rocm-llvm-alt AMD Proprietary License
ROCm-Device-Libs The University of Illinois/NCSA
atmi MIT
ROCm-CompilerSupport The University of Illinois/NCSA
rocr_debug_agent The University of Illinois/NCSA
rocm_bandwidth_test The University of Illinois/NCSA
half MIT
RCP MIT
ROCgdb GNU General Public License v2.0
ROCdbgapi MIT
rdc MIT
rocBLAS MIT
Tensile MIT
hipBLAS MIT
rocFFT MIT

continues on next page

75

https://github.com/RadeonOpenCompute/ROCK-Kernel-Driver/
https://github.com/RadeonOpenCompute/ROCK-Kernel-Driver/blob/master/COPYING
https://github.com/RadeonOpenCompute/ROCT-Thunk-Interface/
https://github.com/RadeonOpenCompute/ROCT-Thunk-Interface/blob/master/LICENSE.md
https://github.com/RadeonOpenCompute/ROCR-Runtime/
https://github.com/RadeonOpenCompute/ROCR-Runtime/blob/master/LICENSE.txt
https://github.com/RadeonOpenCompute/rocm_smi_lib/
https://github.com/RadeonOpenCompute/rocm_smi_lib/blob/master/License.txt
https://github.com/RadeonOpenCompute/rocm-cmake/
https://github.com/RadeonOpenCompute/rocm-cmake/blob/develop/LICENSE
https://github.com/RadeonOpenCompute/rocminfo/
https://github.com/RadeonOpenCompute/rocminfo/blob/master/License.txt
https://github.com/ROCm-Developer-Tools/rocprofiler/
https://github.com/ROCm-Developer-Tools/rocprofiler/blob/amd-master/LICENSE
https://github.com/ROCm-Developer-Tools/roctracer/
https://github.com/ROCm-Developer-Tools/roctracer/blob/amd-master/LICENSE
https://github.com/RadeonOpenCompute/ROCm-OpenCL-Runtime/
https://github.com/RadeonOpenCompute/ROCm-OpenCL-Runtime/blob/develop/LICENSE.txt
https://github.com/KhronosGroup/OpenCL-ICD-Loader/
https://github.com/KhronosGroup/OpenCL-ICD-Loader/blob/main/LICENSE
https://github.com/RadeonOpenCompute/clang-ocl/
https://github.com/RadeonOpenCompute/clang-ocl/blob/master/LICENSE
https://github.com/ROCm-Developer-Tools/HIP/
https://github.com/ROCm-Developer-Tools/HIP/blob/develop/LICENSE.txt
https://github.com/ROCm-Developer-Tools/hipamd/
https://github.com/ROCm-Developer-Tools/hipamd/blob/develop/LICENSE.txt
https://github.com/ROCm-Developer-Tools/ROCclr/
https://github.com/ROCm-Developer-Tools/ROCclr/blob/develop/LICENSE.txt
https://github.com/ROCm-Developer-Tools/HIPIFY/
https://github.com/ROCm-Developer-Tools/HIPIFY/blob/amd-staging/LICENSE.txt
https://github.com/ROCm-Developer-Tools/HIPCC/blob/develop/LICENSE.txt
https://github.com/ROCm-Developer-Tools/HIPCC/blob/develop/LICENSE.txt
https://github.com/ROCm-Developer-Tools/llvm-project/
https://github.com/ROCm-Developer-Tools/llvm-project/blob/main/LICENSE.TXT
https://www.amd.com/en/support/amd-software-eula
https://github.com/RadeonOpenCompute/ROCm-Device-Libs/
https://github.com/RadeonOpenCompute/ROCm-Device-Libs/blob/amd-stg-open/LICENSE.TXT
https://github.com/RadeonOpenCompute/atmi/
https://github.com/RadeonOpenCompute/atmi/blob/master/LICENSE.txt
https://github.com/RadeonOpenCompute/ROCm-CompilerSupport/
https://github.com/RadeonOpenCompute/ROCm-CompilerSupport/blob/amd-stg-open/LICENSE.txt
https://github.com/ROCm-Developer-Tools/rocr_debug_agent/
https://github.com/ROCm-Developer-Tools/rocr_debug_agent/blob/master/LICENSE.txt
https://github.com/RadeonOpenCompute/rocm_bandwidth_test/
https://github.com/RadeonOpenCompute/rocm_bandwidth_test/blob/master/LICENSE.txt
https://github.com/ROCmSoftwarePlatform/half/
https://github.com/ROCmSoftwarePlatform/half/blob/master/LICENSE.txt
https://github.com/GPUOpen-Tools/radeon_compute_profiler/
https://github.com/GPUOpen-Tools/radeon_compute_profiler/blob/master/LICENSE
https://github.com/ROCm-Developer-Tools/ROCgdb/
https://github.com/ROCm-Developer-Tools/ROCgdb/blob/amd-master/COPYING
https://github.com/ROCm-Developer-Tools/ROCdbgapi/
https://github.com/ROCm-Developer-Tools/ROCdbgapi/blob/amd-master/LICENSE.txt
https://github.com/RadeonOpenCompute/rdc/
https://github.com/RadeonOpenCompute/rdc/blob/master/LICENSE
https://github.com/ROCmSoftwarePlatform/rocBLAS/
https://github.com/ROCmSoftwarePlatform/rocBLAS/blob/develop/LICENSE.md
https://github.com/ROCmSoftwarePlatform/Tensile/
https://github.com/ROCmSoftwarePlatform/Tensile/blob/develop/LICENSE.md
https://github.com/ROCmSoftwarePlatform/hipBLAS/
https://github.com/ROCmSoftwarePlatform/hipBLAS/blob/develop/LICENSE.md
https://github.com/ROCmSoftwarePlatform/rocFFT/
https://github.com/ROCmSoftwarePlatform/rocFFT/blob/develop/LICENSE.md

ROCm Documentation, Release 5.0.1

Table 9.1 – continued from previous page
Component License
hipFFT MIT
rocRAND MIT
rocSPARSE MIT
rocSOLVER BSD-2-Clause
hipSOLVER MIT
hipSPARSE MIT
rocALUTION MIT
MIOpenGEMM MIT
MIOpen MIT
rccl Custom
MIVisionX MIT
rocThrust Apache 2.0
hipCUB Custom
rocPRIM MIT
rocWMMA MIT
hipfort MIT
ROCmValidationSuite MIT
aomp Apache 2.0
aomp-extras MIT
flang Apache 2.0

Open sourced ROCm components are released via public GitHub repositories, packages on https://repo.radeon.com
and other distribution channels. Proprietary products are only available on https://repo.radeon.com. Currently, only
one component of ROCm, rocm-llvm-alt is governed by a proprietary license. Proprietary components are organized
in a proprietary subdirectory in the package repositories to distinguish from open sourced packages.

The additional terms and conditions below apply to your use of ROCm technical documentation.

©2023 Advanced Micro Devices, Inc. All rights reserved.

The information presented in this document is for informational purposes only and may contain technical inaccuracies,
omissions, and typographical errors. The information contained herein is subject to change and may be rendered
inaccurate for many reasons, including but not limited to product and roadmap changes, component and motherboard
version changes, new model and/or product releases, product differences between differing manufacturers, software
changes, BIOS flashes, firmware upgrades, or the like. Any computer system has risks of security vulnerabilities that
cannot be completely prevented or mitigated. AMD assumes no obligation to update or otherwise correct or revise this
information. However, AMD reserves the right to revise this information and to make changes from time to time to the
content hereof without obligation of AMD to notify any person of such revisions or changes.

THIS INFORMATION IS PROVIDED “AS IS.” AMD MAKES NO REPRESENTATIONS OR WARRANTIES
WITH RESPECT TO THE CONTENTS HEREOF AND ASSUMES NO RESPONSIBILITY FOR ANY INACCU-
RACIES, ERRORS, OR OMISSIONS THAT MAY APPEAR IN THIS INFORMATION. AMD SPECIFICALLY
DISCLAIMS ANY IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY, OR FITNESS
FOR ANY PARTICULAR PURPOSE. IN NO EVENT WILL AMD BE LIABLE TO ANY PERSON FOR ANY
RELIANCE, DIRECT, INDIRECT, SPECIAL, OR OTHER CONSEQUENTIAL DAMAGES ARISING FROM THE
USE OF ANY INFORMATION CONTAINED HEREIN, EVEN IF AMD IS EXPRESSLY ADVISED OF THE POS-
SIBILITY OF SUCH DAMAGES.

AMD, the AMD Arrow logo, ROCm, and combinations thereof are trademarks of Advanced Micro Devices, Inc. Other
product names used in this publication are for identification purposes only and may be trademarks of their respective
companies.

76 Chapter 9. Licensing Terms

https://github.com/ROCmSoftwarePlatform/hipFFT/
https://github.com/ROCmSoftwarePlatform/hipFFT/blob/develop/LICENSE.md
https://github.com/ROCmSoftwarePlatform/rocRAND/
https://github.com/ROCmSoftwarePlatform/rocRAND/blob/develop/LICENSE.txt
https://github.com/ROCmSoftwarePlatform/rocSPARSE/
https://github.com/ROCmSoftwarePlatform/rocSPARSE/blob/develop/LICENSE.md
https://github.com/ROCmSoftwarePlatform/rocSOLVER/
https://github.com/ROCmSoftwarePlatform/rocSOLVER/blob/develop/LICENSE.md
https://github.com/ROCmSoftwarePlatform/hipSOLVER/
https://github.com/ROCmSoftwarePlatform/hipSOLVER/blob/develop/LICENSE.md
https://github.com/ROCmSoftwarePlatform/hipSPARSE/
https://github.com/ROCmSoftwarePlatform/hipSPARSE/blob/develop/LICENSE.md
https://github.com/ROCmSoftwarePlatform/rocALUTION/
https://github.com/ROCmSoftwarePlatform/rocALUTION/blob/develop/LICENSE.md
https://github.com/ROCmSoftwarePlatform/MIOpenGEMM/
https://github.com/ROCmSoftwarePlatform/MIOpenGEMM/blob/master/LICENSE.txt
https://github.com/ROCmSoftwarePlatform/MIOpen/
https://github.com/ROCmSoftwarePlatform/MIOpen/blob/master/LICENSE.txt
https://github.com/ROCmSoftwarePlatform/rccl/
https://github.com/ROCmSoftwarePlatform/rccl/blob/develop/LICENSE.txt
https://github.com/GPUOpen-ProfessionalCompute-Libraries/MIVisionX/
https://github.com/GPUOpen-ProfessionalCompute-Libraries/MIVisionX/blob/master/LICENSE.txt
https://github.com/ROCmSoftwarePlatform/rocThrust/
https://github.com/ROCmSoftwarePlatform/rocThrust/blob/develop/LICENSE
https://github.com/ROCmSoftwarePlatform/hipCUB/
https://github.com/ROCmSoftwarePlatform/hipCUB/blob/develop/LICENSE.txt
https://github.com/ROCmSoftwarePlatform/rocPRIM/
https://github.com/ROCmSoftwarePlatform/rocPRIM/blob/develop/LICENSE.txt
https://github.com/ROCmSoftwarePlatform/rocWMMA/
https://github.com/ROCmSoftwarePlatform/rocWMMA/blob/develop/LICENSE.md
https://github.com/ROCmSoftwarePlatform/hipfort/
https://github.com/ROCmSoftwarePlatform/hipfort/blob/master/LICENSE
https://github.com/ROCm-Developer-Tools/ROCmValidationSuite/
https://github.com/ROCm-Developer-Tools/ROCmValidationSuite/blob/master/LICENSE
https://github.com/ROCm-Developer-Tools/aomp/
https://github.com/ROCm-Developer-Tools/aomp/blob/aomp-dev/LICENSE
https://github.com/ROCm-Developer-Tools/aomp-extras/
https://github.com/ROCm-Developer-Tools/aomp-extras/blob/aomp-dev/LICENSE
https://github.com/ROCm-Developer-Tools/flang/
https://github.com/ROCm-Developer-Tools/flang/blob/master/LICENSE.txt

ROCm Documentation, Release 5.0.1

9.1 Package Licensing

Attention: AQL Profiler and AOCC CPU optimization are both provided in binary form, each subject to
the license agreement enclosed in the directory for the binary and is available here: /opt/rocm/share/doc/
rocm-llvm-alt/EULA. By using, installing, copying or distributing AQL Profiler and/or AOCC CPU Optimiza-
tions, you agree to the terms and conditions of this license agreement. If you do not agree to the terms of this
agreement, do not install, copy or use the AQL Profiler and/or the AOCC CPU Optimizations.

For the rest of the ROCm packages, you can find the licensing information at the following location: /opt/rocm/
share/doc/<component-name>/

For example, you can fetch the licensing information of the _amd_comgr_ component (Code Object Manager) from
the amd_comgr folder. A file named LICENSE.txt contains the license details at: /opt/rocm-5.0.1/share/doc/
amd_comgr/LICENSE.txt

9.1. Package Licensing 77

ROCm Documentation, Release 5.0.1

78 Chapter 9. Licensing Terms

CHAPTER

TEN

ALL REFERENCE MATERIAL

10.1 ROCm Software Groups

HIP HIP is both AMD’s GPU programming language extension and the GPU runtime.

• HIP Runtime API Reference

• Examples

Math Libraries HIP Math Libraries support the following domains:

• Linear Algebra Libraries

• Fast Fourier Transforms

• Random Numbers

C++ Primitive Libraries ROCm template libraries for C++ primitives and algorithms are as follows:

• rocPRIM

• rocThrust

• hipCUB

Communication Libraries Inter and intra-node communication is supported by the following projects:

• RCCL

AI Libraries Libraries related to AI.

• MIOpen

• Composable Kernel

Computer Vision Computer vision related projects.

• MIVisionX

• rocAL

OpenMP

• OpenMP Support Guide

Compilers and Tools

• ROCmCC

• ROCgdb

• ROCProfiler

• ROCTracer

79

https://rocm.docs.amd.com/projects/HIP/en/docs-5.0.1/doxygen/html/index.html
https://github.com/amd/rocm-examples/tree/develop/HIP-Basic
https://rocm.docs.amd.com/projects/rocPRIM/en/docs-5.0.1/index.html
https://rocm.docs.amd.com/projects/rocThrust/en/docs-5.0.1/index.html
https://rocm.docs.amd.com/projects/hipCUB/en/docs-5.0.1/index.html
https://rocm.docs.amd.com/projects/rccl/en/docs-5.0.1/index.html
https://rocm.docs.amd.com/projects/MIOpen/en/docs-5.0.1/index.html
https://rocm.docs.amd.com/projects/MIVisionX/en/docs-5.0.1/README.html
https://rocm.docs.amd.com/projects/ROCgdb/en/docs-5.0.1/index.html
https://rocm.docs.amd.com/projects/rocprofiler/en/docs-5.0.1/rocprof.html
https://rocm.docs.amd.com/projects/roctracer/en/docs-5.0.1/index.html

ROCm Documentation, Release 5.0.1

Management Tools

• AMD SMI

• ROCm SMI

• ROCm Datacenter Tool

Validation Tools

• ROCm Validation Suite

• TransferBench

GPU Architectures

• AMD Instinct MI200

• AMD Instinct MI100

80 Chapter 10. All Reference Material

https://rocmdocs.amd.com/projects/rocm_smi_lib/en/latest/
https://rocm.docs.amd.com/projects/rdc/en/docs-5.0.1/index.html
https://rocm.docs.amd.com/projects/ROCmValidationSuite/en/docs-5.0.1/index.html

CHAPTER

ELEVEN

COMPILERS AND TOOLS

ROCmCC ROCmCC is a Clang/LLVM-based compiler. It is optimized for high-performance computing on AMD
GPUs and CPUs and supports various heterogeneous programming models such as HIP, OpenMP, and OpenCL.

ROCgdb This is ROCgdb, the ROCm source-level debugger for Linux, based on GDB, the GNU source-level
debugger.

ROCProfiler ROC profiler library. Profiling with performance counters and derived metrics. Library supports
GFX8/GFX9. Hardware specific low-level performance analysis interface for profiling of GPU compute applications.
The profiling includes hardware performance counters with complex performance metrics.

ROCTracer Callback/Activity Library for Performance tracing AMD GPU’s

ROCdbgapi The AMD Debugger API is a library that provides all the support necessary for a debugger
and other tools to perform low level control of the execution and inspection of execution state of AMD’s commercially
available GPU architectures.

11.1 See Also

• Compiler Disambiguation

11.2 Compiler Reference Guide

11.2.1 Introduction to Compiler Reference Guide

ROCmCC is a Clang/LLVM-based compiler. It is optimized for high-performance computing on AMD GPUs and
CPUs and supports various heterogeneous programming models such as HIP, OpenMP, and OpenCL.

ROCmCC is made available via two packages: rocm-llvm and rocm-llvm-alt. The differences are listed in the
table below.

Table 11.1: Differences between rocm-llvm and rocm-llvm-alt

rocm-llvm rocm-llvm-alt

Installed by default when
ROCm™ itself is installed

An optional package

Provides an open-source com-
piler

Provides an additional closed-source compiler for users interested in additional
CPU optimizations not available in rocm-llvm

81

https://rocm.docs.amd.com/projects/ROCgdb/en/docs-5.0.1/index.html
https://rocm.docs.amd.com/projects/rocprofiler/en/docs-5.0.1/rocprof.html
https://rocm.docs.amd.com/projects/roctracer/en/docs-5.0.1/index.html
https://rocm.docs.amd.com/projects/ROCdbgapi/en/docs-5.0.1/index.html

ROCm Documentation, Release 5.0.1

For more details, see:

• AMD GPU usage: llvm.org/docs/AMDGPUUsage.html

• Releases and source: https://github.com/RadeonOpenCompute/llvm-project

11.2.1.1 ROCm Compiler Interfaces

ROCm currently provides two compiler interfaces for compiling HIP programs:

• /opt/rocm/bin/hipcc

• /opt/rocm/bin/amdclang++

Both leverage the same LLVM compiler technology with the AMD GCN GPU support; however, they offer a slightly
different user experience. The hipcc command-line interface aims to provide a more familiar user interface to users
who are experienced in CUDA but relatively new to the ROCm/HIP development environment. On the other hand,
amdclang++ provides a user interface identical to the clang++ compiler. It is more suitable for experienced developers
who want to directly interact with the clang compiler and gain full control of their application’s build process.

The major differences between hipcc and amdclang++ are listed below:

82 Chapter 11. Compilers and Tools

https://llvm.org/docs/AMDGPUUsage.html
https://github.com/RadeonOpenCompute/llvm-project

ROCm Documentation, Release 5.0.1

Table 11.2: Differences between hipcc and amdclang++

* hipcc amdclang++

Com-
piling
HIP
source
files

Treats all source files as HIP lan-
guage source files

Enables the HIP language support for files with the .hip extension
or through the -x hip compiler option

De-
tect-
ing
GPU
archi-
tec-
ture

Auto-detects the GPUs available on
the system and generates code for
those devices when no GPU archi-
tecture is specified

Has AMD GCN gfx803 as the default GPU architecture. The
--offload-arch compiler option may be used to target other GPU
architectures

Find-
ing a
HIP
in-
stal-
lation

Finds the HIP installation based on
its own location and its knowledge
about the ROCm directory structure

First looks for HIP under the same parent directory as its own
LLVM directory and then falls back on /opt/rocm. Users can use
the --rocm-path option to instruct the compiler to use HIP from
the specified ROCm installation.

Link-
ing
to the
HIP
run-
time
li-
brary

Is configured to automatically link to
the HIP runtime from the detected
HIP installation

Requires the --hip-link flag to be specified to link to the HIP
runtime. Alternatively, users can use the -l<dir> -lamdhip64
option to link to a HIP runtime library.

De-
vice
func-
tion
inlin-
ing

Inlines all GPU device functions,
which provide greater performance
and compatibility for codes that con-
tain file scoped or device func-
tion scoped __shared__ variables.
However, it may increase compile
time.

Relies on inlining heuristics to control inlining. Users ex-
periencing performance or compilation issues with code using
file scoped or device function scoped __shared__ variables
could try -mllvm -amdgpu-early-inline-all=true -mllvm
-amdgpu-function-calls=false to work around the issue.
There are plans to address these issues with future compiler im-
provements.

Source
code
loca-
tion

https://github.com/
ROCm-Developer-Tools/HIPCC

https://github.com/RadeonOpenCompute/llvm-project

11.2. Compiler Reference Guide 83

https://github.com/ROCm-Developer-Tools/HIPCC
https://github.com/ROCm-Developer-Tools/HIPCC
https://github.com/RadeonOpenCompute/llvm-project

ROCm Documentation, Release 5.0.1

11.2.2 Compiler Options and Features

This chapter discusses compiler options and features.

11.2.2.1 AMD GPU Compilation

This section outlines commonly used compiler flags for hipcc and amdclang++.

-x hip

Compiles the source file as a HIP program.

-fopenmp

Enables the OpenMP support.

-fopenmp-targets=<gpu>

Enables the OpenMP target offload support of the specified GPU architecture.

Gpu
The GPU architecture. E.g. gfx908.

--gpu-max-threads-per-block=<value>:

Sets the default limit of threads per block. Also referred to as the launch bounds.

Value
The default maximum amount of threads per block.

-munsafe-fp-atomics

Enables unsafe floating point atomic instructions (AMDGPU only).

-ffast-math

Allows aggressive, lossy floating-point optimizations.

-mwavefrontsize64, -mno-wavefrontsize64

Sets wavefront size to be 64 or 32 on RDNA architectures.

-mcumode

Switches between CU and WGP modes on RDNA architectures.

--offload-arch=<gpu>

HIP offloading target ID. May be specified more than once.

Gpu
The a device architecture followed by target ID features delimited by a colon. Each target ID
feature is a predefined string followed by a plus or minus sign (e.g. gfx908:xnack+:sramecc-).

-g

Generates source-level debug information.

-fgpu-rdc, -fno-gpu-rdc

Generates relocatable device code, also known as separate compilation mode.

84 Chapter 11. Compilers and Tools

ROCm Documentation, Release 5.0.1

11.2.2.2 AMD Optimizations for Zen Architectures

The CPU compiler optimizations described in this chapter originate from the AMD Optimizing C/C++ Compiler
(AOCC) compiler. They are available in ROCmCC if the optional rocm-llvm-alt package is installed. The user’s in-
teraction with the compiler does not change once rocm-llvm-alt is installed. The user should use the same compiler
entry point, provided AMD provides high-performance compiler optimizations for Zen-based processors in AOCC.

For more information, refer to https://www.amd.com/en/developer/aocc.html.

11.2.2.2.1 -famd-opt

Enables a default set of AMD proprietary optimizations for the AMD Zen CPU architectures.

-fno-amd-opt disables the AMD proprietary optimizations.

The -famd-opt flag is useful when a user wants to build with the proprietary optimization compiler and not have to
depend on setting any of the other proprietary optimization flags.

Note: -famd-opt can be used in addition to the other proprietary CPU optimization flags. The table of optimizations
below implicitly enables the invocation of the AMD proprietary optimizations compiler, whereas the -famd-opt flag
requires this to be handled explicitly.

11.2.2.2.2 -fstruct-layout=[1,2,3,4,5,6,7]

Analyzes the whole program to determine if the structures in the code can be peeled and the pointer or integer fields in
the structure can be compressed. If feasible, this optimization transforms the code to enable these improvements. This
transformation is likely to improve cache utilization and memory bandwidth. It is expected to improve the scalability
of programs executed on multiple cores.

This is effective only under -flto, as the whole program analysis is required to perform this optimization. Users can
choose different levels of aggressiveness with which this optimization can be applied to the application, with 1 being
the least aggressive and 7 being the most aggressive level.

11.2. Compiler Reference Guide 85

https://www.amd.com/en/developer/aocc.html

ROCm Documentation, Release 5.0.1

Table 11.3: -fstruct-layout Values and Their Effects

-fstruct-layout
value

Struc-
ture
peel-
ing

Pointer size after se-
lective compression
of self-referential
pointers in struc-
tures, wherever safe

Type of structure fields eligible for compression Whether
compression
performed
under safety
check

1 En-
abled

NA NA NA

2 En-
abled

32-bit NA NA

3 En-
abled

16-bit NA NA

4 En-
abled

32-bit Integer Yes

5 En-
abled

16-bit Integer Yes

6 En-
abled

32-bit 64-bit signed int or unsigned int. Users must ensure
that the values assigned to 64-bit signed int fields are in
range -(2^31 - 1) to +(2^31 - 1) and 64-bit unsigned int
fields are in the range 0 to +(2^31 - 1). Otherwise, you
may obtain incorrect results.

No. Users
must ensure
the safety
based on
the program
compiled.

7 En-
abled

16-bit 64-bit signed int or unsigned int. Users must ensure
that the values assigned to 64-bit signed int fields are in
range -(2^31 - 1) to +(2^31 - 1) and 64-bit unsigned int
fields are in the range 0 to +(2^31 - 1). Otherwise, you
may obtain incorrect results.

No. Users
must ensure
the safety
based on
the program
compiled.

11.2.2.2.3 -fitodcalls

Promotes indirect-to-direct calls by placing conditional calls. Application or benchmarks that have a small and deter-
ministic set of target functions for function pointers passed as call parameters benefit from this optimization. Indirect-
to-direct call promotion transforms the code to use all possible determined targets under runtime checks and falls back
to the original code for all the other cases. Runtime checks are introduced by the compiler for each of these possible
function pointer targets followed by direct calls to the targets.

This is a link time optimization, which is invoked as -flto -fitodcalls

11.2.2.2.4 -fitodcallsbyclone

Performs value specialization for functions with function pointers passed as an argument. It does this specialization by
generating a clone of the function. The cloning of the function happens in the call chain as needed, to allow conversion
of indirect function call to direct call.

This complements -fitodcalls optimization and is also a link time optimization, which is invoked as -flto
-fitodcallsbyclone.

86 Chapter 11. Compilers and Tools

ROCm Documentation, Release 5.0.1

11.2.2.2.5 -fremap-arrays

Transforms the data layout of a single dimensional array to provide better cache locality. This optimization is effective
only under -flto, as the whole program needs to be analyzed to perform this optimization, which can be invoked as
-flto -fremap-arrays.

11.2.2.2.6 -finline-aggressive

Enables improved inlining capability through better heuristics. This optimization is more effective when used with
-flto, as the whole program analysis is required to perform this optimization, which can be invoked as -flto
-finline-aggressive.

11.2.2.2.7 -fnt-store (non-temporal store)

Generates a non-temporal store instruction for array accesses in a loop with a large trip count.

11.2.2.2.8 -fnt-store=aggressive

This is an experimental option to generate non-temporal store instruction for array accesses in a loop, whose iteration
count cannot be determined at compile time. In this case, the compiler assumes the iteration count to be huge.

11.2.2.2.9 Optimizations Through Driver -mllvm <options>

The following optimization options must be invoked through driver -mllvm <options>:

11.2.2.2.9.1 -enable-partial-unswitch

Enables partial loop unswitching, which is an enhancement to the existing loop unswitching optimization in LLVM.
Partial loop unswitching hoists a condition inside a loop from a path for which the execution condition remains invariant,
whereas the original loop unswitching works for a condition that is completely loop invariant. The condition inside
the loop gets hoisted out from the invariant path, and the original loop is retained for the path where the condition is
variant.

11.2.2.2.9.2 -aggressive-loop-unswitch

Experimental option that enables aggressive loop unswitching heuristic (including -enable-partial-unswitch)
based on the usage of the branch conditional values. Loop unswitching leads to code bloat. Code bloat can be minimized
if the hoisted condition is executed more often. This heuristic prioritizes the conditions based on the number of times
they are used within the loop. The heuristic can be controlled with the following options:

• -unswitch-identical-branches-min-count=<n>

– Enables unswitching of a loop with respect to a branch conditional value (B), where B appears in at least
<n> compares in the loop. This option is enabled with -aggressive-loop-unswitch. The default value
is 3.

Usage: -mllvm -aggressive-loop-unswitch -mllvm -unswitch-identical-branches-min-count=<n>

Where, n is a positive integer and lower value of <n> facilitates more unswitching.

11.2. Compiler Reference Guide 87

ROCm Documentation, Release 5.0.1

• -unswitch-identical-branches-max-count=<n>

– Enables unswitching of a loop with respect to a branch conditional value (B), where B appears in at most
<n> compares in the loop. This option is enabled with -aggressive-loop-unswitch. The default value
is 6.

Usage: -mllvm -aggressive-loop-unswitch -mllvm -unswitch-identical-branches-max-count=<n>

Where, n is a positive integer and higher value of <n> facilitates more unswitching.

Note: These options may facilitate more unswitching under some workloads. Since loop-unswitching inherently
leads to code bloat, facilitating more unswitching may significantly increase the code size. Hence, it may also
lead to longer compilation times.

11.2.2.2.9.3 -enable-strided-vectorization

Enables strided memory vectorization as an enhancement to the interleaved vectorization framework present in LLVM.
It enables the effective use of gather and scatter kind of instruction patterns. This flag must be used along with the
interleave vectorization flag.

11.2.2.2.9.4 -enable-epilog-vectorization

Enables vectorization of epilog-iterations as an enhancement to existing vectorization framework. This enables gen-
eration of an additional epilog vector loop version for the remainder iterations of the original vector loop. The vector
size or factor of the original loop should be large enough to allow an effective epilog vectorization of the remaining
iterations. This optimization takes place only when the original vector loop is vectorized with a vector width or factor
of 16. This vectorization width of 16 may be overwritten by -min-width-epilog-vectorization command-line
option.

11.2.2.2.9.5 -enable-redundant-movs

Removes any redundant mov operations including redundant loads from memory and stores to memory. This can be
invoked using -Wl,-plugin-opt=-enable-redundant-movs.

11.2.2.2.9.6 -merge-constant

Attempts to promote frequently occurring constants to registers. The aim is to reduce the size of the instruction encoding
for instructions using constants and obtain a performance improvement.

11.2.2.2.9.7 -function-specialize

Optimizes the functions with compile time constant formal arguments.

88 Chapter 11. Compilers and Tools

ROCm Documentation, Release 5.0.1

11.2.2.2.9.8 -lv-function-specialization

Generates specialized function versions when the loops inside function are vectorizable and the arguments are not
aliased with each other.

11.2.2.2.9.9 -enable-vectorize-compares

Enables vectorization on certain loops with conditional breaks assuming the memory accesses are safely bound within
the page boundary.

11.2.2.2.9.10 -inline-recursion=[1,2,3,4]

Enables inlining for recursive functions based on heuristics where the aggressiveness of heuristics increases with the
level (1-4). The default level is 2. Higher levels may lead to code bloat due to expansion of recursive functions at call
sites.

Table 11.4: -inline-recursion Level and Their Effects

-inline-recursion
value

Inline depth of heuristics used to enable inlining for recursive functions

1 1
2 1
3 1
4 10

This is more effective with -flto as the whole program needs to be analyzed to perform this optimization, which can
be invoked as -flto -inline-recursion=[1,2,3,4].

11.2.2.2.9.11 -reduce-array-computations=[1,2,3]

Performs array data flow analysis and optimizes the unused array computations.

Table 11.5: -reduce-array-computations Values and Their Effects

-reduce-array-computations value Array elements eligible for elimination of computations
1 Unused
2 Zero valued
3 Both unused and zero valued

This optimization is effective with -flto as the whole program needs to be analyzed to perform this optimization,
which can be invoked as -flto -reduce-array-computations=[1,2,3].

11.2. Compiler Reference Guide 89

ROCm Documentation, Release 5.0.1

11.2.2.2.9.12 -global-vectorize-slp={true,false}

Vectorizes the straight-line code inside a basic block with data reordering vector operations. This option is set to true
by default.

11.2.2.2.9.13 -region-vectorize

Experimental flag for enabling vectorization on certain loops with complex control flow, which the normal vectorizer
cannot handle.

This optimization is effective with -flto as the whole program needs to be analyzed to perform this optimization,
which can be invoked as -flto -region-vectorize.

11.2.2.2.9.14 -enable-x86-prefetching

Enables the generation of x86 prefetch instruction for the memory references inside a loop or inside an innermost loop
of a loop nest to prefetch the second dimension of multidimensional array/memory references in the innermost loop of
a loop nest. This is an experimental pass; its profitability is being improved.

11.2.2.2.9.15 -suppress-fmas

Identifies the reduction patterns on FMA and suppresses the FMA generation, as it is not profitable on the reduction
patterns.

11.2.2.2.9.16 -enable-icm-vrp

Enables estimation of the virtual register pressure before performing loop invariant code motion. This estimation is
used to control the number of loop invariants that will be hoisted during the loop invariant code motion.

11.2.2.2.9.17 -loop-splitting

Enables splitting of loops into multiple loops to eliminate the branches, which compare the loop induction with an
invariant or constant expression. This option is enabled under -O3 by default. To disable this optimization, use
-loop-splitting=false.

11.2.2.2.9.18 -enable-ipo-loop-split

Enables splitting of loops into multiple loops to eliminate the branches, which compares the loop induction with a
constant expression. This constant expression can be derived through inter-procedural analysis. This option is enabled
under -O3 by default. To disable this optimization, use -enable-ipo-loop-split=false.

90 Chapter 11. Compilers and Tools

ROCm Documentation, Release 5.0.1

11.2.2.2.9.19 -compute-interchange-order

Enables heuristic for finding the best possible interchange order for a loop nest. To enable this option, use
-enable-loopinterchange. This option is set to false by default.

Usage:

-mllvm -enable-loopinterchange -mllvm -compute-interchange-order

11.2.2.2.9.20 -convert-pow-exp-to-int={true,false}

Converts the call to floating point exponent version of pow to its integer exponent version if the floating-point exponent
can be converted to integer. This option is set to true by default.

11.2.2.2.9.21 -do-lock-reordering={none,normal,aggressive}

Reorders the control predicates in increasing order of complexity from outer predicate to inner when it is safe. The
normal mode reorders simple expressions, while the aggressive mode reorders predicates involving function calls if
no side effects are determined. This option is set to normal by default.

11.2.2.2.9.22 -fuse-tile-inner-loop

Enables fusion of adjacent tiled loops as a part of loop tiling transformation. This option is set to false by default.

11.2.2.2.9.23 -Hz,1,0x1 [Fortran]

Helps to preserve array index information for array access expressions which get linearized in the compiler front end.
The preserved information is used by the compiler optimization phase in performing optimizations such as loop trans-
formations. It is recommended that any user who is using optimizations such as loop transformations and other opti-
mizations requiring de-linearized index expressions should use the Hz option. This option has no impact on any other
aspects of the Flang front end.

11.2.2.3 Inline ASM Statements

Inline assembly (ASM) statements allow a developer to include assembly instructions directly in either host or device
code. While the ROCm compiler supports ASM statements, their use is not recommended for the following reasons:

• The compiler’s ability to produce both correct code and to optimize surrounding code is impeded.

• The compiler does not parse the content of the ASM statements and so cannot “see” its contents.

• The compiler must make conservative assumptions in an effort to retain correctness.

• The conservative assumptions may yield code that, on the whole, is less performant compared to code without
ASM statements. It is possible that a syntactically correct ASM statement may cause incorrect runtime behavior.

• ASM statements are often ASIC-specific; code containing them is less portable and adds a maintenance burden
to the developer if different ASICs are targeted.

• Writing correct ASM statements is often difficult; we strongly recommend thorough testing of any use of ASM
statements.

11.2. Compiler Reference Guide 91

ROCm Documentation, Release 5.0.1

Note: For developers who choose to include ASM statements in the code, AMD is interested in understanding the use
case and appreciates feedback at https://github.com/RadeonOpenCompute/ROCm/issues

11.2.2.4 Miscellaneous OpenMP Compiler Features

This section discusses features that have been added or enhanced in the OpenMP compiler.

11.2.2.4.1 Offload-arch Tool

An LLVM library and tool that is used to query the execution capability of the current system as well as to query
requirements of a binary file. It is used by OpenMP device runtime to ensure compatibility of an image with the
current system while loading it. It is compatible with target ID support and multi-image fat binary support.

Usage:

offload-arch [Options] [Optional lookup-value]

When used without an option, offload-arch prints the value of the first offload arch found in the underlying system.
This can be used by various clang front ends. For example, to compile for OpenMP offloading on your current system,
invoke clang with the following command:

clang -fopenmp -fopenmp-targets=`offload-arch` foo.c

If an optional lookup-value is specified, offload-arch will check if the value is either a valid offload-arch or a codename
and look up requested additional information.

The following command provides all the information for offload-arch gfx906:

offload-arch gfx906 -v

The options are listed below:

-a

Prints values for all devices. Do not stop at the first device found.

-m

Prints device code name (often found in pci.ids file).

-n

Prints numeric pci-id.

-t

Prints clang offload triple to use for the offload arch.

-v

Verbose. Implies: -a -m -n -t. For: all devices, prints codename, numeric value, and triple.

-f <file>

Prints offload requirements including offload-arch for each compiled offload image built into an application binary
file.

92 Chapter 11. Compilers and Tools

https://github.com/RadeonOpenCompute/ROCm/issues

ROCm Documentation, Release 5.0.1

-c

Prints offload capabilities of the underlying system. This option is used by the language runtime to select an
image when multiple images are available. A capability must exist for each requirement of the selected image.

There are symbolic link aliases amdgpu-offload-arch and nvidia-arch for offload-arch. These aliases return
1 if no AMD GCN GPU or CUDA GPU is found. These aliases are useful in determining whether architecture-specific
tests should be run or to conditionally load architecture-specific software.

11.2.2.4.2 Command-Line Simplification Using offload-arch Flag

Legacy mechanism of specifying offloading target for OpenMP involves using three flags, -fopenmp-targets,
-Xopenmp-target, and -march. The first two flags take a target triple (like amdgcn-amd-amdhsa or
nvptx64-nvidia-cuda), while the last flag takes device name (like gfx908 or sm_70) as input. Alternatively, users
of ROCmCC compiler can use the flag —offload-arch for a combined effect of the above three flags.

Example:

Legacy mechanism
clang -fopenmp -target x86_64-linux-gnu \
-fopenmp-targets=amdgcn-amd-amdhsa -Xopenmp-target=amdgcn-amd-amdhsa \
-march=gfx906 helloworld.c -o helloworld

Example:

Using offload-arch flag
clang -fopenmp -target x86_64-linux-gnu \
--offload-arch=gfx906 helloworld.c -o helloworld.

To ensure backward compatibility, both styles are supported. This option is compatible with target ID support and
multi-image fat binaries.

11.2.2.4.3 Target ID Support for OpenMP

The ROCmCC compiler supports specification of target features along with the GPU name while specifying a target
offload device in the command line, using -march or --offload-arch options. The compiled image in such cases is
specialized for a given configuration of device and target features (target ID).

Example:

compiling for a gfx908 device with XNACK paging support turned ON
clang -fopenmp -target x86_64-linux-gnu \
-fopenmp-targets=amdgcn-amd-amdhsa -Xopenmp-target=amdgcn-amd-amdhsa \
-march=gfx908:xnack+ helloworld.c -o helloworld

Example:

compiling for a gfx908 device with SRAMECC support turned OFF
clang -fopenmp -target x86_64-linux-gnu \
-fopenmp-targets=amdgcn-amd-amdhsa -Xopenmp-target=amdgcn-amd-amdhsa \
-march=gfx908:sramecc- helloworld.c -o helloworld

Example:

11.2. Compiler Reference Guide 93

ROCm Documentation, Release 5.0.1

compiling for a gfx908 device with SRAMECC support turned ON and XNACK paging support␣
→˓turned OFF
clang -fopenmp -target x86_64-linux-gnu \
-fopenmp-targets=amdgcn-amd-amdhsa -Xopenmp-target=amdgcn-amd-amdhsa \
-march=gfx908:sramecc+:xnack- helloworld.c -o helloworld

The target ID specified on the command line is passed to the clang driver using target-feature flag, to the LLVM
optimizer and back end using -mattr flag, and to linker using -plugin-opt=-mattr flag. This feature is compatible
with offload-arch command-line option and multi-image binaries for multiple architectures.

11.2.2.4.4 Multi-image Fat Binary for OpenMP

The ROCmCC compiler is enhanced to generate binaries that can contain heterogenous images. This heterogeneity
could be in terms of:

• Images of different architectures, like AMD GCN and NVPTX

• Images of same architectures but for different GPUs, like gfx906 and gfx908

• Images of same architecture and same GPU but for different target features, like gfx908:xnack+ and
gfx908:xnack-

An appropriate image is selected by the OpenMP device runtime for execution depending on the capability of the
current system. This feature is compatible with target ID support and offload-arch command-line options and uses
offload-arch tool to determine capability of the current system.

Example:

clang -fopenmp -target x86_64-linux-gnu \
-fopenmp-targets=amdgcn-amd-amdhsa,amdgcn-amd-amdhsa \
-Xopenmp-target=amdgcn-amd-amdhsa -march=gfx906 \
-Xopenmp-target=amdgcn-amd-amdhsa -march=gfx908 \
helloworld.c -o helloworld

Example:

clang -fopenmp -target x86_64-linux-gnu \
--offload-arch=gfx906 \
--offload-arch=gfx908 \
helloworld.c -o helloworld

Example:

clang -fopenmp -target x86_64-linux-gnu \
-fopenmp-targets=amdgcn-amd-amdhsa,amdgcn-amd-amdhsa,amdgcn-amd-amdhsa,amdgcn-amd-amdhsa␣
→˓\
-Xopenmp-target=amdgcn-amd-amdhsa -march=gfx908:sramecc+:xnack+ \
-Xopenmp-target=amdgcn-amd-amdhsa -march=gfx908:sramecc-:xnack+ \
-Xopenmp-target=amdgcn-amd-amdhsa -march=gfx908:sramecc+:xnack- \
-Xopenmp-target=amdgcn-amd-amdhsa -march=gfx908:sramecc-:xnack- \
helloworld.c -o helloworld

The ROCmCC compiler creates an instance of toolchain for each unique combination of target triple and the target
GPU (along with the associated target features). clang-offload-wrapper tool is modified to insert a new structure
__tgt_image_info along with each image in the binary. Device runtime is also modified to query this structure to
identify a compatible image based on the capability of the current system.

94 Chapter 11. Compilers and Tools

ROCm Documentation, Release 5.0.1

11.2.2.4.5 Unified Shared Memory (USM)

The following OpenMP pragma is available on MI200, and it must be executed with xnack+ support.

omp requires unified_shared_memory

For more details on USM refer to the Unified Shared Memory section of the OpenMP Guide.

11.2.2.5 Support Status of Other Clang Options

The following table lists the other Clang options and their support status.

Table 11.6: Clang Options

Option Support Status Description
-### Supported Prints (but does not run) the commands to run for this compilation
--analyzer-output <value> Supported “Static analyzer report output format (`html
--analyze Supported Runs the static analyzer
-arcmt-migrate-emit-errors Unsupported Emits ARC errors even if the migrator can fix them
-arcmt-migrate-report-output <value> Unsupported Output path for the plist report
-byteswapio Supported Swaps byte-order for unformatted input/output
-B <dir> Supported Adds <dir> to search path for binaries and object files used implicitly
-CC Supported Includes comments from within the macros in the preprocessed output
-cl-denorms-are-zero Supported OpenCL only. Allows denormals to be flushed to zero
-cl-fast-relaxed-math Supported OpenCL only. Sets -cl-finite-math-only and -cl-unsafe-math-optimizations and defines __FAST_RELAXED_MATH__
-cl-finite-math-only Supported OpenCL only. Allows floating-point optimizations that assume arguments and results are not NaNs or +-Inf
-cl-fp32-correctly-rounded-divide-sqrt Supported OpenCL only. Specifies that single-precision floating-point divide and sqrt used in the program source are correctly rounded
-cl-kernel-arg-info Supported OpenCL only. Generates kernel argument metadata
-cl-mad-enable Supported OpenCL only. Allows use of less precise MAD computations in the generated binary
-cl-no-signed-zeros Supported OpenCL only. Allows use of less precise no-signed-zeros computations in the generated binary
-cl-opt-disable Supported OpenCL only. Disables all optimizations. By default, optimizations are enabled.
-cl-single-precision-constant Supported OpenCL only. Treats double-precision floating-point constant as single precision constant
-cl-std= <value> Supported OpenCL language standard to compile for
-cl-strict-aliasing Supported OpenCL only. This option is added for compatibility with OpenCL 1.0.
-cl-uniform-work-group-size Supported OpenCL only. Defines the global work-size to be a multiple of the work-group size specified for clEnqueueNDRangeKernel
-cl-unsafe-math-optimizations Supported OpenCL only. Allows unsafe floating-point optimizations. Also implies -cl-no-signed-zeros and -cl-mad-enable
--config <value> Supported Specifies configuration file
--cuda-compile-host-device Supported Compiles CUDA code for both host and device (default). Has no effect on non-CUDA compilations
--cuda-device-only Supported Compiles CUDA code for device only
--cuda-host-only Supported Compiles CUDA code for host only. Has no effect on non-CUDA compilations
--cuda-include-ptx=<value> Unsupported Includes PTX for the following GPU architecture (e.g. sm_35) or “all.” May be specified more than once
--cuda-noopt-device-debug Unsupported Enables device-side debug info generation. Disables ptxas optimizations
--cuda-path-ignore-env Unsupported Ignores environment variables to detect CUDA installation
--cuda-path=<value> Unsupported CUDA installation path
-cxx-isystem <directory> Supported Adds a directory to the C++ SYSTEM include search path
-C Supported Includes comments in the preprocessed output
-c Supported Runs only preprocess, compile, and assemble steps
-dD Supported Prints macro definitions in -E mode in addition to the normal output
-dependency-dot <value> Supported Writes DOT-formatted header dependencies to the specified filename
-dependency-file <value> Supported Writes dependency output to the specified filename (or -)
-dI Supported Prints include directives in -E mode in addition to the normal output
-dM Supported Prints macro definitions in -E mode instead of the normal output

continues on next page

11.2. Compiler Reference Guide 95

ROCm Documentation, Release 5.0.1

Table 11.6 – continued from previous page
Option Support Status Description
-dsym-dir <dir> Unsupported Outputs dSYMs (if any) to the specified directory
-D <macro> Supported =<value>. Defines <macro> to <value> (or 1 if <value> omitted)
-emit-ast Supported Emits Clang AST files for source inputs
-emit-interface-stubs Supported Generates interface stub files
-emit-llvm Supported Uses the LLVM representation for assembler and object files
-emit-merged-ifs Supported Generates interface stub files and emits merged text not binary
--emit-static-lib Supported Enables linker job to emit a static library
-enable-trivial-auto-var-init-zero-knowing-it-will-be-removed-from-clang Supported Declares enabling trivial automatic variable initialization to zero for benchmarking purpose with the knowledge that it will eventually be removed
-E Supported Runs the preprocessor only
-fAAPCSBitfieldLoad Unsupported Follows the AAPCS standard where all volatile bit-field writes generate at least one load (ARM only)
-faddrsig Supported Emits an address-significance table
-faligned-allocation Supported Enables C++17 aligned allocation functions
-fallow-editor-placeholders Supported Treats editor placeholders as valid source code
-fallow-fortran-gnu-ext Supported Allows Fortran GNU extensions
-fansi-escape-codes Supported Uses ANSI escape codes for diagnostics
-fapple-kext Unsupported Uses Apple’s kernel extensions ABI
-fapple-link-rtlib Unsupported Forces linking of the clang built-ins runtime library
-fapple-pragma-pack Unsupported Enables Apple gcc-compatible #pragma pack handling
-fapplication-extension Unsupported Restricts code to those available for App Extensions
-fbackslash Supported Treats backslash as C-style escape character
-fbasic-block-sections= <value> Supported “Places each function’s basic blocks in unique sections (ELF Only) : all | labels | none | list= <file>”
-fblocks Supported Enables the ‘blocks’ language feature
-fborland-extensions Unsupported Accepts non-standard constructs supported by the Borland compile
-fbuild-session-file= <file> Supported Uses the last modification time of <file> as the build session timestamp
-fbuild-session-timestamp= <time since Epoch in seconds> Supported Specifies starting time of the current build session
-fbuiltin-module-map Unsupported Loads the Clang built-ins module map file
-fcall-saved-x10 Unsupported Makes the x10 register call-saved (AArch64 only)
-fcall-saved-x11 Unsupported Makes the x11 register call-saved (AArch64 only)
-fcall-saved-x12 Unsupported Makes the x12 register call-saved (AArch64 only)
-fcall-saved-x13 Unsupported Makes the x13 register call-saved (AArch64 only)
-fcall-saved-x14 Unsupported Makes the x14 register call-saved (AArch64 only)
-fcall-saved-x15 Unsupported Makes the x15 register call-saved (AArch64 only)
-fcall-saved-x18 Unsupported Makes the x18 register call-saved (AArch64 only)
-fcall-saved-x8 Unsupported Makes the x8 register call-saved (AArch64 only)
-fcall-saved-x9 Unsupported Makes the x9 register call-saved (AArch64 only)
-fcf-protection= <value> Unsupported Specifies the instrument control-flow architecture protection using options: return, branch, full, none
-fcf-protection Unsupported Enables cf-protection in ‘full’ mode
-fchar8_t Supported Enables C++ built-in type char8_t
-fclang-abi-compat= <version> Supported Attempts to match the ABI of Clang <version>
-fcolor-diagnostics Supported Enables colors in diagnostics
-fcomment-block-commands= <arg> Supported Treats each comma-separated argument in <arg> as a documentation comment block command
-fcommon Supported Places uninitialized global variables in a common block
-fcomplete-member-pointers Supported Requires member pointer base types to be complete if they are significant under the Microsoft ABI
-fconvergent-functions Supported Assumes functions to be convergent
-fcoroutines-ts Supported Enables support for the C++ Coroutines TS
-fcoverage-mapping Unsupported Generates coverage mapping to enable code coverage analysis
-fcs-profile-generate= <directory> Unsupported Generates instrumented code to collect context-sensitive execution counts into <directory>/default.profraw (overridden by LLVM_PROFILE_FILE env var)
-fcs-profile-generate Unsupported Generates instrumented code to collect context-sensitive execution counts into default.profraw (overridden by LLVM_PROFILE_FILE env var)
-fcuda-approx-transcendentals Unsupported Uses approximate transcendental functions
-fcuda-flush-denormals-to-zero Supported Flushes denormal floating-point values to zero in CUDA device mode

continues on next page

96 Chapter 11. Compilers and Tools

ROCm Documentation, Release 5.0.1

Table 11.6 – continued from previous page
Option Support Status Description
-fcuda-short-ptr Unsupported Uses 32-bit pointers for accessing const/local/shared address spaces
-fcxx-exceptions Supported Enables C++ exceptions
-fdata-sections Supported Places each data in its section
-fdebug-compilation-dir <value> Supported Specifies the compilation directory for embedding the debug info
-fdebug-default-version= <value> Supported Specifies the default DWARF version to use, if a -g option caused DWARF debug info to be produced
-fdebug-info-for-profiling Supported Emits extra debug info to make the sample profile more accurate
-fdebug-macro Supported Emits macro debug information
-fdebug-prefix-map= <value> Supported Remaps file source paths in debug info
-fdebug-ranges-base-address Supported Uses DWARF base address selection entries in .debug ranges
-fdebug-types-section Supported Places debug types in their section (ELF only)
-fdeclspec Supported Allows __declspec as a keyword
-fdelayed-template-parsing Supported Parses templated function definitions at the end of the translation unit
-fdelete-null-pointer-checks Supported Treats usage of null pointers as undefined behavior (default)
-fdiagnostics-absolute-paths Supported Prints absolute paths in diagnostics
-fdiagnostics-hotness-threshold= <number> Unsupported Prevents optimization remarks from being output if they do not have at least the specified number of profile count
-fdiagnostics-parseable-fixits Supported Prints fix-its in machine parseable form
-fdiagnostics-print-source-range-info Supported Prints source range spans in numeric form
-fdiagnostics-show-hotness Unsupported Enables profile hotness information in diagnostic line
-fdiagnostics-show-note-include-stack Supported Displays include stacks for diagnostic notes
-fdiagnostics-show-option Supported Prints option name with mappable diagnostics
-fdiagnostics-show-template-tree Supported Prints a template comparison tree for differing templates
-fdigraphs Supported Enables alternative token representations ‘ <:’, ‘:>’, ‘ <%’, ‘%>’, ‘%:’, ‘%:%:’ (default)
-fdiscard-value-names Supported Discards value names in LLVM IR
-fdollars-in-identifiers Supported Allows “$” in identifiers
-fdouble-square-bracket-attributes Supported Enables ‘[[]]’ attributes in all C and C++ language modes
-fdwarf-exceptions Unsupported Uses DWARF style exceptions
-feliminate-unused-debug-types Supported Eliminates debug info for defined but unused types
-fembed-bitcode-marker Supported Embeds placeholder LLVM IR data as a marker
-fembed-bitcode= <option> Supported Embeds LLVM bitcode (option: off, all, bitcode, marker)
-fembed-bitcode Supported Embeds LLVM IR bitcode as data
-femit-all-decls Supported Emits all declarations, even if unused
-femulated-tls Supported Uses emutls functions to access thread_local variables
-fenable-matrix Supported Enables matrix data type and related built-in functions
-fexceptions Supported Enables support for exception handling
-fexperimental-new-constant-interpreter Supported Enables the experimental new constant interpreter
-fexperimental-new-pass-manager Supported Enables an experimental new pass manager in LLVM
-fexperimental-relative-c+±abi-vtables Supported Uses the experimental C++ class ABI for classes with virtual tables
-fexperimental-strict-floating-point Supported Enables experimental strict floating point in LLVM
-ffast-math Supported Allows aggressive, lossy floating-point optimizations
-ffile-prefix-map= <value> Supported Remaps file source paths in debug info and predefined preprocessor macros
-ffine-grained-bitfield-accesses Supported Uses separate accesses for consecutive bitfield runs with legal widths and alignments
-ffixed-form Supported Enables fixed-form format for Fortran
-ffixed-point Supported Enables fixed point types
-ffixed-r19 Unsupported Reserves the r19 register (Hexagon only)
-ffixed-r9 Unsupported Reserves the r9 register (ARM only)
-ffixed-x10 Unsupported Reserves the x10 register (AArch64/RISC-V only)
-ffixed-x11 Unsupported Reserves the x11 register (AArch64/RISC-V only)
-ffixed-x12 Unsupported Reserves the x12 register (AArch64/RISC-V only)
-ffixed-x13 Unsupported Reserves the x13 register (AArch64/RISC-V only)
-ffixed-x14 Unsupported Reserves the x14 register (AArch64/RISC-V only)

continues on next page

11.2. Compiler Reference Guide 97

ROCm Documentation, Release 5.0.1

Table 11.6 – continued from previous page
Option Support Status Description
-ffixed-x15 Unsupported Reserves the x15 register (AArch64/RISC-V only)
-ffixed-x16 Unsupported Reserves the x16 register (AArch64/RISC-V only)
-ffixed-x17 Unsupported Reserves the x17 register (AArch64/RISC-V only)
-ffixed-x18 Unsupported Reserves the x18 register (AArch64/RISC-V only)
-ffixed-x19 Unsupported Reserves the x19 register (AArch64/RISC-V only)
-ffixed-x1 Unsupported Reserves the x1 register (AArch64/RISC-V only)
-ffixed-x20 Unsupported Reserves the x20 register (AArch64/RISC-V only)
-ffixed-x21 Unsupported Reserves the x21 register (AArch64/RISC-V only)
-ffixed-x22 Unsupported Reserves the x22 register (AArch64/RISC-V only)
-ffixed-x23 Unsupported Reserves the x23 register (AArch64/RISC-V only)
-ffixed-x24 Unsupported Reserves the x24 register (AArch64/RISC-V only)
-ffixed-x25 Unsupported Reserves the x25 register (AArch64/RISC-V only)
-ffixed-x26 Unsupported Reserves the x26 register (AArch64/RISC-V only)
-ffixed-x27 Unsupported Reserves the x27 register (AArch64/RISC-V only)
-ffixed-x28 Unsupported Reserves the x28 register (AArch64/RISC-V only)
-ffixed-x29 Unsupported Reserves the x29 register (AArch64/RISC-V only)
-ffixed-x2 Unsupported Reserves the x2 register (AArch64/RISC-V only)
-ffixed-x30 Unsupported Reserves the x30 register (AArch64/RISC-V only)
-ffixed-x31 Unsupported Reserves the x31 register (AArch64/RISC-V only)
-ffixed-x3 Unsupported Reserves the x3 register (AArch64/RISC-V only)
-ffixed-x4 Unsupported Reserves the x4 register (AArch64/RISC-V only)
-ffixed-x5 Unsupported Reserves the x5 register (AArch64/RISC-V only)
-ffixed-x6 Unsupported Reserves the x6 register (AArch64/RISC-V only)
-ffixed-x7 Unsupported Reserves the x7 register (AArch64/RISC-V only)
-ffixed-x8 Unsupported Reserves the x8 register (AArch64/RISC-V only)
-ffixed-x9 Unsupported Reserves the x9 register (AArch64/RISC-V only)
-fforce-dwarf-frame Supported Mandatorily emits a debug frame section
-fforce-emit-vtables Supported Emits more virtual tables to improve devirtualization
-fforce-enable-int128 Supported Enables support for int128_t type
-ffp-contract= <value> Supported Forms fused FP ops (e.g. FMAs): fast (everywhere) \ on (according to FP_CONTRACT pragma) \ off (never fuse). Default is “fast” for CUDA/HIP and “on” for others.
-ffp-exception-behavior= <value> Supported Specifies the exception behavior of floating-point operations
-ffp-model= <value> Supported Controls the semantics of floating-point calculations
-ffree-form Supported Enables free-form format for Fortran
-ffreestanding Supported Asserts the compilation to take place in a freestanding environment
-ffunc-args-alias Supported Allows the function arguments aliases (equivalent to ansi alias)
-ffunction-sections Supported Places each function in its section
-fglobal-isel Supported Enables the global instruction selector
-fgnu-keywords Supported Allows GNU-extension keywords regardless of a language standard
-fgnu-runtime Unsupported Generates output compatible with the standard GNU Objective-C runtime
-fgnu89-inline Unsupported Uses the gnu89 inline semantics
-fgnuc-version= <value> Supported Sets various macros to claim compatibility with the given GCC version (default is 4.2.1)
-fgpu-allow-device-init Supported Allows device-side init function in HIP
-fgpu-rdc Supported Generates relocatable device code, also known as separate compilation mode
-fhip-new-launch-api Supported Uses new kernel launching API for HIP
-fignore-exceptions Supported Enables support for ignoring exception handling constructs
-fimplicit-module-maps Unsupported Implicitly searches the file system for module map files
-finline-functions Supported Inlines suitable functions
-finline-hint-functions Supported Inlines functions that are (explicitly or implicitly) marked inline
-finstrument-function-entry-bare Unsupported Allows instrument function entry only after inlining, without arguments to the instrumentation call
-finstrument-functions-after-inlining Unsupported Similar to -finstrument-functions option but inserts the calls after inlining

continues on next page

98 Chapter 11. Compilers and Tools

ROCm Documentation, Release 5.0.1

Table 11.6 – continued from previous page
Option Support Status Description
-finstrument-functions Unsupported Generates calls to instrument function entry and exit
-fintegrated-as Supported Enables the integrated assembler
-fintegrated-cc1 Supported Runs cc1 in-process
-fjump-tables Supported Uses jump tables for lowering switches
-fkeep-static-consts Supported Keeps static const variables if unused
-flax-vector-conversions= <value> Supported Enables implicit vector bit-casts
-flto-jobs= <value> Unsupported Controls the backend parallelism of -flto=thin (A default value of 0 means the number of threads will be derived from the number of CPUs detected.)
-flto= <value> Unsupported Sets LTO mode to either “full” or “thin”
-flto Unsupported Enables LTO in “full” mode
-fmacro-prefix-map= <value> Supported Remaps file source paths in predefined preprocessor macros
-fmath-errno Supported Requires math functions to indicate errors by setting errno
-fmax-tokens= <value> Supported Specifies max total number of preprocessed tokens for -Wmax-tokens
-fmax-type-align= <value> Supported Specifies the maximum alignment to enforce on pointers lacking an explicit alignment
-fmemory-profile Supported Enables heap memory profiling
-fmerge-all-constants Supported Allows merging of constants
-fmessage-length= <value> Supported Formats message diagnostics to fit within N columns
-fmodule-file=[<name>=] <file> Unsupported Specifies the mapping of module name to precompiled module file. Loads a module file if name is omitted
-fmodule-map-file= <file> Unsupported Loads the specified module map file
-fmodule-name= <name> Unsupported Specifies the name of the module to build
-fmodules-cache-path= <directory> Unsupported Specifies the module cache path
-fmodules-decluse Unsupported Asserts declaration of modules used within a module
-fmodules-disable-diagnostic-validation Unsupported Disables validation of the diagnostic options when loading the module
-fmodules-ignore-macro= <value> Unsupported Ignores the definition of the specified macro when building and loading modules
-fmodules-prune-after= <seconds> Unsupported Specifies the interval (in seconds) after which a module file is to be considered unused
-fmodules-prune-interval= <seconds> Unsupported Specifies the interval (in seconds) between attempts to prune the module cache
-fmodules-search-all Unsupported Searches even non-imported modules to resolve references
-fmodules-strict-decluse Unsupported Similar to -fmodules-decluse option but requires all headers to be in the modules
-fmodules-ts Unsupported Enables support for the C++ Modules TS
-fmodules-user-build-path <directory> Unsupported Specifies the module user build path
-fmodules-validate-input-files-content Supported Validates PCM input files based on content if mtime differs
-fmodules-validate-once-per-build-session Unsupported Prohibits verification of input files for the modules if the module has been successfully validated or loaded during the current build session
-fmodules-validate-system-headers Supported Validates the system headers that a module depends on when loading the module
-fmodules Unsupported Enables the “modules” language feature
-fms-compatibility-version= <value> Supported Specifies the dot-separated value representing the Microsoft compiler version number to report in _MSC_VER (0 = do not define it (default))
-fms-compatibility Supported Enables full Microsoft Visual C++ compatibility
-fms-extensions Supported Accepts some non-standard constructs supported by the Microsoft compiler
-fmsc-version= <value> Supported Specifies the Microsoft compiler version number to report in _MSC_VER (0 = do not define it (default))
-fnew-alignment= <align> Supported Specifies the largest alignment guaranteed by “::operator new(size_t)”
-fno-addrsig Supported Prohibits emitting an address-significance table
-fno-allow-fortran-gnu-ext Supported Allows Fortran GNU extensions
-fno-assume-sane-operator-new Supported Prohibits the assumption that C++’s global operator new cannot alias any pointer
-fno-autolink Supported Disables generation of linker directives for automatic library linking
-fno-backslash Supported Allows treatment of backslash like any other character in character strings
-fno-builtin- <value> Supported Disables implicit built-in knowledge of a specific function
-fno-builtin Supported Disables implicit built-in knowledge of functions
-fno-c+±static-destructors Supported Disables C++ static destructor registration
-fno-char8_t Supported Disables C++ built-in type char8_t
-fno-color-diagnostics Supported Disables colors in diagnostics
-fno-common Supported Compiles common globals like normal definitions
-fno-complete-member-pointers Supported Eliminates the requirement for the member pointer base types to be complete if they would be significant under the Microsoft ABI

continues on next page

11.2. Compiler Reference Guide 99

ROCm Documentation, Release 5.0.1

Table 11.6 – continued from previous page
Option Support Status Description
-fno-constant-cfstrings Supported Disables creation of CodeFoundation-type constant strings
-fno-coverage-mapping Supported Disables code coverage analysis
-fno-crash-diagnostics Supported Disables auto-generation of preprocessed source files and a script for reproduction during a Clang crash
-fno-cuda-approx-transcendentals Unsupported Eliminates the usage of approximate transcendental functions
-fno-debug-macro Supported Prohibits emitting the macro debug information
-fno-declspec Unsupported Disallows declspec as a keyword
-fno-delayed-template-parsing Supported Disables delayed template parsing
-fno-delete-null-pointer-checks Supported Prohibits the treatment of null pointers as undefined behavior
-fno-diagnostics-fixit-info Supported Prohibits including fixit information in diagnostics
-fno-digraphs Supported Disallows alternative token representations “ <:’, ‘:>’, ‘ <%’, ‘%>’, ‘%:’, ‘%:%:”
-fno-discard-value-names Supported Prohibits discarding value names in LLVM IR
-fno-dollars-in-identifiers Supported Disallows ‘$’ in identifiers
-fno-double-square-bracket-attributes Supported Disables ‘[[]]’ attributes in all C and C++ language modes
-fno-elide-constructors Supported Disables C++ copy constructor elision
-fno-elide-type Supported Prohibits eliding types when printing diagnostics
-fno-eliminate-unused-debug-types Supported Emits debug info for defined but unused types
-fno-exceptions Supported Disables support for exception handling
-fno-experimental-new-pass-manager Supported Disables an experimental new pass manager in LLVM
-fno-experimental-relative-c+±abi-vtables Supported Prohibits using the experimental C++ class ABI for classes with virtual tables
-fno-fine-grained-bitfield-accesses Supported Allows using large-integer access for consecutive bitfield runs
-fno-fixed-form Supported Disables fixed-form format for Fortran
-fno-fixed-point Supported Disables fixed point types
-fno-force-enable-int128 Supported Disables support for int128_t type
-fno-fortran-main Supported Prohibits linking in Fortran main
-fno-free-form Supported Disables free-form format for Fortran
-fno-func-args-alias Supported Allows the function argument alias (equivalent to ansi alias)
-fno-global-isel Supported Disables the global instruction selector
-fno-gnu-inline-asm Supported Disables GNU style inline asm
-fno-gpu-allow-device-init Supported Disallows device-side init function in HIP
-fno-hip-new-launch-api Supported Disallows new kernel launching API for HIP
-fno-integrated-as Supported Disables the integrated assembler
-fno-integrated-cc1 Supported Spawns a separate process for each cc1
-fno-jump-tables Supported Disallows jump tables for lowering switches
-fno-keep-static-consts Supported Prohibits keeping static const variables if unused
-fno-lto Supported Disables LTO mode (default)
-fno-memory-profile Supported Disables heap memory profiling
-fno-merge-all-constants Supported Disallows merging of constants
-fno-no-access-control Supported Disables C++ access control
-fno-objc-infer-related-result-type Supported Prohibits inferring Objective-C related result type based on the method family
-fno-operator-names Supported Disallows treatment of C++ operator name keywords as synonyms for operators
-fno-pch-codegen Supported Disallows code-generation for uses of the PCH that assumes building an explicit object file for the PCH
-fno-pch-debuginfo Supported Prohibits generation of debug info for types in an object file built from this PCH or elsewhere
-fno-plt Supported Asserts usage of GOT indirection instead of PLT to make external function calls (x86 only)
-fno-preserve-as-comments Supported Prohibits preserving comments in inline assembly
-fno-profile-generate Supported Disables generation of profile instrumentation
-fno-profile-instr-generate Supported Disables generation of profile instrumentation
-fno-profile-instr-use Supported Disables usage of instrumentation data for profile-guided optimization
-fno-register-global-dtors-with-atexit Supported Disallows usage of atexit or __cxa_atexit to register global destructors
-fno-rtlib-add-rpath Supported Prohibits adding -rpath with architecture-specific resource directory to the linker flags
-fno-rtti-data Supported Disables generation of RTTI data

continues on next page

100 Chapter 11. Compilers and Tools

ROCm Documentation, Release 5.0.1

Table 11.6 – continued from previous page
Option Support Status Description
-fno-rtti Supported Disables generation of rtti information
-fno-sanitize-address-poison-custom-array-cookie Supported on Host only Disables poisoning of array cookies when using custom operator new[] in AddressSanitizer
-fno-sanitize-address-use-after-scope Supported on Host only Disables use-after-scope detection in AddressSanitizer
-fno-sanitize-address-use-odr-indicator Supported on Host only Disables ODR indicator globals
-fno-sanitize-blacklist Supported on Host only Prohibits using blacklist file for sanitizers
-fno-sanitize-cfi-canonical-jump-tables Supported on Host only Prohibits making the jump table addresses canonical in the symbol table
-fno-sanitize-cfi-cross-dso Supported on Host only Disables control flow integrity (CFI) checks for cross-DSO calls
-fno-sanitize-coverage= <value> Supported on Host only Disables specified features of coverage instrumentation for Sanitizers
-fno-sanitize-memory-track-origins Supported on Host only Disables origins tracking in MemorySanitizer
-fno-sanitize-memory-use-after-dtor Supported on Host only Disables use-after-destroy detection in MemorySanitizer
-fno-sanitize-recover= <value> Supported on Host only Disables recovery for specified sanitizers
-fno-sanitize-stats Supported on Host only Disables sanitizer statistics gathering
-fno-sanitize-thread-atomics Supported on Host only Disables atomic operations instrumentation in ThreadSanitizer
-fno-sanitize-thread-func-entry-exit Supported on Host only Disables function entry/exit instrumentation in ThreadSanitizer
-fno-sanitize-thread-memory-access Supported on Host only Disables memory access instrumentation in ThreadSanitizer
-fno-sanitize-trap= <value> Supported on Host only Disables trapping for specified sanitizers
-fno-sanitize-trap Supported on Host only Disables trapping for all sanitizers
-fno-short-wchar Supported Forces wchar_t to be an unsigned int
-fno-show-column Supported Prohibits including column number on diagnostics
-fno-show-source-location Supported Prohibits including source location information with diagnostics
-fno-signed-char Supported char is unsigned
-fno-signed-zeros Supported Allows optimizations that ignore the sign of floating point zeros
-fno-spell-checking Supported Disables spell-check
-fno-split-machine-functions Supported Disables late function splitting using profile information (x86 ELF)
-fno-stack-clash-protection Supported Disables stack clash protection
-fno-stack-protector Supported Disables the use of stack protectors
-fno-standalone-debug Supported Limits debug information produced to reduce size of debug binary
-fno-strict-float-cast-overflow Supported Relaxes language rules and tries to match the behavior of the target’s native float-to-int conversion instructions
-fno-strict-return Supported Prohibits treating the control flow paths that fall off the end of a non-void function as unreachable
-fno-sycl Unsupported Disables SYCL kernels compilation for device
-fno-temp-file Supported Asserts direct creation of compilation output files. This may lead to incorrect incremental builds if the compiler crashes.
-fno-threadsafe-statics Supported Prohibits emitting code to make initialization of local statics thread safe
-fno-trigraphs Supported Prohibits processing trigraph sequences
-fno-unique-section-names Supported Prohibits the usage of unique names for text and data sections
-fno-unroll-loops Supported Turns off the loop unroller
-fno-use-cxa-atexit Supported Prohibits the usage of __cxa_atexit for calling destructors
-fno-use-flang-math-libs Supported Asserts the usage of Flang internal runtime math library instead of LLVM math intrinsics
-fno-use-init-array Supported Asserts the usage of .ctors/.dtors instead of .init_array/.fini_array
-fno-visibility-inlines-hidden-static-local-var Supported Disables -fvisibility-inlines-hidden-static-local-var (This is the default on non-darwin targets.)
-fno-xray-function-index Unsupported Allows omitting function index section at the expense of single-function patching performance
-fno-zero-initialized-in-bss Supported Prohibits placing zero initialized data in BSS
-fobjc-arc-exceptions Unsupported Asserts using EH-safe code when synthesizing retains and releases in -fobjc-arc
-fobjc-arc Unsupported Synthesizes retain and release calls for Objective-C pointers
-fobjc-exceptions Unsupported Enables Objective-C exceptions
-fobjc-runtime= <value> Unsupported Specifies the target Objective-C runtime kind and version
-fobjc-weak Unsupported Enables ARC-style weak references in Objective-C
-fopenmp-simd Unsupported Emits OpenMP code only for SIMD-based constructs
-fopenmp-targets= <value> Unsupported Specifies a comma-separated list of triples OpenMP offloading targets to be supported
-fopenmp Unsupported Parses OpenMP pragmas and generates parallel code
-foptimization-record-file= <file> Supported Specifies the output name of the file containing the optimization remarks. Implies -fsave-optimization-record. On Darwin platforms, this cannot be used with multiple -arch <arch> options.

continues on next page

11.2. Compiler Reference Guide 101

ROCm Documentation, Release 5.0.1

Table 11.6 – continued from previous page
Option Support Status Description
-foptimization-record-passes= <regex> Supported Exclusively allows the inclusion of passes that match a specified regular expression in the generated optimization record (By default, include all passes.)
-forder-file-instrumentation Supported Generates instrumented code to collect order file into default.profraw file (overridden by ‘=’ form of option or LLVM_PROFILE_FILE env var)
-fpack-struct= <value> Unsupported Specifies the default maximum struct packing alignment
-fpascal-strings Supported Recognizes and constructs Pascal-style string literals
-fpass-plugin= <dsopath> Supported Loads pass plugin from a dynamic shared object file (only with new pass manager)
-fpatchable-function-entry= <N,M> Supported Generates M NOPs before function entry and N-M NOPs after function entry
-fpcc-struct-return Unsupported Overrides the default ABI to return all structs on the stack
-fpch-codegen Supported Generates code for using this PCH that assumes building an explicit object file for the PCH
-fpch-debuginfo Supported Generates debug info for types exclusively in an object file built from this PCH
-fpch-instantiate-templates Supported Instantiates templates already while building a PCH
-fpch-validate-input-files-content Supported Validates PCH input files based on the content if mtime differs
-fplugin= <dsopath> Supported Loads the named plugin (dynamic shared object)
-fprebuilt-module-path= <directory> Unsupported Specifies the prebuilt module path
-fprofile-exclude-files= <value> Unsupported Exclusively instruments those functions from files where names do not match all the regexes separated by a semicolon
-fprofile-filter-files= <value> Unsupported Exclusively instruments those functions from files where names match any regex separated by a semicolon
-fprofile-generate= <directory> Unsupported Generates instrumented code to collect execution counts into <directory>/default.profraw (overridden by LLVM_PROFILE_FILE env var)
-fprofile-generate Unsupported Generates instrumented code to collect execution counts into default.profraw (overridden by LLVM_PROFILE_FILE env var)
-fprofile-instr-generate= <file> Unsupported Generates instrumented code to collect execution counts into <file> (overridden by LLVM_PROFILE_FILE env var)
-fprofile-instr-generate Unsupported Generates instrumented code to collect execution counts into default.profraw file (overridden by ‘=’ form of option or LLVM_PROFILE_FILE env var)
-fprofile-instr-use= <value> Unsupported Uses instrumentation data for profile-guided optimization
-fprofile-remapping-file= <file> Unsupported Uses the remappings described in <file> to match the profile data against the names in the program
-fprofile-sample-accurate Unsupported Specifies that the sample profile is accurate
-fprofile-sample-use= <value> Unsupported Enables sample-based profile-guided optimizations
-fprofile-use= <pathname> Unsupported Uses instrumentation data for profile-guided optimization. If pathname is a directory, it reads from <pathname>/default.profdata. Otherwise, it reads from file <pathname>.
-freciprocal-math Supported Allows division operations to be reassociated
-freg-struct-return Unsupported Overrides the default ABI to return small structs in registers
-fregister-global-dtors-with-atexit Supported Uses atexit or __cxa_atexit to register global destructors
-frelaxed-template-template-args Supported Enables C++17 relaxed template argument matching
-freroll-loops Supported Turns on loop reroller
-fropi Unsupported Generates read-only position independent code (ARM only)
-frtlib-add-rpath Supported Adds -rpath with architecture-specific resource directory to the linker flags
-frwpi Unsupported Generates read-write position-independent code (ARM only)
-fsanitize-address-field-padding= <value> Supported on Host only Specifies the level of field padding for AddressSanitizer
-fsanitize-address-globals-dead-stripping Supported on Host only Enables linker dead stripping of globals in AddressSanitizer
-fsanitize-address-poison-custom-array-cookie Supported on Host only Enables poisoning of array cookies when using custom operator new[] in AddressSanitizer
-fsanitize-address-use-after-scope Supported on Host only Enables use-after-scope detection in AddressSanitizer
-fsanitize-address-use-odr-indicator Supported on Host only Enables ODR indicator globals to avoid false ODR violation reports in partially sanitized programs at the cost of an increase in binary size
-fsanitize-blacklist= <value> Supported on Host only Specifies the path to blacklisted files for sanitizers
-fsanitize-cfi-canonical-jump-tables Supported on Host only Makes the jump table addresses canonical in the symbol table
-fsanitize-cfi-cross-dso Supported on Host only Enables control flow integrity (CFI) checks for cross-DSO calls
-fsanitize-cfi-icall-generalize-pointers Supported on Host only Generalizes pointers in CFI indirect call type signature checks
-fsanitize-coverage-allowlist= <value> Supported on Host only Restricts sanitizer coverage instrumentation exclusively to modules and functions that match the provided special case list, except the blocked ones
-fsanitize-coverage-blacklist= <value> Supported on Host only Deprecated; use -fsanitize-coverage-blocklist= instead.
-fsanitize-coverage-blocklist= <value> Supported on Host only Disables sanitizer coverage instrumentation for modules and functions that match the provided special case list, even the allowed ones
-fsanitize-coverage-whitelist= <value> Supported on Host only Deprecated; use -fsanitize-coverage-allowlist= instead.
-fsanitize-coverage= <value> Supported on Host only Specifies the type of coverage instrumentation for Sanitizers
-fsanitize-hwaddress-abi= <value> Supported on Host only Selects the HWAddressSanitizer ABI to target (interceptor or platform, default interceptor). This option is currently unused.
-fsanitize-memory-track-origins= <value> Supported on Host only Enables origins tracking in MemorySanitizer
-fsanitize-memory-track-origins Supported on Host only Enables origins tracking in MemorySanitizer
-fsanitize-memory-use-after-dtor Supported on Host only Enables use-after-destroy detection in MemorySanitizer

continues on next page

102 Chapter 11. Compilers and Tools

ROCm Documentation, Release 5.0.1

Table 11.6 – continued from previous page
Option Support Status Description
-fsanitize-recover= <value> Supported on Host only Enables recovery for specified sanitizers
-fsanitize-stats Supported on Host only Enables sanitizer statistics gathering
-fsanitize-system-blacklist= <value> Supported on Host only Specifies the path to system blacklist files for sanitizers
-fsanitize-thread-atomics Supported on Host only Enables atomic operations instrumentation in ThreadSanitizer (default)
-fsanitize-thread-func-entry-exit Supported on Host only Enables function entry/exit instrumentation in ThreadSanitizer (default)
-fsanitize-thread-memory-access Supported on Host only Enables memory access instrumentation in ThreadSanitizer (default)
-fsanitize-trap= <value> Supported on Host only Enables trapping for specified sanitizers
-fsanitize-trap Supported on Host only Enables trapping for all sanitizers
-fsanitize-undefined-strip-path-components= <number> Supported on Host only Strips (or keeps only, if negative) the given number of path components when emitting check metadata
-fsanitize= <check> Supported on Host only Turns on runtime checks for various forms of undefined or suspicious behavior. See user manual for available checks.
-fsave-optimization-record= <format> Supported Generates an optimization record file in the specified format
-fsave-optimization-record Supported Generates a YAML optimization record file
-fseh-exceptions Supported Uses SEH style exceptions
-fshort-enums Supported Allocates to an enum type only as many bytes as it needs for the declared range of possible values
-fshort-wchar Unsupported Forces wchar_t to be a short unsigned int
-fshow-overloads= <value> Supported Specifies which overload candidates are shown when overload resolution fails. Values = best\all; default value = “all”
-fsigned-char Supported Asserts that the char is signed
-fsized-deallocation Supported Enables C++14 sized global deallocation functions
-fsjlj-exceptions Supported Uses SjLj style exceptions
-fslp-vectorize Supported Enables the superword-level parallelism vectorization passes
-fsplit-dwarf-inlining Unsupported Provides minimal debug info in the object/executable to facilitate online symbolication/stack traces in the absence of .dwo/.dwp files when using Split DWARF
-fsplit-lto-unit Unsupported Enables splitting of the LTO unit
-fsplit-machine-functions Supported Enables late function splitting using profile information (x86 ELF)
-fstack-clash-protection Supported Enables stack clash protection
-fstack-protector-all Unsupported Enables stack protectors for all functions
-fstack-protector-strong Unsupported Enables stack protectors for some functions vulnerable to stack smashing. Compared to -fstack-protector, this uses a stronger heuristic that includes functions containing arrays of any size (and any type), as well as any calls to allocate or the taking of an address from a local variable.
-fstack-protector Unsupported Enables stack protectors for some functions vulnerable to stack smashing. This uses a loose heuristic that considers the functions to be vulnerable if they contain a char (or 8bit integer) array or constant-size calls to alloca, which are of greater size than ssp-buffer-size (default: 8 bytes). All variable-size calls to alloca are considered vulnerable. A function with a stack protector has a guard value added to the stack frame that is checked on function exit. The guard value must be positioned in the stack frame such that a buffer overflow from a vulnerable variable will overwrite the guard value before overwriting the function’s return address. The reference stack guard value is stored in a global variable.
-fstack-size-section Supported Emits section containing metadata on function stack sizes
-fstandalone-debug Supported Emits full debug info for all types used by the program
-fstrict-enums Supported Enables optimizations based on the strict definition of an enum’s value range
-fstrict-float-cast-overflow Supported Assumes the overflowing float-to-int casts to be undefined (default)
-fstrict-vtable-pointers Supported Enables optimizations based on the strict rules for overwriting polymorphic C++ objects
-fsycl Unsupported Enables SYCL kernels compilation for device
-fsystem-module u Builds this module as a system module. Only used with -emit-module
-fthin-link-bitcode= <value> Supported Writes minimized bitcode to <file> for the ThinLTO thin link only
-fthinlto-index= <value> Unsupported Performs ThinLTO import using the provided function summary index
-ftime-trace-granularity= <value> Supported Specifies the minimum time granularity (in microseconds) traced by time profiler
-ftime-trace Supported Turns on time profiler. Generates JSON file based on output filename
-ftrap-function= <value> Unsupported Issues call to specified function rather than a trap instruction
-ftrapv-handler= <function name> Unsupported Specifies the function to be called on overflow
-ftrapv Unsupported Traps on integer overflow
-ftrigraphs Supported Processes trigraph sequences
-ftrivial-auto-var-init-stop-after= <value> Supported Stops initializing trivial automatic stack variables after the specified number of instances
-ftrivial-auto-var-init= <value> Supported Initializes trivial automatic stack variables. Values: uninitialized (default) / pattern
-funique-basic-block-section-names Supported Uses unique names for basic block sections (ELF only)
-funique-internal-linkage-names Supported Makes the Internal Linkage Symbol names unique by appending the MD5 hash of the module path
-funroll-loops Supported Turns on loop unroller
-fuse-flang-math-libs Supported Uses Flang internal runtime math library instead of LLVM math intrinsics
-fuse-line-directives Supported Uses #line in preprocessed output
-fvalidate-ast-input-files-content Supported Computes and stores the hash of input files used to build an AST. Files with mismatching mtimes are considered valid if both have identical contents.

continues on next page

11.2. Compiler Reference Guide 103

ROCm Documentation, Release 5.0.1

Table 11.6 – continued from previous page
Option Support Status Description
-fveclib= <value> Unsupported Uses the given vector functions library
-fvectorize Unsupported Enables the loop vectorization passes
-fverbose-asm Supported Generates verbose assembly output
-fvirtual-function-elimination Supported Enables dead virtual function elimination optimization. Requires -flto=full
-fvisibility-global-new-delete-hidden Supported Marks the visibility of global C++ operators “new” and “delete” as hidden
-fvisibility-inlines-hidden-static-local-var Supported Marks the visibility of static variables in inline C++ member functions as hidden by default when -fvisibility-inlines-hidden is enabled
-fvisibility-inlines-hidden Supported Marks the visibility of inline C++ member functions as hidden by default
-fvisibility-ms-compat Supported Marks the visibility of global types as default and global functions and variables as hidden by default
-fvisibility= <value> Supported Sets the default symbol visibility for all global declarations to the specified value
-fwasm-exceptions Unsupported Uses WebAssembly style exceptions
-fwhole-program-vtables Unsupported Enables whole program vtable optimization. Requires -flto
-fwrapv Supported Treats signed integer overflow as two’s complement
-fwritable-strings Supported Stores string literals as writable data
-fxray-always-emit-customevents Unsupported Mandates emitting __xray_customevent(. . .) calls even if the containing function is not always instrumented
-fxray-always-emit-typedevents Unsupported Mandates emitting __xray_typedevent(. . .) calls even if the containing function is not always instrumented
-fxray-always-instrument= <value> Unsupported Deprecated: Specifies the filename defining the whitelist for imbuing the “always instrument” XRay attribute
-fxray-attr-list= <value> Unsupported Specifies the filename defining the list of functions/types for imbuing XRay attributes
-fxray-ignore-loops Unsupported Prohibits instrumenting functions with loops unless they also meet the minimum function size
-fxray-instruction-threshold= <value> Unsupported Sets the minimum function size to instrument with Xray
-fxray-instrumentation-bundle= <value> Unsupported Specifies which XRay instrumentation points to emit. Values: all/ none/ function-entry/ function-exit/ function/ custom. Default is “all,” and “function” includes both “function-entry” and “function-exit.”
-fxray-instrument Unsupported Generates XRay instrumentation sleds on function entry and exit
-fxray-link-deps Unsupported Informs Clang to add the link dependencies for XRay
-fxray-modes= <value> Unsupported Specifies the list of modes to link in by default into the XRay instrumented binaries
-fxray-never-instrument= <value> Unsupported Deprecated: Specifies the filename defining the whitelist for imbuing the “never instrument” XRay attribute
-fzvector Supported Enables System z vector language extension
-F <value> Unsupported Adds directory to the framework include search path
–gcc-toolchain= <value> Supported Uses the gcc toolchain at the given directory
-gcodeview-ghash Supported Emits type record hashes in a .debug$H section
-gcodeview Supported Generates code view debug information
-gdwarf-2 Supported Generates source-level debug information with dwarf version 2
-gdwarf-3 Supported Generates source-level debug information with dwarf version 3
-gdwarf-4 Supported Generates source-level debug information with dwarf version 4
-gdwarf-5 Supported Generates source-level debug information with dwarf version 5
-gdwarf Supported Generates source-level debug information with the default DWARF version
-gembed-source Supported Embeds source text in DWARF debug sections
-gline-directives-only Supported Emits debug line info directives only.
-gline-tables-only Supported Emits debug line number tables only.
-gmodules Supported Generates debug info with external references to clang modules or precompiled headers
-gno-embed-source Supported Restores the default behavior of not embedding the source text in DWARF debug sections
-gno-inline-line-tables Supported Prohibits emitting inline line tables
–gpu-max-threads-per-block= <value> Supported Specifies the default max threads per block for kernel launch bounds for HIP
-gsplit-dwarf= <value> Supported Sets DWARF fission mode to values: “split”/ “single”
-gz= <value> Supported Specifies DWARF debug section’s compression type
-gz Supported Shows DWARF debug section”s compression type
-G <size> Unsupported Puts objects of maximum <size> bytes into small data section (MIPS / Hexagon)
-g Supported Generates source-level debug information
–help-hidden Supported Displays help for hidden options
-help Supported Displays available options
–hip-device-lib= <value> Supported Specifies the HIP device library
–hip-link Supported Links clang-offload-bundler bundles for HIP

continues on next page

104 Chapter 11. Compilers and Tools

ROCm Documentation, Release 5.0.1

Table 11.6 – continued from previous page
Option Support Status Description
–hip-version= <value> Supported Allows specification of HIP version in the format: major/minor/patch
-H Supported Shows header “includes” and nesting depth
-I- Supported Restricts all prior -I flags to double-quoted inclusion and removes the current directory from include path
-ibuiltininc Supported Enables built-in #include directories even when -nostdinc is used before or after -ibuiltininc. Using -nobuiltininc after the option disables it
-idirafter <value> Supported Adds the directory to AFTER include search path
-iframeworkwithsysroot <directory> Unsupported Adds the directory to SYSTEM framework search path; absolute paths are relative to -isysroot
-iframework <value> Unsupported Adds the directory to SYSTEM framework search path
-imacros <file> Supported Specifies the file containing macros to be included before parsing
-include-pch <file> Supported Includes the specified precompiled header file
-include <file> Supported Includes the specified file before parsing
-index-header-map Supported Makes the next included directory (-I or -F) an indexer header map
-iprefix <dir> Supported Sets the -iwithprefix/-iwithprefixbefore prefix
-iquote <directory> Supported Adds the directory to QUOTE include search path
-isysroot <dir> Supported Sets the system root directory (usually /)
-isystem-after <directory> Supported Adds the directory to end of the SYSTEM include search path
-isystem <directory> Supported Adds the directory to SYSTEM include search path
-ivfsoverlay <value> Supported Overlays the virtual filesystem described by the specified file over the real file system
-iwithprefixbefore <dir> Supported Sets the directory to include search path with prefix
-iwithprefix <dir> Supported Sets the directory to SYSTEM include search path with prefix
-iwithsysroot <directory> Supported Adds directory to SYSTEM include search path; absolute paths are relative to -isysroot
-I <dir> Supported Adds directory to include search path. If there are multiple -I options, these directories are searched in the order they are given before the standard system directories are searched. If the same directory is in the SYSTEM include search paths, for example, if also specified with -isystem, the -I option is ignored.
–libomptarget-nvptx-path= <value> Unsupported Specifies path to libomptarget-nvptx libraries
-L <dir> Supported Adds directory to library search path
-mabicalls Unsupported Enables SVR4-style position-independent code (Mips only)
-maix-struct-return Unsupported Returns all structs in memory (PPC32 only)
-malign-branch-boundary= <value> Supported Specifies the boundary’s size to align branches
-malign-branch= <value> Supported Specifies the types of branches to align
-malign-double Supported Aligns doubles to two words in structs (x86 only)
-Mallocatable= <value> Unsupported Provides semantics for assignments to allocatables. Value: F03/ F95.
-mbackchain Unsupported Links stack frames through backchain on System Z
-mbranch-protection= <value> Unsupported Enforces targets of indirect branches and function returns
-mbranches-within-32B-boundaries Supported Aligns selected branches (fused, jcc, jmp) within 32-byte boundary
-mcmodel=medany Unsupported Equivalent to -mcmodel=medium, compatible with RISC-V gcc
-mcmodel=medlow Unsupported Equivalent to -mcmodel=small, compatible with RISC-V gcc
-mcmse Unsupported Allows use of CMSE (Armv8-M Security Extensions)
-mcode-object-v3 Supported Legacy option to specify code object ABI V2 (-mnocode-object-v3) or V3 (-mcode-object-v3) (AMDGPU only)
-mcode-object-version= <version> Supported Specifies code object ABI version. Default value: 4. (AMDGPU only).
-mcrc Unsupported Allows use of CRC instructions (ARM/Mips only)
-mcumode Supported Specifies CU (-mcumode) or WGP (-mno-cumode) wavefront execution mode (AMDGPU only)
-mdouble= <value> Supported Forces double to be 32 bits or 64 bits
-MD Supported Writes a depfile containing user and system headers
-meabi <value> Supported Sets EABI type. Value: 4/ 5/ gnu. Default depends on triple
-membedded-data Unsupported Places constants in the .rodata section instead of the .sdata section even if they meet the -G <size> threshold (MIPS)
-menable-experimental-extensions Unsupported Enables usage of experimental RISC-V extensions.
-mexec-model= <value> Unsupported Specifies the execution model (WebAssembly only)
-mexecute-only Unsupported Disallows generation of data access to code sections (ARM only)
-mextern-sdata Unsupported Assumes externally defined data to be in the small data if it meets the -G <size> threshold (MIPS)
-mfentry Unsupported Inserts calls to fentry at function entry (x86/SystemZ only)
-mfix-cortex-a53-835769 Unsupported Workaround Cortex-A53 erratum 835769 (AArch64 only)
0 Unsupported Asserts usage of 32-bit floating point registers (MIPS only)

continues on next page

11.2. Compiler Reference Guide 105

ROCm Documentation, Release 5.0.1

Table 11.6 – continued from previous page
Option Support Status Description
0 Unsupported Asserts usage of 64-bit floating point registers (MIPS only)
-MF <file> Supported Writes depfile output from -MMD, -MD, -MM, or -M to <file>
-mgeneral-regs-only Unsupported Generates code that exclusively uses the general-purpose registers (AArch64 only)
-mglobal-merge Supported Enables merging of globals
-mgpopt Unsupported Allows using GP relative accesses for symbols known to be in a small data section (MIPS)
-MG Supported Adds missing headers to depfile
-mharden-sls= <value> Unsupported Sets straight-line speculation hardening scope
-mhvx-length= <value> Unsupported Sets Hexagon Vector Length
-mhvx= <value> Unsupported Sets Hexagon Vector eXtensions
-mhvx Unsupported Enables Hexagon Vector eXtensions
-miamcu Unsupported Allows using Intel MCU ABI
–migrate Unsupported Runs the migrator
-mincremental-linker-compatible Supported (integrated-as) Emits an object file that can be used with an incremental linker
-mindirect-jump= <value> Unsupported Changes indirect jump instructions to inhibit speculation
-Minform= <value> Supported Sets error level of messages to display
-mios-version-min= <value> Unsupported Sets iOS deployment target
-MJ <value> Unsupported Writes a compilation database entry per input
-mllvm <value> Supported Specifies additional arguments to forward to LLVM’s option processing
-mlocal-sdata Unsupported Extends the -G behavior to object local data (MIPS)
-mlong-calls Supported Generates branches with extended addressability, usually via indirect jumps
-mlong-double-128 Supported on Host only Forces long double to be 128 bits
-mlong-double-64 Supported Forces long double to be 64 bits
-mlong-double-80 Supported on Host only Forces long double to be 80 bits, padded to 128 bits for storage
-mlvi-cfi Supported on Host only Enables only control-flow mitigations for Load Value Injection (LVI)
-mlvi-hardening Supported on Host only Enables all mitigations for Load Value Injection (LVI)
-mmacosx-version-min= <value> Unsupported Sets Mac OS X deployment target
-mmadd4 Supported Enables the generation of 4-operand madd.s, madd.d, and related instructions
-mmark-bti-property Unsupported Adds .note.gnu.property with BTI to assembly files (AArch64 only)
-MMD Supported Writes a depfile containing user headers
-mmemops Supported Enables generation of memop instructions
-mms-bitfields Unsupported Sets the default structure layout to be compatible with the Microsoft compiler standard
-mmsa Unsupported Enables MSA ASE (MIPS only)
-mmt Unsupported Enables MT ASE (MIPS only)
-MM Supported Similar to -MMD but also implies -E and writes to stdout by default
-mno-abicalls Unsupported Disables SVR4-style position-independent code (Mips only)
-mno-crc Unsupported Disallows use of CRC instructions (MIPS only)
-mno-embedded-data Unsupported Prohibits placing constants in the .rodata section instead of the .sdata if they meet the -G <size> threshold (MIPS)
-mno-execute-only Unsupported Allows generation of data access to code sections (ARM only)
-mno-extern-sdata Unsupported Prohibits assuming the externally defined data to be in the small data if it meets the -G <size> threshold (MIPS)
-mno-fix-cortex-a53-835769 Unsupported Disallows workaround Cortex-A53 erratum 835769 (AArch64 only)
-mno-global-merge Supported Disables merging of globals
-mno-gpopt Unsupported Prohibits using GP relative accesses for symbols known to be in a small data section (MIPS)
-mno-hvx Unsupported Disables Hexagon Vector eXtensions.
-mno-implicit-float Supported Prohibits generating implicit floating-point instructions
-mno-incremental-linker-compatible Supported (integrated-as) Emits an object file that cannot be used with an incremental linker
-mno-local-sdata Unsupported Prohibits extending the -G behavior to object local data (MIPS)
-mno-long-calls Supported Restores the default behavior of not generating long calls
-mno-lvi-cfi Supported on Host only Disables control-flow mitigations for Load Value Injection (LVI)
-mno-lvi-hardening Supported on Host only Disables mitigations for Load Value Injection (LVI)
-mno-madd4 Supported Disables the generation of 4-operand madd.s, madd.d, and related instructions

continues on next page

106 Chapter 11. Compilers and Tools

ROCm Documentation, Release 5.0.1

Table 11.6 – continued from previous page
Option Support Status Description
-mno-memops Supported Disables the generation of memop instructions
-mno-movt Supported Disallows usage of movt/movw pairs (ARM only)
-mno-ms-bitfields Supported Prohibits setting the default structure layout to be compatible with the Microsoft compiler standard
-mno-msa Unsupported Disables MSA ASE (MIPS only)
-mno-mt Unsupported Disables MT ASE (MIPS only)
-mno-neg-immediates Supported Disallows converting instructions with negative immediates to their negation or inversion
-mno-nvj Supported Disables generation of new-value jumps
-mno-nvs Supported Disables generation of new-value stores
-mno-outline Unsupported Disables function outlining (AArch64 only)
-mno-packets Supported Disables generation of instruction packets
-mno-relax Supported Disables linker relaxation
-mno-restrict-it Unsupported Allows generation of deprecated IT blocks for ARMv8. It is off by default for ARMv8 Thumb mode
-mno-save-restore Unsupported Disables usage of library calls for save and restore
-mno-seses Unsupported Disables speculative execution side-effect suppression (SESES)
-mno-stack-arg-probe Supported Disables stack probes which are enabled by default
-mno-tls-direct-seg-refs Supported Disables direct TLS access through segment registers
-mno-unaligned-access Unsupported Forces all memory accesses to be aligned (AArch32/AArch64 only)
-mno-wavefrontsize64 Supported Asserts wavefront size to 32 (AMDGPU only)
-mnocrc Unsupported Disallows usage of CRC instructions (ARM only)
-mnop-mcount Supported Generates mcount/__fentry__ calls as nops. To activate, they need to be patched in
-mnvj Supported Enables generation of new-value jumps
-mnvs Supported Enables generation of new-value stores
-module-dependency-dir <value> Unsupported Specifies directory for dumping module dependencies
-module-file-info Unsupported Provides information about a particular module file
-momit-leaf-frame-pointer Supported Omits frame pointer setup for leaf functions
-moutline Unsupported Enables function outlining (AArch64 only)
-mpacked-stack Unsupported Asserts the usage of packed stack layout (SystemZ only)
-mpackets Supported Enables generation of instruction packets
-mpad-max-prefix-size= <value> Supported Specifies maximum number of prefixes to use for padding
-mpie-copy-relocations Supported Asserts the usage of copy relocations support for PIE builds
-mprefer-vector-width= <value> Unsupported Specifies preferred vector width for auto-vectorization. Default value: “none,” which allows target specific decisions.
-MP Supported Creates phony target for each dependency (other than the main file)
-mqdsp6-compat Unsupported Enables hexagon-qdsp6 backward compatibility
-MQ <value> Supported Specifies the name of the main file output to quote in depfile
-mrecord-mcount Supported Generates a __mcount_loc section entry for each fentry call
-mrelax-all Supported (integrated-as) Relaxes all machine instructions
-mrelax Supported Enables linker relaxation
-mrestrict-it Unsupported Disallows generation of deprecated IT blocks for ARMv8. It is on by default for ARMv8 Thumb mode.
-mrtd Unsupported Makes StdCall calling the default convention
-msave-restore Unsupported Enables using library calls for save and restore
-mseses Unsupported Enables speculative execution side effect suppression (SESES). Includes LVI control flow integrity mitigations.
-msign-return-address= <value> Unsupported Specifies the return address signing scope
-msmall-data-limit= <value> Supported Puts global and static data smaller than the specified limit into a special section
-msoft-float Supported Uses software floating point
-msram-ecc Supported Legacy option to specify SRAM ECC mode (AMDGPU only). Should use –offload-arch with sramecc+ instead.
-mstack-alignment= <value> Unsupported Sets the stack alignment
-mstack-arg-probe Unsupported Enables stack probes
-mstack-probe-size= <value> Unsupported Sets the stack probe size
-mstackrealign Unsupported Forces realign the stack at entry on every function
-msve-vector-bits= <value> Unsupported Specifies the size in bits of an SVE vector register. Defaults to the vector length agnostic value of “scalable” (AArch64 only).

continues on next page

11.2. Compiler Reference Guide 107

ROCm Documentation, Release 5.0.1

Table 11.6 – continued from previous page
Option Support Status Description
-msvr4-struct-return Unsupported Returns small structs in registers (PPC32 only)
-mthread-model <value> Supported Specifies the thread model to use. Value: posix/single. Default: posix.
-mtls-direct-seg-refs Supported Enables direct TLS access through segment registers (default)
-mtls-size= <value> Unsupported Specifies the bit size of immediate TLS offsets (AArch64 ELF only). Value: 12 (for 4KB) \ 24 (for 16MB, default) \ 32 (for 4GB) \ 48 (for 256TB, needs -mcmodel=large).
-mtp= <value> Unsupported Specifies the thread pointer access method. Value: AArch32/AArch64 only
-mtune= <value> Supported on Host only Supported on X86 only. Otherwise accepted for compatibility with GCC.
-MT <value> Unsupported Specifies the name of main file output in depfile
-munaligned-access Unsupported Allows memory accesses to be unaligned (AArch32/AArch64 only)
-MV Supported Uses NMake/Jom format for the depfile
-mwavefrontsize64 Supported Asserts wavefront size of 64 (AMDGPU only)
-mxnack Supported Legacy option to specify XNACK mode (AMDGPU only). Use –offload-arch with :xnack+ instead.
-M Supported Similar to -MD but also implies -E and writes to stdout by default
–no-cuda-include-ptx= <value> Supported Prohibits including PTX for the specified GPU architecture (e.g. sm_35) or “all”. May be specified more than once.
–no-cuda-version-check Supported Disallows erroring out if the detected version of the CUDA install is too low for the requested CUDA GPU architecture
-no-flang-libs Supported Prohibits linking against Flang libraries
–no-offload-arch= <value> Supported Removes CUDA/HIP offloading device architecture (e.g. sm_35, gfx906) from the list of devices to compile for. “all” resets the list to its default value
–no-system-header-prefix= <prefix> Supported Assumes no system header for all #include paths starting with the given <prefix>
-nobuiltininc Supported Disables built-in #include directories
-nogpuinc Supported Prohibits adding CUDA/HIP include paths and includes default CUDA/HIP wrapper header files
-nogpulib Supported Prohibits linking device library for CUDA/HIP device compilation
-nostdinc++ Unsupported Disables standard #include directories for the C++ standard library
-ObjC++ Unsupported Treats source input files as Objective-C++ inputs
-objcmt-atomic-property Unsupported Enables migration to “atomic” properties
-objcmt-migrate-all Unsupported Enables migration to modern ObjC
-objcmt-migrate-annotation Unsupported Enables migration to property and method annotations
-objcmt-migrate-designated-init Unsupported Enables migration to infer NS_DESIGNATED_INITIALIZER for initializer methods
-objcmt-migrate-instancetype Unsupported Enables migration to infer instancetype for method result type
-objcmt-migrate-literals Unsupported Enables migration to modern ObjC literals
-objcmt-migrate-ns-macros Unsupported Enables migration to NS_ENUM/NS_OPTIONS macros
-objcmt-migrate-property-dot-syntax Unsupported Enables migration of setter/getter messages to property-dot syntax
-objcmt-migrate-property Unsupported Enables migration to modern ObjC property
-objcmt-migrate-protocol-conformance Unsupported Enables migration to add protocol conformance on classes
-objcmt-migrate-readonly-property Unsupported Enables migration to modern ObjC readonly property
-objcmt-migrate-readwrite-property Unsupported Enables migration to modern ObjC readwrite property
-objcmt-migrate-subscripting Unsupported Enables migration to modern ObjC subscripting
-objcmt-ns-nonatomic-iosonly Unsupported Enables migration to use NS_NONATOMIC_IOSONLY macro for setting property’s “atomic” attribute
-objcmt-returns-innerpointer-property Unsupported Enables migration to annotate property with NS_RETURNS_INNER_POINTER
-objcmt-whitelist-dir-path= <value> Unsupported Modifies exclusively the files with the filename present in the given directory
-ObjC Unsupported Treats source input files as Objective-C inputs
–offload-arch= <value> Supported Specifies CUDA offloading device architecture (e.g. sm_35), or HIP offloading target ID in the form of a device architecture followed by target ID features delimited by a colon. Each target ID feature is a predefined string followed by a plus or minus sign (e.g. gfx908:xnack+:sramecc-). May be specified more than once.
-o <file> Supported Writes output to the given <file>
-parallel-jobs= <value> Supported Specifies the number of parallel jobs allowed
-pg Supported Enables mcount instrumentation
-pipe Supported Asserts using pipes between commands, when possible.
–precompile Supported Only precompiles the input
-print-effective-triple Supported Prints the effective target triple
-print-file-name= <file> Supported Prints the full library path of the given <file>
-print-ivar-layout Unsupported Enables Objective-C Ivar layout bitmap print trace
-print-libgcc-file-name Supported “Prints the library path for the currently used compiler runtime library (“”libgcc.a”” or “”libclang_rt.builtins.*.a””)”
-print-prog-name= <name> Supported Prints the full program path of the given <name>

continues on next page

108 Chapter 11. Compilers and Tools

ROCm Documentation, Release 5.0.1

Table 11.6 – continued from previous page
Option Support Status Description
-print-resource-dir Supported Prints the resource directory pathname
-print-search-dirs Supported Prints the paths used for finding libraries and programs
-print-supported-cpus Supported Prints the supported CPU models for the given target. If target is not specified, it prints the supported CPUs for the default target.
-print-target-triple Supported Prints the normalized target triple
-print-targets Supported Prints the registered targets
-pthread Supported Supports POSIX threads in the generated code
–ptxas-path= <value> Unsupported Specifies the path to ptxas (used for compiling CUDA code)
-P Supported Disables linemarker output in -E mode
-Qn Supported Prohibits emitting metadata containing compiler name and version
-Qunused-arguments Supported Prohibits emitting warning for unused driver arguments
-Qy Supported Emits metadata containing compiler name and version
-relocatable-pch Supported Allows to build a relocatable precompiled header
-rewrite-legacy-objc Unsupported Rewrites Legacy Objective-C source to C++
-rewrite-objc Unsupported Rewrites Objective-C source to C++
–rocm-device-lib-path= <value> Supported Specifies ROCm device library path. Alternative to rocm-path
–rocm-path= <value> Supported Specifies ROCm installation path that is used for finding and automatically linking required bitcode libraries
-Rpass-analysis= <value> Supported Reports transformation analysis by optimization passes whose names match the given POSIX regular expression
-Rpass-missed= <value> Supported Reports missed transformations by optimization passes whose names match the given POSIX regular expression
-Rpass= <value> Supported Reports transformations by optimization passes whose names match the given POSIX regular expression
-rtlib= <value> Unsupported Specifies the compiler runtime library to be used
-R <remark> Unsupported Enables the specified remark
-save-stats= <value> Supported Saves llvm statistics
-save-stats Supported Saves llvm statistics
-save-temps= <value> Supported Saves intermediate compilation results
-save-temps Supported Saves intermediate compilation results
-serialize-diagnostics= <value> Supported Serializes compiler diagnostics to the specified file
-shared-libsan Unsupported Dynamically links the sanitizer runtime
-static-flang-libs Supported Asserts linking using static Flang libraries
-static-libsan Unsupported Statically links the sanitizer runtime
-static-openmp Supported Asserts using the static host OpenMP runtime while linking
-std= <value> Supported Specifies the language standard to compile for.
-stdlib+±isystem <directory> Supported Specifies the directory to be used as the C++ standard library include path
-stdlib= <value> Supported Specifies the C++ standard library to be used
-sycl-std= <value> Unsupported Specifies the SYCL language standard to compile for
–system-header-prefix= <prefix> Supported Assumes all #include paths starting with the given <prefix> to include a system header
-S Supported Runs only preprocess and compilation steps
–target= <value> Supported Generates code for the given target
-Tbss <addr> Supported Sets the starting address of BSS to the given <addr>
-Tdata <addr> Supported Sets the starting address of DATA to the given <addr>
-time Supported Times individual commands
-traditional-cpp Unsupported Enables some traditional CPP emulation
-trigraphs Supported Processes trigraph sequences
-Ttext <addr> Supported Sets starting address of TEXT to the given <addr>
-T \ <script\> Unsupported Specifies the given. \ <script\> as linker script
-undef Supported undefs all system defines
-unwindlib= <value> Supported Specifies the unwind library to be used
-U <macro> Supported Undefines the given <macro>
–verify-debug-info Supported Verifies the binary representation of the debug output
-verify-pch Unsupported Loads and verifies if a precompiled header file is stale
–version Supported Prints version information

continues on next page

11.2. Compiler Reference Guide 109

ROCm Documentation, Release 5.0.1

Table 11.6 – continued from previous page
Option Support Status Description
-v Supported Shows commands to be run, and uses verbose output
-Wa, <arg> Supported Passes the comma-separated arguments in the given <arg> to the assembler
-Wdeprecated Supported Enables warnings for deprecated constructs and defines_DEPRECATED
-Wl, <arg> Supported Passes comma-separated arguments in <arg> to the linker.
-working-directory <value> Supported Resolves file paths relative to the specified directory
-Wp, <arg> Supported Passes comma-separated arguments in <arg> to the preprocessor
-W <warning> Supported Enables the specified warning
-w Supported Suppresses all warnings
-Xanalyzer <arg> Supported Passes <arg> to the static analyzer
-Xarch_device <arg> Supported Passes <arg> to the CUDA/HIP device compilation
-Xarch_host <arg> Supported Passes <arg> to the CUDA/HIP host compilation
-Xassembler <arg> Supported Passes <arg> to the assembler
-Xclang <arg> Supported Passes <arg> to the clang compiler
-Xcuda-fatbinary <arg> Supported Passes <arg> to fatbinary invocation
-Xcuda-ptxas <arg> Supported Passes <arg> to the ptxas assembler
-Xlinker <arg> Supported Passes <arg> to the linker
-Xopenmp-target= <triple> <arg> Supported Passes <arg> to the target offloading toolchain identified by <triple>
-Xopenmp-target <arg> Supported Passes <arg> to the target offloading toolchain
-Xpreprocessor <arg> Supported Passes <arg> to the preprocessor
-x <language> Supported Assumes subsequent input files to have the given type <language>
-z <arg> Supported Passes -z <arg> to the linker

110 Chapter 11. Compilers and Tools

CHAPTER

TWELVE

HIP

HIP is both AMD’s GPU programming language extension and the GPU runtime. This page introduces the HIP runtime
and other HIP libraries and tools.

12.1 HIP Runtime

HIP Runtime The HIP Runtime is used to enable GPU acceleration for all HIP language based products.

• HIP Runtime API Reference

• Examples

12.2 Porting tools

HIPIFY HIPIFY assists with porting applications from based on CUDA to the HIP Runtime. Supported CUDA APIs
are documented here as well.

• Reference Manual

111

https://rocm.docs.amd.com/projects/HIP/en/docs-5.0.1/index.html
https://rocm.docs.amd.com/projects/HIP/en/docs-5.0.1/doxygen/html/index.html
https://github.com/amd/rocm-examples/tree/develop/HIP-Basic
https://rocm.docs.amd.com/projects/HIPIFY/en/docs-5.0.1/index.html
https://rocm.docs.amd.com/projects/HIPIFY/en/docs-5.0.1/index.html

ROCm Documentation, Release 5.0.1

112 Chapter 12. HIP

CHAPTER

THIRTEEN

OPENMP SUPPORT IN ROCM

13.1 Introduction

The ROCm™ installation includes an LLVM-based implementation that fully supports the OpenMP 4.5 standard and
a subset of OpenMP 5.0, 5.1, and 5.2 standards. Fortran, C/C++ compilers, and corresponding runtime libraries are
included. Along with host APIs, the OpenMP compilers support offloading code and data onto GPU devices. This
document briefly describes the installation location of the OpenMP toolchain, example usage of device offloading, and
usage of rocprof with OpenMP applications. The GPUs supported are the same as those supported by this ROCm
release. See the list of supported GPUs in GPU and OS Support (Linux).

13.1.1 Installation

The OpenMP toolchain is automatically installed as part of the standard ROCm installation and is available under
/opt/rocm-{version}/llvm. The sub-directories are:

bin: Compilers (flang and clang) and other binaries.

• examples: The usage section below shows how to compile and run these programs.

• include: Header files.

• lib: Libraries including those required for target offload.

• lib-debug: Debug versions of the above libraries.

13.2 OpenMP: Usage

The example programs can be compiled and run by pointing the environment variable ROCM_PATH to the ROCm install
directory.

Example:

export ROCM_PATH=/opt/rocm-{version}
cd $ROCM_PATH/share/openmp-extras/examples/openmp/veccopy
sudo make run

Note: sudo is required since we are building inside the /opt directory. Alternatively, copy the files to your home
directory first.

113

ROCm Documentation, Release 5.0.1

The above invocation of Make compiles and runs the program. Note the options that are required for target offload
from an OpenMP program:

-fopenmp --offload-arch=<gpu-arch>

Note: The Makefile in the example above uses a more classical and verbose set of flags which can also be used:

-fopenmp -fopenmp-targets=amdgcn-amd-amdhsa -Xopenmp-target=amdgcn-amd-amdhsa

Obtain the value of gpu-arch by running the following command:

% /opt/rocm-{version}/bin/rocminfo | grep gfx

See the complete list of compiler command-line references here.

13.2.1 Using rocprof with OpenMP

The following steps describe a typical workflow for using rocprof with OpenMP code compiled with AOMP:

1. Run rocprof with the program command line:

% rocprof <application> <args>

This produces a results.csv file in the user’s current directory that shows basic stats such as kernel names,
grid size, number of registers used, etc. The user can choose to specify the preferred output file name using the
o option.

2. Add options for a detailed result:

--stats: % rocprof --stats <application> <args>

The stats option produces timestamps for the kernels. Look into the output CSV file for the field, DurationNs,
which is useful in getting an understanding of the critical kernels in the code.

Apart from --stats, the option --timestamp on produces a timestamp for the kernels.

3. After learning about the required kernels, the user can take a detailed look at each one of them. rocprof has
support for hardware counters: a set of basic and a set of derived ones. See the complete list of counters using
options –list-basic and –list-derived. rocprof accepts either a text or an XML file as an input.

For more details on rocprof, refer to the ROCm Profiling Tools document on rocprof.

13.2.2 Using Tracing Options

Prerequisite: When using the --sys-trace option, compile the OpenMP program with:

-Wl,-rpath,/opt/rocm-{version}/lib -lamdhip64

The following tracing options are widely used to generate useful information:

• --hsa-trace: This option is used to get a JSON output file with the HSA API execution traces and a flat profile
in a CSV file.

• --sys-trace: This allows programmers to trace both HIP and HSA calls. Since this option results in loading
libamdhip64.so, follow the prerequisite as mentioned above.

114 Chapter 13. OpenMP Support in ROCm

https://github.com/RadeonOpenCompute/llvm-project/blob/amd-stg-open/clang/docs/CommandGuide/clang.rst
https://rocm.docs.amd.com/projects/rocprofiler/en/docs-5.0.1/rocprof.html

ROCm Documentation, Release 5.0.1

A CSV and a JSON file are produced by the above trace options. The CSV file presents the data in a tabular format, and
the JSON file can be visualized using Google Chrome at chrome://tracing/ or Perfetto. Navigate to Chrome or Perfetto
and load the JSON file to see the timeline of the HSA calls.

For more details on tracing, refer to the ROCm Profiling Tools document on rocprof.

13.2.3 Environment Variables

Envi-
ron-
ment
Variable

Description

OMP_NUM_TEAMSThe implementation chooses the number of teams for kernel launch. The user can change this number
for performance tuning using this environment variable, subject to implementation limits.

LIBOMPTARGET_KERNEL_TRACEThis environment variable is used to print useful statistics for device operations. Setting it to 1 and
running the program emits the name of every kernel launched, the number of teams and threads used,
and the corresponding register usage. Setting it to 2 additionally emits timing information for kernel
launches and data transfer operations between the host and the device.

LIBOMPTARGET_INFOThis environment variable is used to print informational messages from the device runtime as the pro-
gram executes. Users can request fine-grain information by setting it to the value of 1 or higher and can
set the value of -1 for complete information.

LIBOMPTARGET_DEBUGIf a debug version of the device library is present, setting this environment variable to 1 and using that
library emits further detailed debugging information about data transfer operations and kernel launch.

GPU_MAX_HW_QUEUESThis environment variable is used to set the number of HSA queues in the OpenMP runtime.

13.3 OpenMP: Features

The OpenMP programming model is greatly enhanced with the following new features implemented in the past releases.

13.3.1 Unified Shared Memory

Unified Shared Memory (USM) provides a pointer-based approach to memory management. To implement USM,
fulfill the following system requirements along with Xnack capability.

13.3.1.1 Prerequisites

• Linux Kernel versions above 5.14

• Latest KFD driver packaged in ROCm stack

• Xnack, as USM support can only be tested with applications compiled with Xnack capability

13.3. OpenMP: Features 115

https://perfetto.dev/
https://rocm.docs.amd.com/projects/rocprofiler/en/docs-5.0.1/rocprof.html

ROCm Documentation, Release 5.0.1

13.3.1.2 Xnack Capability

When enabled, Xnack capability allows GPU threads to access CPU (system) memory, allocated with OS-allocators,
such as malloc, new, and mmap. Xnack must be enabled both at compile- and run-time. To enable Xnack support at
compile-time, the programmer should use

--offload-arch=gfx908:xnack+

Or, equivalently

--offload-arch=gfx908

Note: The second case is called Xnack-any and it is functionally equivalent to the first case.

At runtime, programmers enable Xnack functionality on a per-application basis using an environment variable:

HSA_XNACK=1

When Xnack support is not needed, then applications can be built to maximize resource utilization using:

--offload-arch=gfx908:xnack-

At runtime, the HSA_XNACK environment variable can be set to 0, as Xnack functionality is not needed.

13.3.1.3 Unified Shared Memory Pragma

This OpenMP pragma is available on MI200 through xnack+ support.

omp requires unified_shared_memory

As stated in the OpenMP specifications, this pragma makes the map clause on target constructs optional. By default,
on MI200, all memory allocated on the host is fine grain. Using the map clause on a target clause is allowed, which
transforms the access semantics of the associated memory to coarse grain.

A simple program demonstrating the use of this feature is:
$ cat parallel_for.cpp
#include <stdlib.h>
#include <stdio.h>

#define N 64
#pragma omp requires unified_shared_memory
int main() {
int n = N;
int *a = new int[n];
int *b = new int[n];

for(int i = 0; i < n; i++)
b[i] = i;

#pragma omp target parallel for map(to:b[:n])
for(int i = 0; i < n; i++)
a[i] = b[i];

(continues on next page)

116 Chapter 13. OpenMP Support in ROCm

ROCm Documentation, Release 5.0.1

(continued from previous page)

for(int i = 0; i < n; i++)
if(a[i] != i)
printf("error at %d: expected %d, got %d\n", i, i+1, a[i]);

return 0;
}
$ clang++ -O2 -target x86_64-pc-linux-gnu -fopenmp --offload-arch=gfx90a:xnack+ parallel_
→˓for.cpp
$ HSA_XNACK=1 ./a.out

In the above code example, pointer “a” is not mapped in the target region, while pointer “b” is. Both are valid pointers
on the GPU device and passed by-value to the kernel implementing the target region. This means the pointer values on
the host and the device are the same.

The difference between the memory pages pointed to by these two variables is that the pages pointed by “a” are in
fine-grain memory, while the pages pointed to by “b” are in coarse-grain memory during and after the execution of the
target region. This is accomplished in the OpenMP runtime library with calls to the ROCR runtime to set the pages
pointed by “b” as coarse grain.

13.3.2 OMPT Target Support

The OpenMP runtime in ROCm implements a subset of the OMPT device APIs, as described in the OpenMP specifi-
cation document. These APIs allow first-party tools to examine the profile and kernel traces that execute on a device.
A tool can register callbacks for data transfer and kernel dispatch entry points or use APIs to start and stop tracing for
device-related activities such as data transfer and kernel dispatch timings and associated metadata. If device tracing is
enabled, trace records for device activities are collected during program execution and returned to the tool using the
APIs described in the specification.

The following example demonstrates how a tool uses the supported OMPT target APIs. The README in /opt/rocm/
llvm/examples/tools/ompt outlines the steps to be followed, and the provided example can be run as shown below:

cd $ROCM_PATH/share/openmp-extras/examples/tools/ompt/veccopy-ompt-target-tracing
sudo make run

The file veccopy-ompt-target-tracing.c simulates how a tool initiates device activity tracing. The file
callbacks.h shows the callbacks registered and implemented by the tool.

13.3.3 Floating Point Atomic Operations

The MI200-series GPUs support the generation of hardware floating-point atomics using the OpenMP atomic pragma.
The support includes single- and double-precision floating-point atomic operations. The programmer must ensure that
the memory subjected to the atomic operation is in coarse-grain memory by mapping it explicitly with the help of map
clauses when not implicitly mapped by the compiler as per the OpenMP specifications. This makes these hardware
floating-point atomic instructions “fast,” as they are faster than using a default compare-and-swap loop scheme, but at
the same time “unsafe,” as they are not supported on fine-grain memory. The operation in unified_shared_memory
mode also requires programmers to map the memory explicitly when not implicitly mapped by the compiler.

To request fast floating-point atomic instructions at the file level, use compiler flag -munsafe-fp-atomics or a hint
clause on a specific pragma:

13.3. OpenMP: Features 117

https://www.openmp.org/specifications/

ROCm Documentation, Release 5.0.1

double a = 0.0;
#pragma omp atomic hint(AMD_fast_fp_atomics)
a = a + 1.0;

NOTE AMD_unsafe_fp_atomics is an alias for AMD_fast_fp_atomics, and AMD_safe_fp_atomics is imple-
mented with a compare-and-swap loop.

To disable the generation of fast floating-point atomic instructions at the file level, build using the option
-msafe-fp-atomics or use a hint clause on a specific pragma:

double a = 0.0;
#pragma omp atomic hint(AMD_safe_fp_atomics)
a = a + 1.0;

The hint clause value always has a precedence over the compiler flag, which allows programmers to create atomic
constructs with a different behavior than the rest of the file.

See the example below, where the user builds the program using -msafe-fp-atomics to select a file-wide “safe
atomic” compilation. However, the fast atomics hint clause over variable “a” takes precedence and operates on “a”
using a fast/unsafe floating-point atomic, while the variable “b” in the absence of a hint clause is operated upon using
safe floating-point atomics as per the compiler flag.

double a = 0.0;.
#pragma omp atomic hint(AMD_fast_fp_atomics)
a = a + 1.0;

double b = 0.0;
#pragma omp atomic
b = b + 1.0;

13.3.4 Address Sanitizer (ASan) Tool

Address Sanitizer is a memory error detector tool utilized by applications to detect various errors ranging from spatial
issues such as out-of-bound access to temporal issues such as use-after-free. The AOMP compiler supports ASan for
AMD GPUs with applications written in both HIP and OpenMP.

Features Supported on Host Platform (Target x86_64):

• Use-after-free

• Buffer overflows

• Heap buffer overflow

• Stack buffer overflow

• Global buffer overflow

• Use-after-return

• Use-after-scope

• Initialization order bugs

Features Supported on AMDGPU Platform (amdgcn-amd-amdhsa):

• Heap buffer overflow

• Global buffer overflow

118 Chapter 13. OpenMP Support in ROCm

ROCm Documentation, Release 5.0.1

Software (Kernel/OS) Requirements: Unified Shared Memory support with Xnack capability. See the section on
Unified Shared Memory for prerequisites and details on Xnack.

Example:

• Heap buffer overflow

void main() {
....... // Some program statements
....... // Some program statements
#pragma omp target map(to : A[0:N], B[0:N]) map(from: C[0:N])
{
#pragma omp parallel for

for(int i =0 ; i < N; i++){
C[i+10] = A[i] + B[i];

} // end of for loop
}
....... // Some program statements
}// end of main

See the complete sample code for heap buffer overflow here.

• Global buffer overflow

#pragma omp declare target
int A[N],B[N],C[N];

#pragma omp end declare target
void main(){
...... // some program statements
...... // some program statements
#pragma omp target data map(to:A[0:N],B[0:N]) map(from: C[0:N])
{
#pragma omp target update to(A,B)
#pragma omp target parallel for
for(int i=0; i<N; i++){

C[i]=A[i*100]+B[i+22];
} // end of for loop
#pragma omp target update from(C)
}
........ // some program statements
} // end of main

See the complete sample code for global buffer overflow here.

13.3.5 No-loop Kernel Generation

The No-loop kernel generation feature optimizes the compiler performance by generating a specialized kernel for certain
OpenMP Target Constructs such as target teams distribute parallel for. The specialized kernel generation assumes that
every thread executes a single iteration of the user loop, which implies that the runtime launches a total number of GPU
threads equal to or greater than the iteration space size of the target region loop. This allows the compiler to generate
code for the loop body without an enclosing loop, resulting in reduced control-flow complexity and potentially better
performance.

To enable the generation of the specialized kernel, follow these guidelines:

13.3. OpenMP: Features 119

https://github.com/ROCm-Developer-Tools/aomp/blob/aomp-dev/examples/tools/asan/heap_buffer_overflow/openmp/vecadd-HBO.cpp
https://github.com/ROCm-Developer-Tools/aomp/blob/aomp-dev/examples/tools/asan/global_buffer_overflow/openmp/vecadd-GBO.cpp

ROCm Documentation, Release 5.0.1

• Do not specify teams, threads, and schedule-related environment variables. The num_teams or a thread_limit
clause in an OpenMP target construct acts as an override and prevents the generation of the specialized kernel.
As the user is unable to specify the number of teams and threads used within target regions in the absence of
the above-mentioned environment variables, the runtime will select the best values for the launch configuration
based on runtime knowledge of the program.

• Assert the absence of the above-mentioned environment variables by adding the command-line option
-fopenmp-target-ignore-env-vars. This option also allows programmers to enable the No-loop function-
ality at lower optimization levels.

• Also, the No-loop functionality is automatically enabled when -O3 or -Ofast is used for compilation. To disable
this feature, use -fno-openmp-target-ignore-env-vars.

Note The compiler might not generate the No-loop kernel in certain scenarios where the performance improvement is
not substantial.

13.3.6 Cross-Team Optimized Reductions

In scenarios where a No-loop kernel is generated but the OpenMP construct has a reduction clause, the compiler may
generate optimized code utilizing efficient Cross-Team (Xteam) communication. No separate user option is required,
and there is a significant performance improvement with Xteam reduction. New APIs for Xteam reduction are imple-
mented in the device runtime, and clang generates these APIs automatically.

120 Chapter 13. OpenMP Support in ROCm

CHAPTER

FOURTEEN

MATH LIBRARIES

AMD provides various math domain and support libraries as part of the ROCm.

14.1 rocLIB vs. hipLIB

Several libraries are prefixed with either “roc” or “hip”. The rocLIB variants (such as rocRAND, rocBLAS) are tested
and optimized for AMD hardware using supported toolchains. The hipLIB variants (such as hipRAND, hipBLAS) are
compatibility layers that provide an interface akin to their cuLIB (such as cuRAND, cuBLAS) variants while performing
static dispatching of API calls to the appropriate vendor libraries as their back-ends. Due to their static dispatch nature,
support for either vendor is decided at compile-time of the hipLIB in question. For dynamic dispatch between vendor
implementations, refer to the Orochi library.

Linear Algebra Libraries

• rocBLAS

• hipBLAS

• hipBLASLt

• rocALUTION

• rocSOLVER

• hipSOLVER

• rocSPARSE

• hipSPARSE

Fast Fourier Transforms

• rocFFT

• hipFFT

Random Numbers

• rocRAND

• hipRAND

121

https://github.com/GPUOpen-LibrariesAndSDKs/Orochi
https://rocm.docs.amd.com/projects/rocBLAS/en/docs-5.0.1/index.html
https://rocm.docs.amd.com/projects/hipBLAS/en/docs-5.0.1/index.html
https://rocm.docs.amd.com/projects/rocALUTION/en/docs-5.0.1/index.html
https://rocm.docs.amd.com/projects/rocSOLVER/en/docs-5.0.1/index.html
https://rocm.docs.amd.com/projects/hipSOLVER/en/docs-5.0.1/index.html
https://rocm.docs.amd.com/projects/rocSPARSE/en/docs-5.0.1/index.html
https://rocm.docs.amd.com/projects/hipSPARSE/en/docs-5.0.1/index.html
https://rocm.docs.amd.com/projects/rocFFT/en/docs-5.0.1/index.html
https://rocm.docs.amd.com/projects/hipFFT/en/docs-5.0.1/index.html
https://rocm.docs.amd.com/projects/rocRAND/en/docs-5.0.1/index.html

ROCm Documentation, Release 5.0.1

14.2 Linear Algebra Libraries

ROCm libraries for linear algebra are as follows:

rocBLAS rocBLAS is an AMD GPU optimized library for BLAS (Basic Linear Algebra Subprograms).

• Documentation

• Changelog

• Examples

hipBLAS hipBLAS is a compatibility layer for GPU accelerated BLAS optimized for AMD GPUs via rocBLAS and
rocSOLVER. hipBLAS allows for a common interface for other GPU BLAS libraries.

• Documentation

• Changelog

hipBLASLt hipBLASLt is a library that provides general matrix-matrix operations with a flexible API and extends
functionalities beyond traditional BLAS library. hipBLASLt is exposed APIs in HIP programming language with an
underlying optimized generator as a back-end kernel provider.

• Documentation

• Changelog

rocALUTION rocALUTION is a sparse linear algebra library with focus on exploring fine-grained parallelism on top
of AMD’s ROCm runtime and toolchains, targeting modern CPU and GPU platforms.

• Documentation

• Changelog

rocSOLVER rocSOLVER provides a subset of LAPACK (Linear Algebra Package) functionality on the ROCm plat-
form.

• Documentation

• Changelog

hipSOLVER hipSOLVER is a LAPACK marshalling library supporting both rocSOLVER and cuSOLVER as backends
whilst exporting a unified interface.

• Documentation

• Changelog

rocSPARSE rocSPARSE is a library to provide BLAS for sparse computations.

• Documentation

• Changelog

hipSPARSE hipSPARSE is a marshalling library to provide sparse BLAS functionality, supporting both rocSPARSE
and cuSPARSE as backends.

• Documentation

• Changelog

122 Chapter 14. Math Libraries

https://rocm.docs.amd.com/projects/rocBLAS/en/docs-5.0.1/index.html
https://rocm.docs.amd.com/projects/rocBLAS/en/docs-5.0.1/index.html
https://github.com/ROCmSoftwarePlatform/rocBLAS/blob/develop/CHANGELOG.md
https://github.com/amd/rocm-examples/tree/develop/Libraries/rocBLAS
https://rocm.docs.amd.com/projects/hipBLAS/en/docs-5.0.1/index.html
https://rocm.docs.amd.com/projects/hipBLAS/en/docs-5.0.1/index.html
https://github.com/ROCmSoftwarePlatform/hipBLAS/blob/develop/CHANGELOG.md
https://github.com/ROCmSoftwarePlatform/hipBLASLt/blob/develop/CHANGELOG.md
https://rocm.docs.amd.com/projects/rocALUTION/en/docs-5.0.1/index.html
https://rocm.docs.amd.com/projects/rocALUTION/en/docs-5.0.1/index.html
https://github.com/ROCmSoftwarePlatform/rocALUTION/blob/develop/CHANGELOG.md
https://rocm.docs.amd.com/projects/rocSOLVER/en/docs-5.0.1/index.html
https://rocm.docs.amd.com/projects/rocSOLVER/en/docs-5.0.1/index.html
https://github.com/ROCmSoftwarePlatform/rocSOLVER/blob/develop/CHANGELOG.md
https://rocm.docs.amd.com/projects/hipSOLVER/en/docs-5.0.1/index.html
https://rocm.docs.amd.com/projects/hipSOLVER/en/docs-5.0.1/index.html
https://github.com/ROCmSoftwarePlatform/hipSOLVER/blob/develop/CHANGELOG.md
https://rocm.docs.amd.com/projects/rocSPARSE/en/docs-5.0.1/index.html
https://rocm.docs.amd.com/projects/rocSPARSE/en/docs-5.0.1/index.html
https://github.com/ROCmSoftwarePlatform/rocSOLVER/blob/develop/CHANGELOG.md
https://rocm.docs.amd.com/projects/hipSPARSE/en/docs-5.0.1/index.html
https://rocm.docs.amd.com/projects/hipSPARSE/en/docs-5.0.1/index.html
https://github.com/ROCmSoftwarePlatform/hipSOLVER/blob/develop/CHANGELOG.md

ROCm Documentation, Release 5.0.1

14.3 Fast Fourier Transforms

ROCm libraries for FFT are as follows:

rocFFT rocFFT is an AMD GPU optimized library for FFT.

• Documentation

• Changelog

hipFFT hipFFT is a compatibility layer for GPU accelerated FFT optimized for AMD GPUs using rocFFT. hipFFT
allows for a common interface for other non AMD GPU FFT libraries.

• Documentation

• Changelog

14.4 Random Numbers

rocRAND rocRAND is an AMD GPU optimized library for pseudo-random number generators (PRNG).

• Documentation

• Changelog

• Examples

hipRAND hipRAND is a compatibility layer for GPU accelerated pseudo-random number generation (PRNG) op-
timized for AMD GPUs using rocRAND. hipRAND allows for a common interface for other non AMD GPU PRNG
libraries.

• Documentation

• Changelog

14.3. Fast Fourier Transforms 123

https://rocm.docs.amd.com/projects/rocFFT/en/docs-5.0.1/index.html
https://rocm.docs.amd.com/projects/rocFFT/en/docs-5.0.1/index.html
https://github.com/ROCmSoftwarePlatform/rocFFT/blob/develop/CHANGELOG.md
https://rocm.docs.amd.com/projects/hipFFT/en/docs-5.0.1/index.html
https://rocm.docs.amd.com/projects/hipFFT/en/docs-5.0.1/index.html
https://github.com/ROCmSoftwarePlatform/hipFFT/blob/develop/CHANGELOG.md
https://rocm.docs.amd.com/projects/rocRAND/en/docs-5.0.1/index.html
https://rocm.docs.amd.com/projects/rocRAND/en/docs-5.0.1/index.html
https://github.com/ROCmSoftwarePlatform/rocRAND/blob/develop/CHANGELOG.md
https://github.com/amd/rocm-examples/tree/develop/Libraries/rocRAND
https://github.com/ROCmSoftwarePlatform/hipRAND/blob/develop/CHANGELOG.md

ROCm Documentation, Release 5.0.1

124 Chapter 14. Math Libraries

CHAPTER

FIFTEEN

C++ PRIMITIVE LIBRARIES

ROCm template libraries for algorithms are as follows:

rocPRIM rocPRIM is an AMD GPU optimized template library of algorithm primitives, like transforms, reductions,
scans, etc. It also serves as a common back-end for similar libraries found inside ROCm.

• Documentation

• Changelog

• Examples

rocThrust rocThrust is a template library of algorithm primitives with a Thrust-compatible interface. Their CPU
back-ends are identical, while the GPU back-end calls into rocPRIM.

• Documentation

• Changelog

• Examples

hipCUB hipCUB is a template library of algorithm primitives with a CUB-compatible interface. It’s back-end is
rocPRIM.

• Documentation

• Changelog

• Examples

125

https://rocm.docs.amd.com/projects/rocPRIM/en/docs-5.0.1/index.html
https://rocm.docs.amd.com/projects/rocPRIM/en/docs-5.0.1/index.html
https://github.com/ROCmSoftwarePlatform/rocPRIM/blob/develop/CHANGELOG.md
https://github.com/amd/rocm-examples/tree/develop/Libraries/rocPRIM
https://rocm.docs.amd.com/projects/rocThrust/en/docs-5.0.1/index.html
https://rocm.docs.amd.com/projects/rocThrust/en/docs-5.0.1/index.html
https://github.com/ROCmSoftwarePlatform/rocThrust/blob/develop/CHANGELOG.md
https://github.com/amd/rocm-examples/tree/develop/Libraries/rocThrust
https://rocm.docs.amd.com/projects/hipCUB/en/docs-5.0.1/index.html
https://rocm.docs.amd.com/projects/hipCUB/en/docs-5.0.1/index.html
https://github.com/ROCmSoftwarePlatform/hipCUB/blob/develop/CHANGELOG.md
https://github.com/amd/rocm-examples/tree/develop/Libraries/hipCUB

ROCm Documentation, Release 5.0.1

126 Chapter 15. C++ Primitive Libraries

CHAPTER

SIXTEEN

COMMUNICATION LIBRARIES

RCCL RCCL (pronounced “Rickle”) is a stand-alone library of standard collective communication routines for GPUs,
implementing all-reduce, all-gather, reduce, broadcast, reduce-scatter, gather, scatter, and all-to-all. The collective
operations are implemented using ring and tree algorithms and have been optimized for throughput and latency.

• Documentation

• Changelog

• Examples

127

https://rocm.docs.amd.com/projects/rccl/en/docs-5.0.1/index.html
https://rocm.docs.amd.com/projects/rccl/en/docs-5.0.1/index.html
https://github.com/ROCmSoftwarePlatform/rocFFT/blob/develop/CHANGELOG.md
https://github.com/ROCmSoftwarePlatform/rccl/tree/develop/tools

ROCm Documentation, Release 5.0.1

128 Chapter 16. Communication Libraries

CHAPTER

SEVENTEEN

AI LIBRARIES

MIOpen AMD’s library for high performance machine learning primitives.

• Documentation

Composable Kernel Composable Kernel: Performance Portable Programming Model for Machine Learning Tensor
Operators

• Documentation

129

https://rocm.docs.amd.com/projects/MIOpen/en/docs-5.0.1/index.html
https://rocm.docs.amd.com/projects/MIOpen/en/docs-5.0.1/index.html

ROCm Documentation, Release 5.0.1

130 Chapter 17. AI Libraries

CHAPTER

EIGHTEEN

COMPUTER VISION

MIVisionX MIVisionX toolkit is a set of comprehensive computer vision and machine intelligence libraries, utili-
ties, and applications bundled into a single toolkit. AMD MIVisionX also delivers a highly optimized open-source
implementation of the Khronos OpenVX™ and OpenVX™ Extensions.

• Documentation

rocAL The AMD ROCm Augmentation Library (rocAL) is designed to efficiently decode and process images and
videos from a variety of storage formats and modify them through a processing graph programmable by the user. rocAL
currently provides C API.

• Documentation

131

https://rocm.docs.amd.com/projects/MIVisionX/en/docs-5.0.1/README.html
https://rocm.docs.amd.com/projects/MIVisionX/en/docs-5.0.1/README.html

ROCm Documentation, Release 5.0.1

132 Chapter 18. Computer Vision

CHAPTER

NINETEEN

MANAGEMENT TOOLS

AMD SMI The AMD System Management Interface Library, or AMD SMI library, is a C library for Linux that
provides a user space interface for applications to monitor and control AMD devices.

• GitHub

• Examples

ROCm SMI This tool acts as a command line interface for manipulating and monitoring the AMD GPU kernel, and
is intended to replace and deprecate the existing rocm_smi.py CLI tool. It uses ctypes to call the rocm_smi_lib
API.

• Documentation

• GitHub

• Examples

ROCm Datacenter Tool The ROCm™ Data Center Tool simplifies the administration and addresses key infrastructure
challenges in AMD GPUs in cluster and data center environments.

• Documentation

• GitHub

• Examples

133

https://github.com/RadeonOpenCompute/amdsmi
https://github.com/amd/go_amd_smi#example
https://rocmdocs.amd.com/projects/rocm_smi_lib/en/latest/
https://rocmdocs.amd.com/projects/rocm_smi_lib/en/latest/
https://github.com/RadeonOpenCompute/rocm_smi_lib
https://github.com/RadeonOpenCompute/rocm_smi_lib/tree/master/python_smi_tools
https://rocm.docs.amd.com/projects/rdc/en/docs-5.0.1/index.html
https://rocm.docs.amd.com/projects/rdc/en/docs-5.0.1/index.html
https://github.com/RadeonOpenCompute/rdc
https://github.com/RadeonOpenCompute/rdc/tree/master/example

ROCm Documentation, Release 5.0.1

134 Chapter 19. Management Tools

CHAPTER

TWENTY

VALIDATION TOOLS

RVS The ROCm Validation Suite is a system administrator’s and cluster manager’s tool for detecting and troubleshoot-
ing common problems affecting AMD GPU(s) running in a high-performance computing environment, enabled using
the ROCm software stack on a compatible platform.

• Documentation

TransferBench TransferBench is a simple utility capable of benchmarking simultaneous transfers between user-
specified devices (CPUs/GPUs).

• Documentation

• Changelog

• transferbench:examples/index

135

https://rocm.docs.amd.com/projects/ROCmValidationSuite/en/docs-5.0.1/index.html
https://rocm.docs.amd.com/projects/ROCmValidationSuite/en/docs-5.0.1/index.html
https://github.com/ROCmSoftwarePlatform/TransferBench/blob/develop/CHANGELOG.md

ROCm Documentation, Release 5.0.1

136 Chapter 20. Validation Tools

CHAPTER

TWENTYONE

ALL EXPLANATION MATERIAL

Compiler Nomencalture ROCm ships multiple compilers of varying origins and purposes. This article disambiguates
compiler naming used throughout the documentation.

Using CMake ROCm components ship with 1st party CMake support. This article details how that support
works and how to use it.

Linux Folder Structure Reorganization ROCm™ packages have adopted the Linux foundation file system
hierarchy standard to ensure ROCm components follow open source conventions for Linux-based distributions.

GPU Isolation Techniques Restricting the access of applications to a subset of GPUs, aka isolating GPUs
allows users to hide GPU resources from programs.

GPU Architectures AMD documentation around architectural details from both the CDNA and RDNA
product lines.

137

ROCm Documentation, Release 5.0.1

138 Chapter 21. All Explanation Material

CHAPTER

TWENTYTWO

ROCM COMPILERS DISAMBIGUATION

ROCm ships multiple compilers of varying origins and purposes. This article disambiguates compiler naming used
throughout the documentation.

22.1 Compiler Terms

Term Description
amdclang++Clang/LLVM-based compiler that is part of rocm-llvm package. The source code is available at

https://github.com/RadeonOpenCompute/llvm-project.
AOCC Closed-source clang-based compiler that includes additional CPU optimizations. Offered as part of ROCm

via the rocm-llvm-alt package. See for details, https://developer.amd.com/amd-aocc/.
HIP-
Clang

Informal term for the amdclang++ compiler

HIP-
ify

Tools including hipify-clang and hipify-perl, used to automatically translate CUDA source code into
portable HIP C++. The source code is available at https://github.com/ROCm-Developer-Tools/HIPIFY

hipcc HIP compiler driver. A utility that invokes clang or nvcc depending on the target and passes the appropriate
include and library options for the target compiler and HIP infrastructure. The source code is available at
https://github.com/ROCm-Developer-Tools/HIPCC.

ROCmCCClang/LLVM-based compiler. ROCmCC in itself is not a binary but refers to the overall compiler.

139

ROCm Documentation, Release 5.0.1

140 Chapter 22. ROCm Compilers Disambiguation

CHAPTER

TWENTYTHREE

USING CMAKE

Most components in ROCm support CMake. Projects depending on header-only or library components typically require
CMake 3.5 or higher whereas those wanting to make use of CMake’s HIP language support will require CMake 3.21
or higher.

23.1 Finding Dependencies

Note: For a complete reference on how to deal with dependencies in CMake, refer to the CMake docs on find_package
and the Using Dependencies Guide to get an overview of CMake’s related facilities.

In short, CMake supports finding dependencies in two ways:

• In Module mode, it consults a file Find<PackageName>.cmake which tries to find the component in typical
install locations and layouts. CMake ships a few dozen such scripts, but users and projects may ship them as
well.

• In Config mode, it locates a file named <packagename>-config.cmake or <PackageName>Config.cmake
which describes the installed component in all regards needed to consume it.

ROCm predominantly relies on Config mode, one notable exception being the Module driving the compilation of HIP
programs on Nvidia runtimes. As such, when dependencies are not found in standard system locations, one either has
to instruct CMake to search for package config files in additional folders using the CMAKE_PREFIX_PATH variable (a
semi-colon separated list of filesystem paths), or using <PackageName>_ROOT variable on a project-specific basis.

There are nearly a dozen ways to set these variables. One may be more convenient over the other depending on your
workflow. Conceptually the simplest is adding it to your CMake configuration command on the command-line via -D
CMAKE_PREFIX_PATH=.... . AMD packaged ROCm installs can typically be added to the config file search paths
such as:

• Windows: -D CMAKE_PREFIX_PATH=${env:HIP_PATH}

• Linux: -D CMAKE_PREFIX_PATH=/opt/rocm

ROCm provides the respective config-file packages, and this enables find_package to be used directly. ROCm does
not require any Find module as the config-file packages are shipped with the upstream projects, such as rocPRIM and
other ROCm libraries.

For a complete guide on where and how ROCm may be installed on a system, refer to the installation guides in these
docs (Linux).

141

https://cmake.org/cmake/help/latest/command/find_package.html
https://cmake.org/cmake/help/latest/guide/using-dependencies/index.html
../deploy/linux/index.html

ROCm Documentation, Release 5.0.1

23.2 Using HIP in CMake

ROCm componenents providing a C/C++ interface support being consumed using any C/C++ toolchain that CMake
knows how to drive. ROCm also supports CMake’s HIP language features, allowing users to program using the HIP
single-source programming model. When a program (or translation-unit) uses the HIP API without compiling any
GPU device code, HIP can be treated in CMake as a simple C/C++ library.

23.2.1 Using the HIP single-source programming model

Source code written in the HIP dialect of C++ typically uses the .hip extension. When the HIP CMake language is
enabled, it will automatically associate such source files with the HIP toolchain being used.

cmake_minimum_required(VERSION 3.21) # HIP language support requires 3.21
cmake_policy(VERSION 3.21.3...3.27)
project(MyProj LANGUAGES HIP)
add_executable(MyApp Main.hip)

Should you have existing CUDA code that is from the source compatible subset of HIP, you can tell CMake that despite
their .cu extension, they’re HIP sources. Do note that this mostly facilitates compiling kernel code-only source files, as
host-side CUDA API won’t compile in this fashion.

add_library(MyLib MyLib.cu)
set_source_files_properties(MyLib.cu PROPERTIES LANGUAGE HIP)

CMake itself only hosts part of the HIP language support, such as defining HIP-specific properties, etc. while the other
half ships with the HIP implementation, such as ROCm. CMake will search for a file hip-lang-config.cmake describing
how the the properties defined by CMake translate to toolchain invocations. If one installs ROCm using non-standard
methods or layouts and CMake can’t locate this file or detect parts of the SDK, there’s a catch-all, last resort variable
consulted locating this file, -D CMAKE_HIP_COMPILER_ROCM_ROOT:PATH= which should be set the root of the ROCm
installation.

If the user doesn’t provide a semi-colon delimited list of device architectures via CMAKE_HIP_ARCHITECTURES, CMake
will select some sensible default. It is advised though that if a user knows what devices they wish to target, then set
this variable explicitly.

23.2.2 Consuming ROCm C/C++ Libraries

Libraries such as rocBLAS, rocFFT, MIOpen, etc. behave as C/C++ libraries. Illustrated in the example below is a
C++ application using MIOpen from CMake. It calls find_package(miopen), which provides the MIOpen imported
target. This can be linked with target_link_libraries

cmake_minimum_required(VERSION 3.5) # find_package(miopen) requires 3.5
cmake_policy(VERSION 3.5...3.27)
project(MyProj LANGUAGES CXX)
find_package(miopen)
add_library(MyLib ...)
target_link_libraries(MyLib PUBLIC MIOpen)

Note: Most libraries are designed as host-only API, so using a GPU device compiler is not necessary for downstream
projects unless they use GPU device code.

142 Chapter 23. Using CMake

ROCm Documentation, Release 5.0.1

23.2.3 Consuming the HIP API in C++ code

Use the HIP API without compiling the GPU device code. As there is no GPU code, any C or C++ compiler can be
used. The find_package(hip) provides the hip::host imported target to use HIP in this context.

cmake_minimum_required(VERSION 3.5) # find_package(hip) requires 3.5
cmake_policy(VERSION 3.5...3.27)
project(MyProj LANGUAGES CXX)
find_package(hip REQUIRED)
add_executable(MyApp ...)
target_link_libraries(MyApp PRIVATE hip::host)

23.2.4 Compiling device code in C++ language mode

Attention: The workflow detailed here is considered legacy and is shown for understanding’s sake. It pre-dates
the existence of HIP language support in CMake. If source code has HIP device code in it, it is a HIP source file and
should be compiled as such. Only resort to the method below if your HIP-enabled CMake codepath can’t mandate
CMake version 3.21.

If code uses the HIP API and compiles GPU device code, it requires using a device compiler. The compiler for CMake
can be set using either the CMAKE_C_COMPILER and CMAKE_CXX_COMPILER variable or using the CC and CXX environ-
ment variables. This can be set when configuring CMake or put into a CMake toolchain file. The device compiler must
be set to a compiler that supports AMD GPU targets, which is usually Clang.

The find_package(hip) provides the hip::device imported target to add all the flags necessary for device com-
pilation.

cmake_minimum_required(VERSION 3.8) # cxx_std_11 requires 3.8
cmake_policy(VERSION 3.8...3.27)
project(MyProj LANGUAGES CXX)
find_package(hip REQUIRED)
add_library(MyLib ...)
target_link_libraries(MyLib PRIVATE hip::device)
target_compile_features(MyLib PRIVATE cxx_std_11)

Note: Compiling for the GPU device requires at least C++11.

This project can then be configured with for eg.

• Windows: cmake -D CMAKE_CXX_COMPILER:PATH=${env:HIP_PATH}\bin\clang++.exe

• Linux: cmake -D CMAKE_CXX_COMPILER:PATH=/opt/rocm/bin/amdclang++

Which use the device compiler provided from the binary packages of ROCm HIP SDK and repo.radeon.com respec-
tively.

When using the CXX language support to compile HIP device code, selecting the target GPU architectures is done
via setting the GPU_TARGETS variable. CMAKE_HIP_ARCHITECTURES only exists when the HIP language is enabled.
By default, this is set to some subset of the currently supported architectures of AMD ROCm. It can be set to eg. -D
GPU_TARGETS="gfx1032;gfx1035".

23.2. Using HIP in CMake 143

https://www.amd.com/en/developer/rocm-hub.html
https://repo.radeon.com

ROCm Documentation, Release 5.0.1

23.2.5 ROCm CMake Packages

Component Package Targets
HIP hip hip::host, hip::device
rocPRIM rocprim roc::rocprim
rocThrust rocthrust roc::rocthrust
hipCUB hipcub hip::hipcub
rocRAND rocrand roc::rocrand
rocBLAS rocblas roc::rocblas
rocSOLVER rocsolver roc::rocsolver
hipBLAS hipblas roc::hipblas
rocFFT rocfft roc::rocfft
hipFFT hipfft hip::hipfft
rocSPARSE rocsparse roc::rocsparse
hipSPARSE hipsparse roc::hipsparse
rocALUTION rocalution roc::rocalution
RCCL rccl rccl
MIOpen miopen MIOpen

23.3 Using CMake Presets

CMake command-lines depending on how specific users like to be when compiling code can grow to unwieldy lengths.
This is the primary reason why projects tend to bake script snippets into their build definitions controlling compiler
warning levels, changing CMake defaults (CMAKE_BUILD_TYPE or BUILD_SHARED_LIBS just to name a few) and all
sorts anti-patterns, all in the name of convenience.

Load on the command-line interface (CLI) starts immediately by selecting a toolchain, the set of utilities used to
compile programs. To ease some of the toolchain related pains, CMake does consult the CC and CXX environmental
variables when setting a default CMAKE_C[XX]_COMPILER respectively, but that is just the tip of the iceberg. There’s a
fair number of variables related to just the toolchain itself (typically supplied using toolchain files), and then we still
haven’t talked about user preference or project-specific options.

IDEs supporting CMake (Visual Studio, Visual Studio Code, CLion, etc.) all came up with their own way to register
command-line fragments of different purpose in a setup’n’forget fashion for quick assembly using graphical front-ends.
This is all nice, but configurations aren’t portable, nor can they be reused in Continuous Intergration (CI) pipelines.
CMake has condensed existing practice into a portable JSON format that works in all IDEs and can be invoked from
any command-line. This is CMake Presets .

There are two types of preset files: one supplied by the project, called CMakePresets.json which is meant to be com-
mitted to version control, typically used to drive CI; and one meant for the user to provide, called CMakeUserPresets.
json, typically used to house user preference and adapting the build to the user’s environment. These JSON files are
allowed to include other JSON files and the user presets always implicitly includes the non-user variant.

144 Chapter 23. Using CMake

https://cmake.org/cmake/help/latest/manual/cmake-toolchains.7.html
https://cmake.org/cmake/help/latest/manual/cmake-presets.7.html

ROCm Documentation, Release 5.0.1

23.3.1 Using HIP with presets

Following is an example CMakeUserPresets.json file which actually compiles the amd/rocm-examples suite of
sample applications on a typical ROCm installation:

{
"version": 3,
"cmakeMinimumRequired": {
"major": 3,
"minor": 21,
"patch": 0

},
"configurePresets": [
{
"name": "layout",
"hidden": true,
"binaryDir": "${sourceDir}/build/${presetName}",
"installDir": "${sourceDir}/install/${presetName}"

},
{
"name": "generator-ninja-multi-config",
"hidden": true,
"generator": "Ninja Multi-Config"

},
{
"name": "toolchain-makefiles-c/c++-amdclang",
"hidden": true,
"cacheVariables": {
"CMAKE_C_COMPILER": "/opt/rocm/bin/amdclang",
"CMAKE_CXX_COMPILER": "/opt/rocm/bin/amdclang++",
"CMAKE_HIP_COMPILER": "/opt/rocm/bin/amdclang++"

}
},
{
"name": "clang-strict-iso-high-warn",
"hidden": true,
"cacheVariables": {
"CMAKE_C_FLAGS": "-Wall -Wextra -pedantic",
"CMAKE_CXX_FLAGS": "-Wall -Wextra -pedantic",
"CMAKE_HIP_FLAGS": "-Wall -Wextra -pedantic"

}
},
{
"name": "ninja-mc-rocm",
"displayName": "Ninja Multi-Config ROCm",
"inherits": [
"layout",
"generator-ninja-multi-config",
"toolchain-makefiles-c/c++-amdclang",
"clang-strict-iso-high-warn"

]
}

],
(continues on next page)

23.3. Using CMake Presets 145

https://github.com/amd/rocm-examples

ROCm Documentation, Release 5.0.1

(continued from previous page)

"buildPresets": [
{
"name": "ninja-mc-rocm-debug",
"displayName": "Debug",
"configuration": "Debug",
"configurePreset": "ninja-mc-rocm"

},
{
"name": "ninja-mc-rocm-release",
"displayName": "Release",
"configuration": "Release",
"configurePreset": "ninja-mc-rocm"

},
{
"name": "ninja-mc-rocm-debug-verbose",
"displayName": "Debug (verbose)",
"configuration": "Debug",
"configurePreset": "ninja-mc-rocm",
"verbose": true

},
{
"name": "ninja-mc-rocm-release-verbose",
"displayName": "Release (verbose)",
"configuration": "Release",
"configurePreset": "ninja-mc-rocm",
"verbose": true

}
],
"testPresets": [
{
"name": "ninja-mc-rocm-debug",
"displayName": "Debug",
"configuration": "Debug",
"configurePreset": "ninja-mc-rocm",
"execution": {
"jobs": 0

}
},
{
"name": "ninja-mc-rocm-release",
"displayName": "Release",
"configuration": "Release",
"configurePreset": "ninja-mc-rocm",
"execution": {
"jobs": 0

}
}

]
}

Note: Getting presets to work reliably on Windows requires some CMake improvements and/or support from compiler

146 Chapter 23. Using CMake

ROCm Documentation, Release 5.0.1

vendors. (Refer to Add support to the Visual Studio generators and Sourcing environment scripts .)

23.3. Using CMake Presets 147

https://gitlab.kitware.com/cmake/cmake/-/issues/24245
https://gitlab.kitware.com/cmake/cmake/-/issues/21619

ROCm Documentation, Release 5.0.1

148 Chapter 23. Using CMake

CHAPTER

TWENTYFOUR

LINUX FOLDER STRUCTURE REORGANIZATION

24.1 Introduction

ROCm™ packages have adopted the Linux foundation file system hierarchy standard to ensure ROCm components
follow open source conventions for Linux-based distributions. Following is the ROCm proposed file structure.

/opt/rocm-<ver>
| -- bin

| -- all public binaries
| -- lib

| -- lib<soname>.so->lib<soname>.so.major->lib<soname>.so.major.minor.patch
(public libaries to link with applications)

| -- <component>
| -- architecture dependent libraries and binaries used internally by␣

→˓components
| -- cmake

| -- <component>
| --<component>-config.cmake

| -- libexec
| -- <component>

| -- non ISA/architecture independent executables used internally by␣
→˓components

| -- include
| -- <component>

| -- public header files
| -- share

| -- html
| -- <component>

| -- html documentation
| -- info

| -- <component>
| -- info files

| -- man
| -- <component>

| -- man pages
| -- doc

| -- <component>
| -- license files

| -- <component>
| -- samples
| -- architecture independent misc files

149

ROCm Documentation, Release 5.0.1

24.2 Changes from earlier ROCm versions

ROCm with the file reorganization is going to have a lean structure. Following table gives the comparison with new
and old folder structure.

__
New File Structure	Old File Structure		
_____________________________	________________________		
/opt/rocm-<ver>	/opt/rocm-<ver>		
	-- bin		-- bin
	-- lib		-- lib
	-- cmake		-- include
	-- libexec		-- <component_1>
	-- include		-- bin
	-- <component_1>		-- cmake
	-- share		-- doc
	-- html		-- lib
	-- info		-- include
	-- man		-- samples
	-- doc		-- <component_n>
	-- <component_1>		-- bin
	-- samples		-- cmake
	-- ..		-- doc
	-- <component_n>		-- lib
	-- samples		-- include
	-- ..		-- samples
__			

24.3 ROCm File reorganization transition plan

New file organization for ROCm was first introduced ROCm v5.2 release. Backward compatibility was in place to
make sure users had a chance to change their applications using ROCm. ROCm has moved header files and libraries
to its new location as indicated in the above structure and included symbolic-link and wrapper header files in its old
location for backward compatibility.

24.3.1 Wrapper header files

Wrapper header files are placed in the old location (/opt/rocm-xxx/<component>/include) with a warning mes-
sage to include files from the new location (/opt/rocm-xxx/include) as shown in the example below.

#pragma message "This file is deprecated. Use file from include path /opt/rocm-ver/
→˓include/ and prefix with hip."
#include "hip/hip_runtime.h"

The deprecation plan for backward compatibility wrapper header files is as follows

• #pragma message announcing deprecation – ROCm v5.2 release.

• #pragma message changed to #warning – Future release, tentatively ROCm v5.5.

• #warning changed to #error – Future release, tentatively ROCm v5.6.

• Backward compatibility wrappers removed – Future release, tentatively ROCm v6.0.

150 Chapter 24. Linux Folder Structure Reorganization

ROCm Documentation, Release 5.0.1

24.3.2 Executable files

Executable files are available in the /opt/rocm-xxx/bin folder. For backward compatibility, the old library location
(/opt/rocm-xxx/<component>/bin) has a soft link to the library at the new location. Soft links will be removed in
a future release, tentatively ROCm v6.0.

$ ls -l /opt/rocm/hip/bin/
lrwxrwxrwx 1 root root 24 Jan 1 23:32 hipcc -> ../../bin/hipcc

24.3.3 Library files

Library files are available in the /opt/rocm-xxx/lib folder. For backward compatibility, the old library location
(/opt/rocm-xxx/<component>/lib) has a soft link to the library at the new location. Soft links will be removed in
a future release, tentatively ROCm v6.0.

$ ls -l /opt/rocm/hip/lib/
drwxr-xr-x 4 root root 4096 Jan 1 10:45 cmake
lrwxrwxrwx 1 root root 24 Jan 1 23:32 libamdhip64.so -> ../../lib/libamdhip64.so

24.3.4 CMake Config files

All CMake configuration files are available in the /opt/rocm-xxx/lib/cmake/<component> folder. For backward
compatibility, the old CMake locations (/opt/rocm-xxx/<component>/lib/cmake) consist of a soft link to the new
CMake config. Soft links will be removed in a future release, tentatively ROCm v6.0.

$ ls -l /opt/rocm/hip/lib/cmake/hip/
lrwxrwxrwx 1 root root 42 Jan 1 23:32 hip-config.cmake -> ../../../../lib/cmake/hip/hip-
→˓config.cmake

24.4 Changes required in applications using ROCm

Applications using ROCm are advised to use the new file paths. As the old files will be deprecated in a future release.
Application have to make sure to include correct header file and use correct search paths.

1. #include<header_file.h> needs to be changed to #include <component/header_file.h>

For example: #include <hip.h> needs to change to #include <hip/hip.h>

2. Any variable in CMake or Makefiles pointing to component folder needs to changed.

For example: VAR1=/opt/rocm/hip needs to be changed to VAR1=/opt/rocm VAR2=/opt/rocm/hsa needs
to be changed to VAR2=/opt/rocm

3. Any reference to /opt/rocm/<component>/bin or /opt/rocm/<component>/lib needs to be changed to
/opt/rocm/bin and /opt/rocm/lib/ respectively.

24.4. Changes required in applications using ROCm 151

ROCm Documentation, Release 5.0.1

24.5 References

ROCm deprecation warning

Linux File System Standard

152 Chapter 24. Linux Folder Structure Reorganization

https://refspecs.linuxfoundation.org/fhs.shtml

CHAPTER

TWENTYFIVE

GPU ISOLATION TECHNIQUES

Restricting the access of applications to a subset of GPUs, aka isolating GPUs allows users to hide GPU resources from
programs. The programs by default will only use the “exposed” GPUs ignoring other (hidden) GPUs in the system.

There are multiple ways to achieve isolation of GPUs in the ROCm software stack, differing in which applications they
apply to and the security they provide. This page serves as an overview of the techniques.

25.1 Environment Variables

The runtimes in the ROCm software stack read these environment variables to select the exposed or default device to
present to applications using them.

Environment variables shouldn’t be used for isolating untrusted applications, as an application can reset them before
initializing the runtime.

25.1.1 ROCR_VISIBLE_DEVICES

A list of device indices or UUID (universally unique identifier)s that will be exposed to applications.

Runtime : ROCm Platform Runtime. Applies to all applications using the user mode ROCm software stack.

Listing 25.1: Example to expose the 1. device and a device based on
UUID.

export ROCR_VISIBLE_DEVICES="0,GPU-DEADBEEFDEADBEEF"

25.1.2 GPU_DEVICE_ORDINAL

Devices indices exposed to OpenCL and HIP applications.

Runtime : ROCm Common Language Runtime (ROCclr). Applies to applications and runtimes using the ROCclr
abstraction layer including HIP and OpenCL applications.

Listing 25.2: Example to expose the 1. and 3. device in the system.

export GPU_DEVICE_ORDINAL="0,2"

153

ROCm Documentation, Release 5.0.1

25.1.3 HIP_VISIBLE_DEVICES

Device indices exposed to HIP applications.

Runtime : HIP Runtime. Applies only to applications using HIP on the AMD platform.

Listing 25.3: Example to expose the 1. and 3. devices in the system.

export HIP_VISIBLE_DEVICES="0,2"

25.1.4 CUDA_VISIBLE_DEVICES

Provided for CUDA compatibility, has the same effect as HIP_VISIBLE_DEVICES on the AMD platform.

Runtime : HIP or CUDA Runtime. Applies to HIP applications on the AMD or NVIDIA platform and CUDA appli-
cations.

25.1.5 OMP_DEFAULT_DEVICE

Default device used for OpenMP target offloading.

Runtime : OpenMP Runtime. Applies only to applications using OpenMP offloading.

Listing 25.4: Example on setting the default device to the third device.

export OMP_DEFAULT_DEVICE="2"

25.2 Docker

Docker uses Linux kernel namespaces to provide isolated environments for applications. This isolation applies to most
devices by default, including GPUs. To access them in containers explicit access must be granted, please see Accessing
GPUs in containers for details. Specifically refer to Restricting a container to a subset of the GPUs on exposing just a
subset of all GPUs.

Docker isolation is more secure than environment variables, and applies to all programs that use the amdgpu kernel
module interfaces. Even programs that don’t use the ROCm runtime, like graphics applications using OpenGL or
Vulkan, can only access the GPUs exposed to the container.

25.3 GPU Passthrough to Virtual Machines

Virtual machines achieve the highest level of isolation, because even the kernel of the virtual machine is isolated from
the host. Devices physically installed in the host system can be passed to the virtual machine using PCIe passthrough.
This allows for using the GPU with a different operating systems like a Windows guest from a Linux host.

Setting up PCIe passthrough is specific to the hypervisor used. ROCm officially supports VMware ESXi for select
GPUs.

154 Chapter 25. GPU Isolation Techniques

https://www.vmware.com/products/esxi-and-esx.html

CHAPTER

TWENTYSIX

GPU ARCHITECTURES

26.1 Architecture Guides

AMD Instinct MI200 Review hardware aspects of the AMD Instinct™ MI250 accelerators and the CDNA™ 2 archi-
tecture that is the foundation of these GPUs.

• Instruction Set Architecture

• Whitepaper

• Guide

AMD Instinct MI100 Review hardware aspects of the AMD Instinct™ MI100 accelerators and the CDNA™ 1 archi-
tecture that is the foundation of these GPUs.

• Instruction Set Architecture

• Whitepaper

• Guide

26.2 ISA Documentation

• AMD Instinct MI200/CDNA2 Instruction Set Architecture

• AMD Instinct MI100/CDNA1 Instruction Set Architecture

• AMD Instinct MI50/Vega 7nm Instruction Set Architecture

• AMD Instinct MI25/Vega Instruction Set Architecture

• AMD RDNA3 Instruction Set Architecture

• AMD RDNA2 Instruction Set Architecture

• AMD RDNA Instruction Set Architecture

• AMD GCN3 Instruction Set Architecture

155

https://www.amd.com/system/files/TechDocs/instinct-mi200-cdna2-instruction-set-architecture.pdf
https://www.amd.com/system/files/documents/amd-cdna2-white-paper.pdf
https://www.amd.com/system/files/TechDocs/instinct-mi100-cdna1-shader-instruction-set-architecture%C2%A0.pdf
https://www.amd.com/system/files/documents/amd-cdna-whitepaper.pdf
https://www.amd.com/system/files/TechDocs/instinct-mi200-cdna2-instruction-set-architecture.pdf
https://www.amd.com/system/files/TechDocs/instinct-mi100-cdna1-shader-instruction-set-architecture%C2%A0.pdf
https://www.amd.com/system/files/TechDocs/vega-7nm-shader-instruction-set-architecture.pdf
https://www.amd.com/system/files/TechDocs/vega-shader-instruction-set-architecture.pdf
https://www.amd.com/system/files/TechDocs/rdna3-shader-instruction-set-architecture-feb-2023_0.pdf
https://www.amd.com/system/files/TechDocs/rdna2-shader-instruction-set-architecture.pdf
https://www.amd.com/system/files/TechDocs/rdna-shader-instruction-set-architecture.pdf
https://www.amd.com/system/files/TechDocs/gcn3-instruction-set-architecture.pdf

ROCm Documentation, Release 5.0.1

26.3 White Papers

• AMD CDNA™ 2 Architecture White Paper

• AMD CDNA Architecture White Paper

• AMD Vega Architecture White Paper

• AMD RDNA Architecture White Paper

26.4 AMD Instinct Hardware

This chapter briefly reviews hardware aspects of the AMD Instinct MI250 accelerators and the CDNA™ 2 architecture
that is the foundation of these GPUs.

26.4.1 AMD CDNA 2 Micro-architecture

The micro-architecture of the AMD Instinct MI250 accelerators is based on the AMD CDNA 2 architecture that targets
compute applications such as HPC, artificial intelligence (AI), and Machine Learning (ML) and that run on everything
from individual servers to the world’s largest exascale supercomputers. The overall system architecture is designed for
extreme scalability and compute performance.

Fig. 26.1 shows the components of a single Graphics Compute Die (GCD) of the CDNA 2 architecture. On the top
and the bottom are AMD Infinity Fabric™ interfaces and their physical links that are used to connect the GPU die to
the other system-level components of the node (see also Section 2.2). Both interfaces can drive four AMD Infinity
Fabric links. One of the AMD Infinity Fabric links of the controller at the bottom can be configured as a PCIe link.
Each of the AMD Infinity Fabric links between GPUs can run at up to 25 GT/sec, which correlates to a peak transfer
bandwidth of 50 GB/sec for a 16-wide link (two bytes per transaction). Section 2.2 has more details on the number of
AMD Infinity Fabric links and the resulting transfer rates between the system-level components.

To the left and the right are memory controllers that attach the High Bandwidth Memory (HBM) modules to the GCD.
AMD Instinct MI250 GPUs use HBM2e, which offers a peak memory bandwidth of 1.6 TB/sec per GCD.

The execution units of the GPU are depicted in Fig. 26.1 as Compute Units (CU). The MI250 GCD has 104 active CUs.
Each compute unit is further subdivided into four SIMD units that process SIMD instructions of 16 data elements per
instruction (for the FP64 data type). This enables the CU to process 64 work items (a so-called “wavefront”) at a peak
clock frequency of 1.7 GHz. Therefore, the theoretical maximum FP64 peak performance per GCD is 45.3 TFLOPS for
vector instructions. The MI250 compute units also provide specialized execution units (also called matrix cores), which
are geared toward executing matrix operations like matrix-matrix multiplications. For FP64, the peak performance of
these units amounts to 90.5 TFLOPS.

Table 26.1: Peak-performance capabilities of the MI250 OAM for differ-
ent data types.

Computation and Data Type FLOPS/CLOCK/CU Peak TFLOPS
Matrix FP64 256 90.5
Vector FP64 128 45.3
Matrix FP32 256 90.5
Packed FP32 256 90.5
Vector FP32 128 45.3
Matrix FP16 1024 362.1
Matrix BF16 1024 362.1
Matrix INT8 1024 362.1

156 Chapter 26. GPU Architectures

https://www.amd.com/system/files/documents/amd-cdna2-white-paper.pdf
https://www.amd.com/system/files/documents/amd-cdna-whitepaper.pdf
https://en.wikichip.org/w/images/a/a1/vega-whitepaper.pdf
https://www.amd.com/system/files/documents/rdna-whitepaper.pdf

ROCm Documentation, Release 5.0.1

Fig. 26.1: Figure 1: Structure of a single GCD in the AMD Instinct MI250 accelerator.

26.4. AMD Instinct Hardware 157

ROCm Documentation, Release 5.0.1

Table 26.1 summarizes the aggregated peak performance of the AMD Instinct MI250 OCP Open Accelerator Modules
(OAM, OCP is short for Open Compute Platform) and its two GCDs for different data types and execution units.
The middle column lists the peak performance (number of data elements processed in a single instruction) of a single
compute unit if a SIMD (or matrix) instruction is being retired in each clock cycle. The third column lists the theoretical
peak performance of the OAM module. The theoretical aggregated peak memory bandwidth of the GPU is 3.2 TB/sec
(1.6 TB/sec per GCD).

Fig. 26.2: Dual-GCD architecture of the AMD Instinct MI250 accelerators.

Fig. 26.2 shows the block diagram of an OAM package that consists of two GCDs, each of which constitutes one GPU
device in the system. The two GCDs in the package are connected via four AMD Infinity Fabric links running at a
theoretical peak rate of 25 GT/sec, giving 200 GB/sec peak transfer bandwidth between the two GCDs of an OAM, or
a bidirectional peak transfer bandwidth of 400 GB/sec for the same.

26.4.2 Node-level Architecture

Fig. 26.3 shows the node-level architecture of a system that is based on the AMD Instinct MI250 accelerator. The
MI250 OAMs attach to the host system via PCIe Gen 4 x16 links (yellow lines). Each GCD maintains its own PCIe
x16 link to the host part of the system. Depending on the server platform, the GCD can attach to the AMD EPYC
processor directly or via an optional PCIe switch . Note that some platforms may offer an x8 interface to the GCDs,
which reduces the available host-to-GPU bandwidth.

Fig. 26.3 shows the node-level architecture of a system with AMD EPYC processors in a dual-socket configuration and
four AMD Instinct MI250 accelerators. The MI250 OAMs attach to the host processors system via PCIe Gen 4 x16
links (yellow lines). Depending on the system design, a PCIe switch may exist to make more PCIe lanes available for
additional components like network interfaces and/or storage devices. Each GCD maintains its own PCIe x16 link to
the host part of the system or to the PCIe switch. Please note, some platforms may offer an x8 interface to the GCDs,
which will reduce the available host-to-GPU bandwidth.

Between the OAMs and their respective GCDs, a peer-to-peer (P2P) network allows for direct data exchange between
the GPU dies via AMD Infinity Fabric links (black, green, and red lines). Each of these 16-wide links connects to one
of the two GPU dies in the MI250 OAM and operates at 25 GT/sec, which corresponds to a theoretical peak transfer
rate of 50 GB/sec per link (or 100 GB/sec bidirectional peak transfer bandwidth). The GCD pairs 2 and 6 as well as
GCDs 0 and 4 connect via two XGMI links, which is indicated by the thicker red line in Fig. 26.3.

158 Chapter 26. GPU Architectures

ROCm Documentation, Release 5.0.1

Fig. 26.3: Block diagram of AMD Instinct MI250 Accelerators with 3rd Generation AMD EPYC processor.

26.4. AMD Instinct Hardware 159

ROCm Documentation, Release 5.0.1

26.5 AMD Instinct™ MI100 Hardware

In this chapter, we are going to briefly review hardware aspects of the AMD Instinct™ MI100 accelerators and the
CDNA architecture that is the foundation of these GPUs.

26.5.1 System Architecture

Fig. 26.4 shows the node-level architecture of a system that comprises two AMD EPYC™ processors and (up to) eight
AMD Instinct™ accelerators. The two EPYC processors are connected to each other with the AMD Infinity™ fabric
which provides a high-bandwidth (up to 18 GT/sec) and coherent links such that each processor can access the available
node memory as a single shared-memory domain in a non-uniform memory architecture (NUMA) fashion. In a 2P,
or dual-socket, configuration, three AMD Infinity™ fabric links are available to connect the processors plus one PCIe
Gen 4 x16 link per processor can attach additional I/O devices such as the host adapters for the network fabric.

Fig. 26.4: Structure of a single GCD in the AMD Instinct MI250 accelerator.

In a typical node configuration, each processor can host up to four AMD Instinct™ accelerators that are attached using
PCIe Gen 4 links at 16 GT/sec, which corresponds to a peak bidirectional link bandwidth of 32 GB/sec. Each hive of
four accelerators can participate in a fully connected, coherent AMD Instinct™ fabric that connects the four accelerators
using 23 GT/sec AMD Infinity fabric links that run at a higher frequency than the inter-processor links. This inter-GPU
link can be established in certified server systems if the GPUs are mounted in neighboring PCIe slots by installing the
AMD Infinity Fabric™ bridge for the AMD Instinct™ accelerators.

26.5.2 Micro-architecture

The micro-architecture of the AMD Instinct accelerators is based on the AMD CDNA architecture, which targets com-
pute applications such as high-performance computing (HPC) and AI & machine learning (ML) that run on everything
from individual servers to the world’s largest exascale supercomputers. The overall system architecture is designed for
extreme scalability and compute performance.

Fig. 26.5 shows the AMD Instinct accelerator with its PCIe Gen 4 x16 link (16 GT/sec, at the bottom) that connects
the GPU to (one of) the host processor(s). It also shows the three AMD Infinity Fabric ports that provide high-speed
links (23 GT/sec, also at the bottom) to the other GPUs of the local hive as shown in Fig. 26.4.

160 Chapter 26. GPU Architectures

ROCm Documentation, Release 5.0.1

Fig. 26.5: Structure of the AMD Instinct accelerator (MI100 generation).

26.5. AMD Instinct™ MI100 Hardware 161

ROCm Documentation, Release 5.0.1

On the left and right of the floor plan, the High Bandwidth Memory (HBM) attaches via the GPU’s memory controller.
The MI100 generation of the AMD Instinct accelerator offers four stacks of HBM generation 2 (HBM2) for a total of
32GB with a 4,096bit-wide memory interface. The peak memory bandwidth of the attached HBM2 is 1.228 TB/sec at
a memory clock frequency of 1.2 GHz.

The execution units of the GPU are depicted in Fig. 26.5 as Compute Units (CU). There are a total 120 compute units that
are physically organized into eight Shader Engines (SE) with fifteen compute units per shader engine. Each compute
unit is further sub-divided into four SIMD units that process SIMD instructions of 16 data elements per instruction.
This enables the CU to process 64 data elements (a so-called ‘wavefront’) at a peak clock frequency of 1.5 GHz.
Therefore, the theoretical maximum FP64 peak performance is 11.5 TFLOPS (4 [SIMD units] x 16 [elements
per instruction] x 120 [CU] x 1.5 [GHz]).

Fig. 26.6: Block diagram of an MI100 compute unit with detailed SIMD view of the AMD CDNA architecture

Fig. 26.6 shows the block diagram of a single CU of an AMD Instinct™ MI100 accelerator and summarizes how
instructions flow through the execution engines. The CU fetches the instructions via a 32KB instruction cache and
moves them forward to execution via a dispatcher. The CU can handle up to ten wavefronts at a time and feed their
instructions into the execution unit. The execution unit contains 256 vector general-purpose registers (VGPR) and 800
scalar general-purpose registers (SGPR). The VGPR and SGPR are dynamically allocated to the executing wavefronts.
A wavefront can access a maximum of 102 scalar registers. Excess scalar-register usage will cause register spilling and
thus may affect execution performance.

A wavefront can occupy any number of VGPRs from 0 to 256, directly affecting occupancy; that is, the number of
concurrently active wavefronts in the CU. For instance, with 119 VGPRs used, only two wavefronts can be active in
the CU at the same time. With the instruction latency of four cycles per SIMD instruction, the occupancy should be as
high as possible such that the compute unit can improve execution efficiency by scheduling instructions from multiple
wavefronts.

Table 26.2: Peak-performance capabilities of MI100 for different data
types.

Computation and Data Type FLOPS/CLOCK/CU Peak TFLOPS
Vector FP64 64 11.5
Matrix FP32 256 46.1
Vector FP32 128 23.1
Matrix FP16 1024 184.6
Matrix BF16 512 92.3

162 Chapter 26. GPU Architectures

CHAPTER

TWENTYSEVEN

HOW ROCM USES PCIE ATOMICS

27.1 ROCm PCIe Feature and Overview BAR Memory

ROCm is an extension of HSA platform architecture, so it shares the queueing model, memory model, signaling and
synchronization protocols. Platform atomics are integral to perform queuing and signaling memory operations where
there may be multiple-writers across CPU and GPU agents.

The full list of HSA system architecture platform requirements are here: HSA Sys Arch Features.

The ROCm Platform uses the new PCI Express 3.0 (PCIe 3.0) features for Atomic Read-Modify-Write Transactions
which extends inter-processor synchronization mechanisms to IO to support the defined set of HSA capabilities needed
for queuing and signaling memory operations.

The new PCIe AtomicOps operate as completers for CAS (Compare and Swap), FetchADD, SWAP atomics. The Atom-
icsOps are initiated by the I/O device which support 32-bit, 64-bit and 128-bit operand which target address have to be
naturally aligned to operation sizes.

For ROCm the Platform atomics are used in ROCm in the following ways:

• Update HSA queue’s read_dispatch_id: 64 bit atomic add used by the command processor on the GPU agent to
update the packet ID it processed.

• Update HSA queue’s write_dispatch_id: 64 bit atomic add used by the CPU and GPU agent to support multi-
writer queue insertions.

• Update HSA Signals – 64bit atomic ops are used for CPU & GPU synchronization.

The PCIe 3.0 AtomicOp feature allows atomic transactions to be requested by, routed through and completed by PCIe
components. Routing and completion does not require software support. Component support for each is detectable via
the DEVCAP2 register. Upstream bridges need to have AtomicOp routing enabled or the Atomic Operations will fail
even though PCIe endpoint and PCIe I/O Devices has the capability to Atomics Operations.

To do AtomicOp routing capability between two or more Root Ports, each associated Root Port must indicate that
capability via the AtomicOp Routing Supported bit in the Device Capabilities 2 register.

If your system has a PCIe Express Switch it needs to support AtomicsOp routing. Again AtomicOp requests are permit-
ted only if a component’s DEVCTL2.ATOMICOP_REQUESTER_ENABLE field is set. These requests can only be serviced
if the upstream components support AtomicOp completion and/or routing to a component which does. AtomicOp
Routing Support=1 Routing is supported, AtomicOp Routing Support=0 routing is not supported.

Atomic Operation is a Non-Posted transaction supporting 32-bit and 64-bit address formats, there must be a response for
Completion containing the result of the operation. Errors associated with the operation (uncorrectable error accessing
the target location or carrying out the Atomic operation) are signaled to the requester by setting the Completion Status
field in the completion descriptor, they are set to to Completer Abort (CA) or Unsupported Request (UR).

To understand more about how PCIe Atomic operations work PCIe Atomics

Linux Kernel Patch to pci_enable_atomic_request

163

http://hsafoundation.com/wp-content/uploads/2021/02/HSA-SysArch-1.2.pdf
https://pcisig.com/sites/default/files/specification_documents/ECN_Atomic_Ops_080417.pdf
https://patchwork.kernel.org/patch/7261731/

ROCm Documentation, Release 5.0.1

There are also a number of papers which talk about these new capabilities:

• Atomic Read Modify Write Primitives by Intel

• PCI express 3 Accelerator Whitepaper by Intel

• Intel PCIe Generation 3 Hotchips Paper

• PCIe Generation 4 Base Specification includes Atomics Operation

Other I/O devices with PCIe Atomics support

• Mellanox ConnectX-5 InfiniBand Card

• Cray Aries Interconnect

• Xilinx PCIe Ultrascale Whitepaper

• Xilinx 7 Series Devices

Future bus technology with richer I/O Atomics Operation Support

• GenZ

New PCIe Endpoints with support beyond AMD Ryzen and EPYC CPU; Intel Haswell or newer CPU’s with PCIe
Generation 3.0 support.

• Mellanox Bluefield SOC

• Cavium Thunder X2

In ROCm, we also take advantage of PCIe ID based ordering technology for P2P when the GPU originates two writes
to two different targets:

1. write to another GPU memory,

2. then write to system memory to indicate transfer complete.

They are routed off to different ends of the computer but we want to make sure the write to system memory to indicate
transfer complete occurs AFTER P2P write to GPU has complete.

Good Paper on Understanding PCIe Generation 3 Throughput

27.1.1 BAR Memory Overview

On a Xeon E5 based system in the BIOS we can turn on above 4GB PCIe addressing, if so he need to set MMIO Base
address (MMIOH Base) and Range (MMIO High Size) in the BIOS.

In SuperMicro system in the system bios you need to see the following

• Advanced->PCIe/PCI/PnP configuration-> Above 4G Decoding = Enabled

• Advanced->PCIe/PCI/PnP Configuration->MMIOH Base = 512G

• Advanced->PCIe/PCI/PnP Configuration->MMIO High Size = 256G

When we support Large Bar Capability there is a Large Bar Vbios which also disable the IO bar.

For GFX9 and Vega10 which have Physical Address up 44 bit and 48 bit Virtual address.

• BAR0-1 registers: 64bit, prefetchable, GPU memory. 8GB or 16GB depending on Vega10 SKU. Must be placed
< 2^44 to support P2P access from other Vega10.

164 Chapter 27. How ROCm uses PCIe Atomics

https://www.intel.es/content/dam/doc/white-paper/atomic-read-modify-write-primitives-i-o-devices-paper.pdf
https://www.intel.sg/content/dam/doc/white-paper/pci-express3-accelerator-white-paper.pdf
https://www.hotchips.org/wp-content/uploads/hc_archives/hc21/1_sun/HC21.23.1.SystemInterconnectTutorial-Epub/HC21.23.131.Ajanovic-Intel-PCIeGen3.pdf
http://composter.com.ua/documents/PCI_Express_Base_Specification_Revision_4.0.Ver.0.3.pdf
http://www.mellanox.com/related-docs/prod_adapter_cards/PB_ConnectX-5_VPI_Card.pdf
http://www.hoti.org/hoti20/slides/Bob_Alverson.pdf
https://www.xilinx.com/support/documentation/white_papers/wp464-PCIe-ultrascale.pdf
https://www.xilinx.com/support/documentation/ip_documentation/pcie_7x/v3_1/pg054-7series-pcie.pdf
http://genzconsortium.org/faq/gen-z-technology/#33/
http://www.mellanox.com/related-docs/npu-multicore-processors/PB_Bluefield_SoC.pdf
http://www.cavium.com/ThunderX2_ARM_Processors.html
https://www.altera.com/en_US/pdfs/literature/an/an690.pdf

ROCm Documentation, Release 5.0.1

• BAR2-3 registers: 64bit, prefetchable, Doorbell. Must be placed < 2^44 to support P2P access from other
Vega10.

• BAR4 register: Optional, not a boot device.

• BAR5 register: 32bit, non-prefetchable, MMIO. Must be placed < 4GB.

Here is how our BAR works on GFX 8 GPU’s with 40 bit Physical Address Limit

11:00.0 Display controller: Advanced Micro Devices, Inc. [AMD/ATI] Fiji [Radeon R9 FURY /
→˓ NANO Series] (rev c1)

Subsystem: Advanced Micro Devices, Inc. [AMD/ATI] Device 0b35

Flags: bus master, fast devsel, latency 0, IRQ 119

Memory at bf40000000 (64-bit, prefetchable) [size=256M]

Memory at bf50000000 (64-bit, prefetchable) [size=2M]

I/O ports at 3000 [size=256]

Memory at c7400000 (32-bit, non-prefetchable) [size=256K]

Expansion ROM at c7440000 [disabled] [size=128K]

Legend:

1 : GPU Frame Buffer BAR – In this example it happens to be 256M, but typically this will be size of the GPU memory
(typically 4GB+). This BAR has to be placed < 2^40 to allow peer-to-peer access from other GFX8 AMD GPUs. For
GFX9 (Vega GPU) the BAR has to be placed < 2^44 to allow peer-to-peer access from other GFX9 AMD GPUs.

2 : Doorbell BAR – The size of the BAR is typically will be < 10MB (currently fixed at 2MB) for this generation GPUs.
This BAR has to be placed < 2^40 to allow peer-to-peer access from other current generation AMD GPUs.

3 : IO BAR - This is for legacy VGA and boot device support, but since this the GPUs in this project are not VGA
devices (headless), this is not a concern even if the SBIOS does not setup.

4 : MMIO BAR – This is required for the AMD Driver SW to access the configuration registers. Since the reminder
of the BAR available is only 1 DWORD (32bit), this is placed < 4GB. This is fixed at 256KB.

5 : Expansion ROM – This is required for the AMD Driver SW to access the GPU’s video-bios. This is currently fixed
at 128KB.

27.2 Excepts form Overview of Changes to PCI Express 3.0

27.2.1 By Mike Jackson, Senior Staff Architect, MindShare, Inc.

27.2.2 Atomic Operations – Goal:

Support SMP-type operations across a PCIe network to allow for things like offloading tasks between CPU cores and
accelerators like a GPU. The spec says this enables advanced synchronization mechanisms that are particularly useful
with multiple producers or consumers that need to be synchronized in a non-blocking fashion. Three new atomic non-
posted requests were added, plus the corresponding completion (the address must be naturally aligned with the operand
size or the TLP is malformed):

27.2. Excepts form Overview of Changes to PCI Express 3.0 165

ROCm Documentation, Release 5.0.1

• Fetch and Add – uses one operand as the “add” value. Reads the target location, adds the operand, and then
writes the result back to the original location.

• Unconditional Swap – uses one operand as the “swap” value. Reads the target location and then writes the swap
value to it.

• Compare and Swap – uses 2 operands: first data is compare value, second is swap value. Reads the target location,
checks it against the compare value and, if equal, writes the swap value to the target location.

• AtomicOpCompletion – new completion to give the result so far atomic request and indicate that the atomicity
of the transaction has been maintained.

Since AtomicOps are not locked they don’t have the performance downsides of the PCI locked protocol. Compared to
locked cycles, they provide “lower latency, higher scalability, advanced synchronization algorithms, and dramatically
lower impact on other PCIe traffic.” The lock mechanism can still be used across a bridge to PCI or PCI-X to achieve
the desired operation.

AtomicOps can go from device to device, device to host, or host to device. Each completer indicates whether it supports
this capability and guarantees atomic access if it does. The ability to route AtomicOps is also indicated in the registers
for a given port.

27.2.3 ID-based Ordering – Goal:

Improve performance by avoiding stalls caused by ordering rules. For example, posted writes are never normally
allowed to pass each other in a queue, but if they are requested by different functions, we can have some confidence
that the requests are not dependent on each other. The previously reserved Attribute bit [2] is now combined with the
RO bit to indicate ID ordering with or without relaxed ordering.

This only has meaning for memory requests, and is reserved for Configuration or IO requests. Completers are not
required to copy this bit into a completion, and only use the bit if their enable bit is set for this operation.

To read more on PCIe Gen 3 new options https://www.mindshare.com/files/resources/PCIe%203-0.pdf

166 Chapter 27. How ROCm uses PCIe Atomics

https://www.mindshare.com/files/resources/PCIe%203-0.pdf

CHAPTER

TWENTYEIGHT

ALL HOW-TO MATERIAL

Tuning Guides Use case-specific system setup and tuning guides.

Deep Learning Guide Installation of various Deep Learning frameworks and applications.

GPU-Enabled MPI This chapter exemplifies how to set up Open MPI with the ROCm platform.

System Debugging Guide Useful commands to debug misbehaving ROCm installations.

167

ROCm Documentation, Release 5.0.1

168 Chapter 28. All How-To Material

CHAPTER

TWENTYNINE

TUNING GUIDES

Use case-specific system setup and tuning guides.

29.1 High Performance Computing

High Performance Computing (HPC) workloads have unique requirements. The default hardware and BIOS configu-
rations for OEM platforms may not provide optimal performance for HPC workloads. To enable optimal HPC settings
on a per-platform and per-workload level, this guide calls out:

• BIOS settings that can impact performance

• Hardware configuration best practices

• Supported versions of operating systems

• Workload-specific recommendations for optimal BIOS and operating system settings

There is also a discussion on the AMD Instinct™ software development environment, including information on how to
install and run the DGEMM, STREAM, HPCG, and HPL benchmarks. This guidance provides a good starting point
but is not exhaustively tested across all compilers.

Prerequisites to understanding this document and to performing tuning of HPC applications include:

• Experience in configuring servers

• Administrative access to the server’s Management Interface (BMC)

• Administrative access to the operating system

• Familiarity with the OEM server’s BMC (strongly recommended)

• Familiarity with the OS specific tools for configuration, monitoring, and troubleshooting (strongly recommended)

This document provides guidance on tuning systems with various AMD Instinct™ accelerators for HPC workloads.
This document is not an all-inclusive guide, and some items referred to may have similar, but different, names in
various OEM systems (for example, OEM-specific BIOS settings). This document also provides suggestions on items
that should be the initial focus of additional, application-specific tuning.

This document is based on the AMD EPYC™ 7003-series processor family (former codename “Milan”).

While this guide is a good starting point, developers are encouraged to perform their own performance testing for
additional tuning.

AMD Instinct™ MI200 This chapter goes through how to configure your AMD Instinct™ MI200 accelerated compute
nodes to get the best performance out of them.

• Instruction Set Architecture

• Whitepaper

169

https://www.amd.com/system/files/TechDocs/instinct-mi200-cdna2-instruction-set-architecture.pdf
https://www.amd.com/system/files/documents/amd-cdna2-white-paper.pdf

ROCm Documentation, Release 5.0.1

• Guide

AMD Instinct™ MI100 This chapter briefly reviews hardware aspects of the AMD Instinct™ MI100 accelerators and
the CDNA™ 1 architecture that is the foundation of these GPUs.

• Instruction Set Architecture

• Whitepaper

• Guide

29.2 Workstation

Workstation workloads, much like High Performance Computing have a unique set of requirements, a blend of both
graphics and compute, certification, stability and the list continues.

The document covers specific software requirements and processes needed to use these GPUs for Single Root I/O
Virtualization (SR-IOV) and Machine Learning (ML).

The main purpose of this document is to help users utilize the RDNA 2 GPUs to their full potential.

AMD Radeon™ PRO W6000 and V620 This chapter describes the AMD GPUs with RDNA™ 2 architecture, namely
AMD Radeon PRO W6800 and AMD Radeon PRO V620

• AMD RDNA2 Instruction Set Architecture

• Whitepaper

• Guide

29.3 MI200 High Performance Computing and Tuning Guide

29.3.1 System Settings

This chapter reviews system settings that are required to configure the system for AMD Instinct MI250 accelerators
and improve the performance of the GPUs. It is advised to configure the system for the best possible host configuration
according to the “High Performance Computing (HPC) Tuning Guide for AMD EPYC 7003 Series Processors.”

Configure the system BIOS settings as explained in System BIOS Settings and enact the below given settings via the
command line as explained in Operating System Settings:

• Core C states

• IOMMU (if needed)

29.3.1.1 System BIOS Settings

For maximum MI250 GPU performance on systems with AMD EPYC™ 7003-series processors (codename “Milan”)
and AMI System BIOS, the following configuration of system BIOS settings has been validated. These settings must
be used for the qualification process and should be set as default values for the system BIOS. Analogous settings for
other non-AMI System BIOS providers could be set similarly. For systems with Intel processors, some settings may
not apply or be available as listed in Table 29.1.

170 Chapter 29. Tuning Guides

https://www.amd.com/system/files/TechDocs/instinct-mi100-cdna1-shader-instruction-set-architecture%C2%A0.pdf
https://www.amd.com/system/files/documents/amd-cdna-whitepaper.pdf
https://www.amd.com/system/files/TechDocs/rdna2-shader-instruction-set-architecture.pdf
https://www.amd.com/system/files/documents/rdna2-explained-radeon-pro-W6000.pdf

ROCm Documentation, Release 5.0.1

Table 29.1: Recommended settings for the system BIOS in a GIGABYTE
platform.

BIOS Setting Location Parameter Value Comments
Advanced / PCI Subsystem Settings Above 4G Decoding Enabled GPU Large BAR Support
Advanced / PCI Subsystem Settings SR-IOV Support Disabled Disable Single Root IO Virtualization
AMD CBS / CPU Common Options Global C-state Control Auto Global Core C-States
AMD CBS / CPU Common Options CCD/Core/Thread Enablement Accept Global Core C-States
AMD CBS / CPU Common Options / Performance SMT Control Disable Global Core C-States
AMD CBS / DF Common Options / Memory Addressing NUMA nodes per socket NPS 1,2,4 NUMA Nodes (NPS)
AMD CBS / DF Common Options / Memory Addressing Memory interleaving Auto Numa Nodes (NPS)
AMD CBS / DF Common Options / Link 4-link xGMI max speed 18 Gbps Set AMD CPU xGMI speed to highest rate supported
AMD CBS / NBIO Common Options IOMMU Disable
AMD CBS / NBIO Common Options PCIe Ten Bit Tag Support Auto
AMD CBS / NBIO Common Options Preferred IO Bus
AMD CBS / NBIO Common Options Preferred IO Bus “Use lspci to find pci device id”
AMD CBS / NBIO Common Options Enhanced Preferred IO Mode Enable
AMD CBS / NBIO Common Options / SMU Common Options Determinism Control Manual
AMD CBS / NBIO Common Options / SMU Common Options Determinism Slider Power
AMD CBS / NBIO Common Options / SMU Common Options cTDP Control Manual Set cTDP to the maximum supported by the installed CPU
AMD CBS / NBIO Common Options / SMU Common Options cTDP 280
AMD CBS / NBIO Common Options / SMU Common Options Package Power Limit Control Manual Set Package Power Limit to the maximum supported by the installed CPU
AMD CBS / NBIO Common Options / SMU Common Options Package Power Limit 280
AMD CBS / NBIO Common Options / SMU Common Options xGMI Link Width Control Manual Set AMD CPU xGMI width to 16 bits
AMD CBS / NBIO Common Options / SMU Common Options xGMI Force Link Width 2
AMD CBS / NBIO Common Options / SMU Common Options xGMI Force Link Width Control Force
AMD CBS / NBIO Common Options / SMU Common Options APBDIS 1
AMD CBS / NBIO Common Options / SMU Common Options DF C-states Enabled
AMD CBS / NBIO Common Options / SMU Common Options Fixed SOC P-state P0
AMD CBS / UMC Common Options / DDR4 Common Options Enforce POR Accept
AMD CBS / UMC Common Options / DDR4 Common Options / Enforce POR Overclock Enabled
AMD CBS / UMC Common Options / DDR4 Common Options / Enforce POR Memory Clock Speed 1600 MHz Set to max Memory Speed, if using 3200 MHz DIMMs
AMD CBS / UMC Common Options / DDR4 Common Options / DRAM Controller Configuration / DRAM Power Options Power Down Enable Disabled RAM Power Down
AMD CBS / Security TSME Disabled Memory Encryption

29.3.1.1.1 NBIO Link Clock Frequency

The NBIOs (4x per AMD EPYC™ processor) are the serializers/deserializers (also known as “SerDes”) that convert
and prepare the I/O signals for the processor’s 128 external I/O interface lanes (32 per NBIO).

LCLK (short for link clock frequency) controls the link speed of the internal bus that connects the NBIO silicon with
the data fabric. All data between the processor and its PCIe lanes flow to the data fabric based on these LCLK frequency
settings. The link clock frequency of the NBIO components need to be forced to the maximum frequency for optimal
PCIe performance.

For AMD EPYC™ 7003 series processors, configuring all NBIOs to be in “Enhanced Preferred I/O” mode is sufficient
to enable highest link clock frequency for the NBIO components.

29.3. MI200 High Performance Computing and Tuning Guide 171

ROCm Documentation, Release 5.0.1

29.3.1.1.2 Memory Configuration

For setting the memory addressing modes (see Table 29.1), especially the number of NUMA nodes per socket/processor
(NPS), follow the guidance of the “High Performance Computing (HPC) Tuning Guide for AMD EPYC 7003 Series
Processors” to provide the optimal configuration for host side computation. For most HPC workloads, NPS=4 is the
recommended value.

29.3.1.2 Operating System Settings

29.3.1.2.1 CPU Core State - “C States”

There are several Core-States, or C-states that an AMD EPYC CPU can idle within:

• C0: active. This is the active state while running an application.

• C1: idle

• C2: idle and power gated. This is a deeper sleep state and will have a greater latency when moving back to the
C0 state, compared to when the CPU is coming out of C1.

Disabling C2 is important for running with a high performance, low-latency network. To disable power-gating on all
cores run the following on Linux systems:

cpupower idle-set -d 2

Note that the cpupower tool must be installed, as it is not part of the base packages of most Linux® distributions. The
package needed varies with the respective Linux distribution.

Ubuntu

sudo apt install linux-tools-common

Red Hat Enterprise Linux

sudo yum install cpupowerutils

SUSE Linux Enterprise Server 15

sudo zypper install cpupower

29.3.1.2.2 AMD-IOPM-UTIL

This section applies to AMD EPYC™ 7002 processors to optimize advanced Dynamic Power Management (DPM) in
the I/O logic (see NBIO description above) for performance. Certain I/O workloads may benefit from disabling this
power management. This utility disables DPM for all PCI-e root complexes in the system and locks the logic into the
highest performance operational mode.

Disabling I/O DPM will reduce the latency and/or improve the throughput of low-bandwidth messages for PCI-e In-
finiBand NICs and GPUs. Other workloads with low-bandwidth bursty PCI-e I/O characteristics may benefit as well
if multiple such PCI-e devices are installed in the system.

172 Chapter 29. Tuning Guides

ROCm Documentation, Release 5.0.1

The actions of the utility do not persist across reboots. There is no need to change any existing firmware settings when
using this utility. The “Preferred I/O” and “Enhanced Preferred I/O” settings should remain unchanged at enabled.

Tip: The recommended method to use the utility is either to create a system start-up script, for example, a one-shot
systemd service unit, or run the utility when starting up a job scheduler on the system. The installer packages (see
Power Management Utility) will create and enable a systemd service unit for you. This service unit is configured to
run in one-shot mode. This means that even when the service unit runs as expected, the status of the service unit will
show inactive. This is the expected behavior when the utility runs normally. If the service unit shows failed, the utility
did not run as expected. The output in either case can be shown with the systemctl status command.

Stopping the service unit has no effect since the utility does not leave anything running. To undo the effects of the
utility, disable the service unit with the systemctl disable command and reboot the system.

The utility does not have any command-line options, and it must be run with super-user permissions.

29.3.1.2.3 Systems with 256 CPU Threads - IOMMU Configuration

For systems that have 256 logical CPU cores or more (e.g., 64-core AMD EPYC™ 7763 in a dual-socket configuration
and SMT enabled), setting the Input-Output Memory Management Unit (IOMMU) configuration to “disabled” can
limit the number of available logical cores to 255. The reason is that the Linux® kernel disables X2APIC in this case
and falls back to Advanced Programmable Interrupt Controller (APIC), which can only enumerate a maximum of 255
(logical) cores.

If SMT is enabled by setting “CCD/Core/Thread Enablement > SMT Control” to “enable”, the following steps can be
applied to the system to enable all (logical) cores of the system:

• In the server BIOS, set IOMMU to “Enabled”.

• When configuring the Grub boot loader, add the following arguments for the Linux kernel: amd_iommu=on
iommu=pt

• Update Grub to use the modified configuration:

sudo grub2-mkconfig -o /boot/grub2/grub.cfg

• Reboot the system.

• Verify IOMMU passthrough mode by inspecting the kernel log via dmesg:

[...]
[0.000000] Kernel command line: [...] amd_iommu=on iommu=pt

[...]

Once the system is properly configured, the AMD ROCm platform can be installed.

29.3. MI200 High Performance Computing and Tuning Guide 173

https://developer.amd.com/iopm-utility/

ROCm Documentation, Release 5.0.1

29.3.2 System Management

For a complete guide on how to install/manage/uninstall ROCm on Linux, refer to Deploy ROCm on Linux. For verify-
ing that the installation was successful, refer to Verifying Kernel-mode Driver Installation and Validation Tools. Should
verification fail, consult the System Debugging Guide.

29.3.2.1 Hardware Verification with ROCm

The AMD ROCm™ platform ships with tools to query the system structure. To query the GPU hardware, the rocm-smi
command is available. It can show available GPUs in the system with their device ID and their respective firmware (or
VBIOS) versions:

Fig. 29.1: rocm-smi --showhw output on an 8*MI200 system.

To see the system structure, the localization of the GPUs in the system, and the fabric connections between the system
components, use:

• The first block of the output shows the distance between the GPUs similar to what the numactl command outputs
for the NUMA domains of a system. The weight is a qualitative measure for the “distance” data must travel to
reach one GPU from another one. While the values do not carry a special (physical) meaning, the higher the
value the more hops are needed to reach the destination from the source GPU.

• The second block has a matrix named “Hops between two GPUs”, where 1 means the two GPUs are directly
connected with XGMI, 2 means both GPUs are linked to the same CPU socket and GPU communications will
go through the CPU, and 3 means both GPUs are linked to different CPU sockets so communications will go
through both CPU sockets. This number is one for all GPUs in this case since they are all connected to each
other through the Infinity Fabric links.

• The third block outputs the link types between the GPUs. This can either be “XGMI” for AMD Infinity Fabric
links or “PCIE” for PCIe Gen4 links.

• The fourth block reveals the localization of a GPU with respect to the NUMA organization of the shared memory
of the AMD EPYC processors.

To query the compute capabilities of the GPU devices, use rocminfo command. It lists specific details about the GPU
devices, including but not limited to the number of compute units, width of the SIMD pipelines, memory information,
and instruction set architecture:

For a complete list of architecture (LLVM target) names, refer to GPU OS Support.

174 Chapter 29. Tuning Guides

ROCm Documentation, Release 5.0.1

Fig. 29.2: rocm-smi --showtopo output on an 8*MI200 system.

29.3. MI200 High Performance Computing and Tuning Guide 175

ROCm Documentation, Release 5.0.1

Fig. 29.3: rocminfo output fragment on an 8*MI200 system.

176 Chapter 29. Tuning Guides

ROCm Documentation, Release 5.0.1

29.3.2.2 Testing Inter-device Bandwidth

Section 29.4.2.1 showed the rocm-smi --showtopo command to show how the system structure and how the GPUs
are located and connected in this structure. For more details, the rocm-bandwidth-test can run benchmarks to show
the effective link bandwidth between the components of the system.

The ROCm Bandwidth Test program can be installed with the following package-manager commands:

Ubuntu

sudo apt install rocm-bandwidth-test

Red Hat Enterprise Linux

sudo yum install rocm-bandwidth-test

SUSE Linux Enterprise Server 15

sudo zypper install rocm-bandwidth-test

Alternatively, the source code can be downloaded and built from source.

The output will list the available compute devices (CPUs and GPUs), including their device ID and PCIe ID:

Fig. 29.4: rocm-bandwidth-test output fragment on an 8*MI200 system listing devices.

The output will also show a matrix that contains a “1” if a device can communicate to another device (CPU and GPU)
of the system and it will show the NUMA distance (similar to rocm-smi):

The output also contains the measured bandwidth for unidirectional and bidirectional transfers between the devices
(CPU and GPU):

29.3. MI200 High Performance Computing and Tuning Guide 177

https://github.com/RadeonOpenCompute/rocm_bandwidth_test

ROCm Documentation, Release 5.0.1

Fig. 29.5: rocm-bandwidth-test output fragment on an 8*MI200 system showing inter-device access matrix and
NUMA distances.

178 Chapter 29. Tuning Guides

ROCm Documentation, Release 5.0.1

Fig. 29.6: rocm-bandwidth-test output fragment on an 8*MI200 system showing uni- and bidirectional bandwidths.

29.3. MI200 High Performance Computing and Tuning Guide 179

ROCm Documentation, Release 5.0.1

29.4 MI100 High Performance Computing and Tuning Guide

29.4.1 System Settings

This chapter reviews system settings that are required to configure the system for AMD Instinct™ MI100 accelerators
and that can improve performance of the GPUs. It is advised to configure the system for best possible host configuration
according to the “High Performance Computing (HPC) Tuning Guide for AMD EPYC™ 7002 Series Processors” or
“High Performance Computing (HPC) Tuning Guide for AMD EPYC™ 7003 Series Processors” depending on the
processor generation of the system.

In addition to the BIOS settings listed below the following settings (System BIOS Settings) will also have to be enacted
via the command line (see Operating System Settings):

• Core C states

• AMD-PCI-UTIL (on AMD EPYC™ 7002 series processors)

• IOMMU (if needed)

29.4.1.1 System BIOS Settings

For maximum MI100 GPU performance on systems with AMD EPYC™ 7002 series processors (codename “Rome”)
and AMI System BIOS, the following configuration of System BIOS settings has been validated. These settings must
be used for the qualification process and should be set as default values for the system BIOS. Analogous settings for
other non-AMI System BIOS providers could be set similarly. For systems with Intel processors, some settings may
not apply or be available as listed in Table 29.2.

Table 29.2: Recommended settings for the system BIOS in a GIGABYTE
platform.

BIOS Setting Location Parameter Value Comments
Advanced / PCI Subsystem Settings Above 4G Decoding Enabled GPU Large BAR Support
AMD CBS / CPU Common Options Global C-state Control Auto Global Core C-States
AMD CBS / CPU Common Options CCD/Core/Thread Enablement Accept Global Core C-States
AMD CBS / CPU Common Options / Performance SMT Control Disable Global Core C-States
AMD CBS / DF Common Options / Memory Addressing NUMA nodes per socket NPS 1,2,4 NUMA Nodes (NPS)
AMD CBS / DF Common Options / Memory Addressing Memory interleaving Auto Numa Nodes (NPS)
AMD CBS / DF Common Options / Link 4-link xGMI max speed 18 Gbps Set AMD CPU xGMI speed to highest rate supported
AMD CBS / DF Common Options / Link 3-link xGMI max speed 18 Gbps Set AMD CPU xGMI speed to highest rate supported
AMD CBS / NBIO Common Options IOMMU Disable
AMD CBS / NBIO Common Options PCIe Ten Bit Tag Support Enable
AMD CBS / NBIO Common Options Preferred IO Manual
AMD CBS / NBIO Common Options Preferred IO Bus “Use lspci to find pci device id”
AMD CBS / NBIO Common Options Enhanced Preferred IO Mode Enable
AMD CBS / NBIO Common Options / SMU Common Options Determinism Control Manual
AMD CBS / NBIO Common Options / SMU Common Options Determinism Slider Power
AMD CBS / NBIO Common Options / SMU Common Options cTDP Control Manual
AMD CBS / NBIO Common Options / SMU Common Options cTDP 240
AMD CBS / NBIO Common Options / SMU Common Options Package Power Limit Control Manual
AMD CBS / NBIO Common Options / SMU Common Options Package Power Limit 240
AMD CBS / NBIO Common Options / SMU Common Options xGMI Link Width Control Manual
AMD CBS / NBIO Common Options / SMU Common Options xGMI Force Link Width 2
AMD CBS / NBIO Common Options / SMU Common Options xGMI Force Link Width Control Force

continues on next page

180 Chapter 29. Tuning Guides

ROCm Documentation, Release 5.0.1

Table 29.2 – continued from previous page
BIOS Setting Location Parameter Value Comments
AMD CBS / NBIO Common Options / SMU Common Options APBDIS 1
AMD CBS / NBIO Common Options / SMU Common Options DF C-states Auto
AMD CBS / NBIO Common Options / SMU Common Options Fixed SOC P-state P0
AMD CBS / UMC Common Options / DDR4 Common Options Enforce POR Accept
AMD CBS / UMC Common Options / DDR4 Common Options / Enforce POR Overclock Enabled
AMD CBS / UMC Common Options / DDR4 Common Options / Enforce POR Memory Clock Speed 1600 MHz Set to max Memory Speed, if using 3200 MHz DIMMs
AMD CBS / UMC Common Options / DDR4 Common Options / DRAM Controller Configuration / DRAM Power Options Power Down Enable Disabled RAM Power Down
AMD CBS / Security TSME Disabled Memory Encryption

29.4.1.1.1 NBIO Link Clock Frequency

The NBIOs (4x per AMD EPYC™ processor) are the serializers/deserializers (also known as “SerDes”) that convert
and prepare the I/O signals for the processor’s 128 external I/O interface lanes (32 per NBIO).

LCLK (short for link clock frequency) controls the link speed of the internal bus that connects the NBIO silicon with
the data fabric. All data between the processor and its PCIe lanes flow to the data fabric based on these LCLK frequency
settings. The link clock frequency of the NBIO components need to be forced to the maximum frequency for optimal
PCIe performance.

For AMD EPYC™ 7002 series processors, this setting cannot be modified via configuration options in the server
BIOS alone. Instead, the AMD-IOPM-UTIL (see Section 3.2.3) must be run at every server boot to disable Dynamic
Power Management for all PCIe Root Complexes and NBIOs within the system and to lock the logic into the highest
performance operational mode.

For AMD EPYC™ 7003 series processors, configuring all NBIOs to be in “Enhanced Preferred I/O” mode is sufficient
to enable highest link clock frequency for the NBIO components.

29.4.1.1.2 Memory Configuration

For the memory addressing modes (see Table 29.2), especially the number of NUMA nodes per socket/processor (NPS),
the recommended setting is to follow the guidance of the “High Performance Computing (HPC) Tuning Guide for AMD
EPYC™ 7002 Series Processors” and “High Performance Computing (HPC) Tuning Guide for AMD EPYC™ 7003
Series Processors” to provide the optimal configuration for host side computation.

If the system is set to one NUMA domain per socket/processor (NPS1), bidirectional copy bandwidth between host
memory and GPU memory may be slightly higher (up to about 16% more) than with four NUMA domains per socket
processor (NPS4). For memory bandwidth sensitive applications using MPI, NPS4 is recommended. For applications
that are not optimized for NUMA locality, NPS1 is the recommended setting.

29.4.1.2 Operating System Settings

29.4.1.2.1 CPU Core State - “C States”

There are several Core-States, or C-states that an AMD EPYC CPU can idle within:

• C0: active. This is the active state while running an application.

• C1: idle

• C2: idle and power gated. This is a deeper sleep state and will have a greater latency when moving back to the
C0 state, compared to when the CPU is coming out of C1.

29.4. MI100 High Performance Computing and Tuning Guide 181

ROCm Documentation, Release 5.0.1

Disabling C2 is important for running with a high performance, low-latency network. To disable power-gating on all
cores run the following on Linux systems:

cpupower idle-set -d 2

Note that the cpupower tool must be installed, as it is not part of the base packages of most Linux® distributions. The
package needed varies with the respective Linux distribution.

Ubuntu

sudo apt install linux-tools-common

Red Hat Enterprise Linux

sudo yum install cpupowerutils

SUSE Linux Enterprise Server 15

sudo zypper install cpupower

29.4.1.2.2 AMD-IOPM-UTIL

This section applies to AMD EPYC™ 7002 processors to optimize advanced Dynamic Power Management (DPM) in
the I/O logic (see NBIO description above) for performance. Certain I/O workloads may benefit from disabling this
power management. This utility disables DPM for all PCI-e root complexes in the system and locks the logic into the
highest performance operational mode.

Disabling I/O DPM will reduce the latency and/or improve the throughput of low-bandwidth messages for PCI-e In-
finiBand NICs and GPUs. Other workloads with low-bandwidth bursty PCI-e I/O characteristics may benefit as well
if multiple such PCI-e devices are installed in the system.

The actions of the utility do not persist across reboots. There is no need to change any existing firmware settings when
using this utility. The “Preferred I/O” and “Enhanced Preferred I/O” settings should remain unchanged at enabled.

Tip: The recommended method to use the utility is either to create a system start-up script, for example, a one-shot
systemd service unit, or run the utility when starting up a job scheduler on the system. The installer packages (see
Power Management Utility) will create and enable a systemd service unit for you. This service unit is configured to
run in one-shot mode. This means that even when the service unit runs as expected, the status of the service unit will
show inactive. This is the expected behavior when the utility runs normally. If the service unit shows failed, the utility
did not run as expected. The output in either case can be shown with the systemctl status command.

Stopping the service unit has no effect since the utility does not leave anything running. To undo the effects of the
utility, disable the service unit with the systemctl disable command and reboot the system.

The utility does not have any command-line options, and it must be run with super-user permissions.

182 Chapter 29. Tuning Guides

https://developer.amd.com/iopm-utility/

ROCm Documentation, Release 5.0.1

29.4.1.2.3 Systems with 256 CPU Threads - IOMMU Configuration

For systems that have 256 logical CPU cores or more (e.g., 64-core AMD EPYC™ 7763 in a dual-socket configuration
and SMT enabled), setting the Input-Output Memory Management Unit (IOMMU) configuration to “disabled” can
limit the number of available logical cores to 255. The reason is that the Linux® kernel disables X2APIC in this case
and falls back to Advanced Programmable Interrupt Controller (APIC), which can only enumerate a maximum of 255
(logical) cores.

If SMT is enabled by setting “CCD/Core/Thread Enablement > SMT Control” to “enable”, the following steps can be
applied to the system to enable all (logical) cores of the system:

• In the server BIOS, set IOMMU to “Enabled”.

• When configuring the Grub boot loader, add the following arguments for the Linux kernel: amd_iommu=on
iommu=pt

• Update Grub to use the modified configuration:

sudo grub2-mkconfig -o /boot/grub2/grub.cfg

• Reboot the system.

• Verify IOMMU passthrough mode by inspecting the kernel log via dmesg:

[...]
[0.000000] Kernel command line: [...] amd_iommu=on iommu=pt

[...]

Once the system is properly configured, the AMD ROCm platform can be installed.

29.4.2 System Management

For a complete guide on how to install/manage/uninstall ROCm on Linux, refer to Deploy ROCm on Linux. For verify-
ing that the installation was successful, refer to Verifying Kernel-mode Driver Installation and Validation Tools. Should
verification fail, consult the System Debugging Guide.

29.4.2.1 Hardware Verification with ROCm

The AMD ROCm™ platform ships with tools to query the system structure. To query the GPU hardware, the rocm-smi
command is available. It can show available GPUs in the system with their device ID and their respective firmware (or
VBIOS) versions:

Another important query is to show the system structure, the localization of the GPUs in the system, and the fabric
connections between the system components:

The previous command shows the system structure in four blocks:

• The first block of the output shows the distance between the GPUs similar to what the numactl command outputs
for the NUMA domains of a system. The weight is a qualitative measure for the “distance” data must travel to
reach one GPU from another one. While the values do not carry a special (physical) meaning, the higher the
value the more hops are needed to reach the destination from the source GPU.

• The second block has a matrix for the number of hops required to send data from one GPU to another. For the
GPUs in the local hive, this number is one, while for the others it is three (one hop to leave the hive, one hop
across the processors, and one hop within the destination hive).

• The third block outputs the link types between the GPUs. This can either be “XGMI” for AMD Infinity Fabric™
links or “PCIE” for PCIe Gen4 links.

29.4. MI100 High Performance Computing and Tuning Guide 183

ROCm Documentation, Release 5.0.1

Fig. 29.7: rocm-smi --showhw output on an 8*MI100 system.

• The fourth block reveals the localization of a GPU with respect to the NUMA organization of the shared memory
of the AMD EPYC™ processors.

To query the compute capabilities of the GPU devices, the rocminfo command is available with the AMD ROCm™
platform. It lists specific details about the GPU devices, including but not limited to the number of compute units,
width of the SIMD pipelines, memory information, and instruction set architecture:

For a complete list of architecture (LLVM target) names, refer to GPU OS Support.

29.4.2.2 Testing Inter-device Bandwidth

Section 29.4.2.1 showed the rocm-smi --showtopo command to show how the system structure and how the GPUs
are located and connected in this structure. For more details, the rocm-bandwidth-test can run benchmarks to show
the effective link bandwidth between the components of the system.

The ROCm Bandwidth Test program can be installed with the following package-manager commands:

Ubuntu

sudo apt install rocm-bandwidth-test

Red Hat Enterprise Linux

sudo yum install rocm-bandwidth-test

184 Chapter 29. Tuning Guides

ROCm Documentation, Release 5.0.1

Fig. 29.8: rocm-smi --showtopo output on an 8*MI100 system.

29.4. MI100 High Performance Computing and Tuning Guide 185

ROCm Documentation, Release 5.0.1

Fig. 29.9: rocminfo output fragment on an 8*MI100 system.

186 Chapter 29. Tuning Guides

ROCm Documentation, Release 5.0.1

SUSE Linux Enterprise Server 15

sudo zypper install rocm-bandwidth-test

Alternatively, the source code can be downloaded and built from source.

The output will list the available compute devices (CPUs and GPUs):

Fig. 29.10: rocm-bandwidth-test output fragment on an 8*MI100 system listing devices.

The output will also show a matrix that contains a “1” if a device can communicate to another device (CPU and GPU)
of the system and it will show the NUMA distance (similar to rocm-smi):

Fig. 29.11: rocm-bandwidth-test output fragment on an 8*MI100 system showing inter-device access matrix.

The output also contains the measured bandwidth for unidirectional and bidirectional transfers between the devices
(CPU and GPU):

29.4. MI100 High Performance Computing and Tuning Guide 187

https://github.com/RadeonOpenCompute/rocm_bandwidth_test

ROCm Documentation, Release 5.0.1

Fig. 29.12: rocm-bandwidth-test output fragment on an 8*MI100 system showing inter-device NUMA distance.

Fig. 29.13: rocm-bandwidth-test output fragment on an 8*MI100 system showing uni- and bidirectional band-
widths.

188 Chapter 29. Tuning Guides

ROCm Documentation, Release 5.0.1

29.5 RDNA2 Workstation Tuning Guide

29.5.1 System Settings

This chapter reviews system settings that are required to configure the system for ROCm virtualization on RDNA2-
based AMD Radeon™ PRO GPUs. Installing ROCm on Bare Metal follows the routine ROCm installation procedure.

To enable ROCm virtualization on V620, one has to setup Single Root I/O Virtualization (SR-IOV) in the BIOS via
setting found in the following (System BIOS Settings). A tested configuration can be followed in (Operating System
Settings).

Attention: SR-IOV is supported on V620 and unsupported on W6800.

29.5.1.1 System BIOS Settings

Table 29.3: Settings for the system BIOS in an ASrock platform.

Advanced / North Bridge Configura-
tion

IOMMU En-
abled

Input-output Memory Management
Unit

Advanced / North Bridge Configuration ACS Enable Enabled Access Control Service
Advanced / PCIe/PCI/PnP Configura-
tion

SR-IOV Support Enabled Single Root I/O Virtualization

Advanced / ACPI settings PCI AER Sup-
port

Enabled Advanced Error Reporting

To set up the host, update SBIOS to version 1.2a.

29.5.1.2 Operating System Settings

Table 29.4: System Configuration Prerequisites

Server SMC 4124 [AS -4124GS-TNR]
Host OS Ubuntu 20.04.3 LTS
Host Kernel 5.4.0-97-generic
CPU AMD EPYC 7552 48-Core Processor
GPU RDNA2 V620 (D603GLXE)
SBIOS Version SMC_r_1.2a
VBIOS 113-D603GLXE-077
Guest OS 1 Ubuntu 20.04.5 LTS
Guest OS 2 RHEL 9.0
GIM Driver gim-dkms_1.0.0.1234577_all
VM CPU Cores 32
VM RAM 64 GB

Install the following Kernel-based Virtual Machine (KVM) Hypervisor packages:

29.5. RDNA2 Workstation Tuning Guide 189

https://www.supermicro.com/en/Aplus/system/4U/4124/AS-4124GS-TNR.cfm

ROCm Documentation, Release 5.0.1

sudo apt-get -y install qemu-kvm qemu-utils bridge-utils virt-manager gir1.2-
→˓spiceclientgtk* gir1.2-spice-client-gtk* libvirt-daemon-system dnsmasq-base
sudo virsh net-start default /*to enable Virtual network by default

Enable IOMMU in GRUB settings by adding the following line to /etc/default/grub:

GRUB_CMDLINE_LINUX_DEFAULT="quiet splash amd_iommu=on" for AMD CPU

Update grub and reboot

sudo update=grub
sudo reboot

Install the GPU-IOV Module (GIM, where IOV is I/O Virtualization) driver and follow the steps below. To obtain the
GIM driver, write to us here:

sudo dpkg -i <gim_driver>
sudo reboot
Load Host Driver to Create 1VF
sudo modprobe gim vf_num=1
Note: If GIM driver loaded successfully, we could see "gim info:(gim_init:213)␣
→˓*****Running GIM*****" in dmesg
lspci -d 1002:

Which should output something like:

01:00.0 PCI bridge: Advanced Micro Devices, Inc. [AMD/ATI] Device 1478
02:00.0 PCI bridge: Advanced Micro Devices, Inc. [AMD/ATI] Device 1479
03:00.0 Display controller: Advanced Micro Devices, Inc. [AMD/ATI] Device 73a1
03:02.0 Display controller: Advanced Micro Devices, Inc. [AMD/ATI] Device 73ae → VF

29.5.1.3 Guest OS installation

First, assign GPU virtual function (VF) to VM using the following steps.

1. Shut down the VM.

2. Run virt-manager

3. In the Virtual Machine Manager GUI, select the VM and click Open.

4. In the VM GUI, go to Show Virtual Hardware Details > Add Hardware to configure hardware.

5. Go to Add Hardware > PCI Host Device > VF and click Finish.

Then start the VM.

Finally install ROCm on the virtual machine (VM). For detailed instructions, refer to the ROCm Installation Guide.
For any issue encountered during installation, write to us here.

190 Chapter 29. Tuning Guides

mailto:CloudGPUsupport@amd.com
mailto:CloudGPUsupport@amd.com

ROCm Documentation, Release 5.0.1

Fig. 29.14: Virtual Machine Manager

Fig. 29.15: Virtual Machine Manager

29.5. RDNA2 Workstation Tuning Guide 191

ROCm Documentation, Release 5.0.1

Fig. 29.16: VF Selection

192 Chapter 29. Tuning Guides

CHAPTER

THIRTY

DEEP LEARNING GUIDE

The following sections cover the different framework installations for ROCm and Deep Learning applications. Fig.
30.1 provides the sequential flow for the use of each framework. Refer to the ROCm Compatible Frameworks Release
Notes for each framework’s most current release notes at Deep Learning.

Fig. 30.1: ROCm Compatible Frameworks Flowchart

193

ROCm Documentation, Release 5.0.1

30.1 Frameworks Installation

• How to Install PyTorch?

• How to Install Tensorflow?

• How to Install Magma?

30.2 Magma Installation for ROCm

30.2.1 MAGMA for ROCm

Matrix Algebra on GPU and Multi-core Architectures, abbreviated as MAGMA, is a collection of next-generation
dense linear algebra libraries that is designed for heterogeneous architectures, such as multiple GPUs and multi- or
many-core CPUs.

MAGMA provides implementations for CUDA, HIP, Intel Xeon Phi, and OpenCL™. For more information, refer to
https://icl.utk.edu/magma/index.html.

30.2.1.1 Using MAGMA for PyTorch

Tensor is fundamental to Deep Learning techniques because it provides extensive representational functionalities and
math operations. This data structure is represented as a multidimensional matrix. MAGMA accelerates tensor opera-
tions with a variety of solutions including driver routines, computational routines, BLAS routines, auxiliary routines,
and utility routines.

30.2.1.2 Build MAGMA from Source

To build MAGMA from the source, follow these steps:

1. In the event you want to compile only for your uarch, use:

export PYTORCH_ROCM_ARCH=<uarch>

<uarch> is the architecture reported by the rocminfo command.

2. Use the following:

export PYTORCH_ROCM_ARCH=<uarch>

"install" hipMAGMA into /opt/rocm/magma by copying after build
git clone https://bitbucket.org/icl/magma.git
pushd magma
Fixes memory leaks of magma found while executing linalg UTs
git checkout 5959b8783e45f1809812ed96ae762f38ee701972
cp make.inc-examples/make.inc.hip-gcc-mkl make.inc
echo 'LIBDIR += -L$(MKLROOT)/lib' >> make.inc
echo 'LIB += -Wl,--enable-new-dtags -Wl,--rpath,/opt/rocm/lib -Wl,--rpath,
→˓$(MKLROOT)/lib -Wl,--rpath,/opt/rocm/magma/lib' >> make.inc
echo 'DEVCCFLAGS += --gpu-max-threads-per-block=256' >> make.inc
export PATH="${PATH}:/opt/rocm/bin"
if [[-n "$PYTORCH_ROCM_ARCH"]]; then

(continues on next page)

194 Chapter 30. Deep Learning Guide

https://icl.utk.edu/magma/index.html

ROCm Documentation, Release 5.0.1

(continued from previous page)

amdgpu_targets=`echo $PYTORCH_ROCM_ARCH | sed 's/;/ /g'`
else
amdgpu_targets=`rocm_agent_enumerator | grep -v gfx000 | sort -u | xargs`

fi
for arch in $amdgpu_targets; do
echo "DEVCCFLAGS += --amdgpu-target=$arch" >> make.inc

done
hipcc with openmp flag may cause isnan() on __device__ not to be found; depending␣
→˓on context, compiler may attempt to match with host definition
sed -i 's/^FOPENMP/#FOPENMP/g' make.inc
make -f make.gen.hipMAGMA -j $(nproc)
LANG=C.UTF-8 make lib/libmagma.so -j $(nproc) MKLROOT=/opt/conda
make testing/testing_dgemm -j $(nproc) MKLROOT=/opt/conda
popd
mv magma /opt/rocm

30.2.2 References

C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens and Z. Wojna, “Rethinking the Inception Architecture for Computer
Vision,” CoRR, p. abs/1512.00567, 2015

PyTorch, [Online]. Available: https://pytorch.org/vision/stable/index.html

PyTorch, [Online]. Available: https://pytorch.org/hub/pytorch_vision_inception_v3/

Stanford, [Online]. Available: http://cs231n.stanford.edu/

Wikipedia, [Online]. Available: https://en.wikipedia.org/wiki/Cross_entropy

AMD, “ROCm issues,” [Online]. Available: https://github.com/RadeonOpenCompute/ROCm/issues

PyTorch, [Online image]. https://pytorch.org/assets/brand-guidelines/PyTorch-Brand-Guidelines.pdf

TensorFlow, [Online image]. https://www.tensorflow.org/extras/tensorflow_brand_guidelines.pdf

MAGMA, [Online image]. https://bitbucket.org/icl/magma/src/master/docs/

Docker, [Online]. https://docs.docker.com/get-started/overview/

Torchvision, [Online]. Available https://pytorch.org/vision/master/index.html?highlight=torchvision#
module-torchvision

30.3 PyTorch Installation for ROCm

30.3.1 PyTorch

PyTorch is an open source Machine Learning Python library, primarily differentiated by Tensor computing with GPU
acceleration and a type-based automatic differentiation. Other advanced features include:

• Support for distributed training

• Native ONNX support

• C++ front-end

• The ability to deploy at scale using TorchServe

30.3. PyTorch Installation for ROCm 195

https://pytorch.org/vision/stable/index.html
https://pytorch.org/hub/pytorch_vision_inception_v3/
http://cs231n.stanford.edu/
https://en.wikipedia.org/wiki/Cross_entropy
https://github.com/RadeonOpenCompute/ROCm/issues
https://pytorch.org/assets/brand-guidelines/PyTorch-Brand-Guidelines.pdf
https://www.tensorflow.org/extras/tensorflow_brand_guidelines.pdf
https://bitbucket.org/icl/magma/src/master/docs/
https://docs.docker.com/get-started/overview/
https://pytorch.org/vision/master/index.html?highlight=torchvision#module-torchvision
https://pytorch.org/vision/master/index.html?highlight=torchvision#module-torchvision

ROCm Documentation, Release 5.0.1

• A production-ready deployment mechanism through TorchScript

30.3.1.1 Installing PyTorch

To install ROCm on bare metal, refer to the sections GPU and OS Support (Linux) and Compatibility for hardware, soft-
ware and 3rd-party framework compatibility between ROCm and PyTorch. The recommended option to get a PyTorch
environment is through Docker. However, installing the PyTorch wheels package on bare metal is also supported.

30.3.1.1.1 Option 1 (Recommended): Use Docker Image with PyTorch Pre-Installed

Using Docker gives you portability and access to a prebuilt Docker container that has been rigorously tested within
AMD. This might also save on the compilation time and should perform as it did when tested without facing potential
installation issues.

Follow these steps:

1. Pull the latest public PyTorch Docker image.

docker pull rocm/pytorch:latest

Optionally, you may download a specific and supported configuration with different user-space ROCm versions,
PyTorch versions, and supported operating systems. To download the PyTorch Docker image, refer to https:
//hub.docker.com/r/rocm/pytorch.

2. Start a Docker container using the downloaded image.

docker run -it --cap-add=SYS_PTRACE --security-opt seccomp=unconfined --device=/dev/
→˓kfd --device=/dev/dri --group-add video --ipc=host --shm-size 8G rocm/
→˓pytorch:latest

Note: This will automatically download the image if it does not exist on the host. You can also pass the -v
argument to mount any data directories from the host onto the container.

30.3.1.1.2 Option 2: Install PyTorch Using Wheels Package

PyTorch supports the ROCm platform by providing tested wheels packages. To access this feature, refer to https:
//pytorch.org/get-started/locally/ and choose the “ROCm” compute platform. Fig. 30.2 is a matrix from http://pytorch.
org/ that illustrates the installation compatibility between ROCm and the PyTorch build.

To install PyTorch using the wheels package, follow these installation steps:

1. Choose one of the following options: a. Obtain a base Docker image with the correct user-space ROCm version
installed from https://hub.docker.com/repository/docker/rocm/dev-ubuntu-20.04.

or

b. Download a base OS Docker image and install ROCm following the installation directions in the section
Installation. ROCm 5.2 is installed in this example, as supported by the installation matrix from http://pytorch.
org/.

or

c. Install on bare metal. Skip to Step 3.

196 Chapter 30. Deep Learning Guide

https://hub.docker.com/r/rocm/pytorch
https://hub.docker.com/r/rocm/pytorch
https://pytorch.org/get-started/locally/
https://pytorch.org/get-started/locally/
http://pytorch.org/
http://pytorch.org/
https://hub.docker.com/repository/docker/rocm/dev-ubuntu-20.04
http://pytorch.org/
http://pytorch.org/

ROCm Documentation, Release 5.0.1

Fig. 30.2: Installation Matrix from Pytorch

docker run -it --device=/dev/kfd --device=/dev/dri --group-add video rocm/dev-
→˓ubuntu-20.04:latest

2. Start the Docker container, if not installing on bare metal.

docker run -it --device=/dev/kfd --device=/dev/dri --group-add video rocm/dev-
→˓ubuntu-20.04:latest

3. Install any dependencies needed for installing the wheels package.

sudo apt update
sudo apt install libjpeg-dev python3-dev
pip3 install wheel setuptools

4. Install torch, torchvision, and torchaudio as specified by the installation matrix.

Note: ROCm 5.2 PyTorch wheel in the command below is shown for reference.

pip3 install --pre torch torchvision torchaudio --extra-index-url https://download.
→˓pytorch.org/whl/nightly/rocm5.2/

30.3.1.1.3 Option 3: Install PyTorch Using PyTorch ROCm Base Docker Image

A prebuilt base Docker image is used to build PyTorch in this option. The base Docker has all dependencies installed,
including:

• ROCm

• Torchvision

• Conda packages

• Compiler toolchain

Additionally, a particular environment flag (BUILD_ENVIRONMENT) is set, and the build scripts utilize that to determine
the build environment configuration.

30.3. PyTorch Installation for ROCm 197

ROCm Documentation, Release 5.0.1

Follow these steps:

1. Obtain the Docker image.

docker pull rocm/pytorch:latest-base

The above will download the base container, which does not contain PyTorch.

2. Start a Docker container using the image.

docker run -it --cap-add=SYS_PTRACE --security-opt seccomp=unconfined --device=/dev/
→˓kfd --device=/dev/dri --group-add video --ipc=host --shm-size 8G rocm/
→˓pytorch:latest-base

You can also pass the -v argument to mount any data directories from the host onto the container.

3. Clone the PyTorch repository.

cd ~
git clone https://github.com/pytorch/pytorch.git
cd pytorch
git submodule update --init --recursive

4. Build PyTorch for ROCm.

Note: By default in the rocm/pytorch:latest-base, PyTorch builds for these architectures simultaneously:

• gfx900

• gfx906

• gfx908

• gfx90a

• gfx1030

5. To determine your AMD uarch, run:

rocminfo | grep gfx

6. In the event you want to compile only for your uarch, use:

export PYTORCH_ROCM_ARCH=<uarch>

<uarch> is the architecture reported by the rocminfo command.

7. Build PyTorch using the following command:

./.jenkins/pytorch/build.sh

This will first convert PyTorch sources for HIP compatibility and build the PyTorch framework.

8. Alternatively, build PyTorch by issuing the following commands:

python3 tools/amd_build/build_amd.py
USE_ROCM=1 MAX_JOBS=4 python3 setup.py install --user

198 Chapter 30. Deep Learning Guide

ROCm Documentation, Release 5.0.1

30.3.1.1.4 Option 4: Install Using PyTorch Upstream Docker File

Instead of using a prebuilt base Docker image, you can build a custom base Docker image using scripts from the
PyTorch repository. This will utilize a standard Docker image from operating system maintainers and install all the
dependencies required to build PyTorch, including

• ROCm

• Torchvision

• Conda packages

• Compiler toolchain

Follow these steps:

1. Clone the PyTorch repository on the host.

cd ~
git clone https://github.com/pytorch/pytorch.git
cd pytorch
git submodule update --init --recursive

2. Build the PyTorch Docker image.

cd.circleci/docker
./build.sh pytorch-linux-bionic-rocm<version>-py3.7
eg. ./build.sh pytorch-linux-bionic-rocm3.10-py3.7

This should be complete with a message “Successfully build <image_id>.”

3. Start a Docker container using the image:

docker run -it --cap-add=SYS_PTRACE --security-opt
seccomp=unconfined --device=/dev/kfd --device=/dev/dri --group-add
video --ipc=host --shm-size 8G <image_id>

You can also pass -v argument to mount any data directories from the host onto the container.

4. Clone the PyTorch repository.

cd ~
git clone https://github.com/pytorch/pytorch.git
cd pytorch
git submodule update --init --recursive

5. Build PyTorch for ROCm.

Note: By default in the rocm/pytorch:latest-base, PyTorch builds for these architectures simultaneously:

• gfx900

• gfx906

• gfx908

• gfx90a

• gfx1030

30.3. PyTorch Installation for ROCm 199

ROCm Documentation, Release 5.0.1

6. To determine your AMD uarch, run:

rocminfo | grep gfx

7. If you want to compile only for your uarch:

export PYTORCH_ROCM_ARCH=<uarch>

<uarch> is the architecture reported by the rocminfo command.

8. Build PyTorch using:

./.jenkins/pytorch/build.sh

This will first convert PyTorch sources to be HIP compatible and then build the PyTorch framework.

Alternatively, build PyTorch by issuing the following commands:

python3 tools/amd_build/build_amd.py
USE_ROCM=1 MAX_JOBS=4 python3 setup.py install --user

30.3.1.2 Test the PyTorch Installation

You can use PyTorch unit tests to validate a PyTorch installation. If using a prebuilt PyTorch Docker image from
AMD ROCm DockerHub or installing an official wheels package, these tests are already run on those configurations.
Alternatively, you can manually run the unit tests to validate the PyTorch installation fully.

Follow these steps:

1. Test if PyTorch is installed and accessible by importing the torch package in Python.

Note: Do not run in the PyTorch git folder.

python3 -c 'import torch' 2> /dev/null && echo 'Success' || echo 'Failure'

2. Test if the GPU is accessible from PyTorch. In the PyTorch framework, torch.cuda is a generic mechanism to
access the GPU; it will access an AMD GPU only if available.

python3 -c 'import torch; print(torch.cuda.is_available())'

3. Run the unit tests to validate the PyTorch installation fully. Run the following command from the PyTorch home
directory:

BUILD_ENVIRONMENT=${BUILD_ENVIRONMENT:-rocm} ./.jenkins/pytorch/test.sh

This ensures that even for wheel installs in a non-controlled environment, the required environment variable will
be set to skip certain unit tests for ROCm.

Note: Make sure the PyTorch source code is corresponding to the PyTorch wheel or installation in the Docker
image. Incompatible PyTorch source code might give errors when running the unit tests.

This will first install some dependencies, such as a supported torchvision version for PyTorch. torchvision
is used in some PyTorch tests for loading models. Next, this will run all the unit tests.

200 Chapter 30. Deep Learning Guide

ROCm Documentation, Release 5.0.1

Note: Some tests may be skipped, as appropriate, based on your system configuration. All features of PyTorch
are not supported on ROCm, and the tests that evaluate these features are skipped. In addition, depending on the
host memory, or the number of available GPUs, other tests may be skipped. No test should fail if the compilation
and installation are correct.

4. Run individual unit tests with the following command:

PYTORCH_TEST_WITH_ROCM=1 python3 test/test_nn.py --verbose

test_nn.py can be replaced with any other test set.

30.3.1.3 Run a Basic PyTorch Example

The PyTorch examples repository provides basic examples that exercise the functionality of the framework. MNIST
(Modified National Institute of Standards and Technology) database is a collection of handwritten digits that may be
used to train a Convolutional Neural Network for handwriting recognition. Alternatively, ImageNet is a database of
images used to train a network for visual object recognition.

Follow these steps:

1. Clone the PyTorch examples repository.

git clone https://github.com/pytorch/examples.git

2. Run the MNIST example.

cd examples/mnist

3. Follow the instructions in the README file in this folder. In this case:

pip3 install -r requirements.txt
python3 main.py

4. Run the ImageNet example.

cd examples/imagenet

5. Follow the instructions in the README file in this folder. In this case:

pip3 install -r requirements.txt
python3 main.py

30.3.2 References

C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens and Z. Wojna, “Rethinking the Inception Architecture for Computer
Vision,” CoRR, p. abs/1512.00567, 2015

PyTorch, [Online]. Available: https://pytorch.org/vision/stable/index.html

PyTorch, [Online]. Available: https://pytorch.org/hub/pytorch_vision_inception_v3/

Stanford, [Online]. Available: http://cs231n.stanford.edu/

Wikipedia, [Online]. Available: https://en.wikipedia.org/wiki/Cross_entropy

30.3. PyTorch Installation for ROCm 201

https://pytorch.org/vision/stable/index.html
https://pytorch.org/hub/pytorch_vision_inception_v3/
http://cs231n.stanford.edu/
https://en.wikipedia.org/wiki/Cross_entropy

ROCm Documentation, Release 5.0.1

AMD, “ROCm issues,” [Online]. Available: https://github.com/RadeonOpenCompute/ROCm/issues

PyTorch, [Online image]. https://pytorch.org/assets/brand-guidelines/PyTorch-Brand-Guidelines.pdf

TensorFlow, [Online image]. https://www.tensorflow.org/extras/tensorflow_brand_guidelines.pdf

MAGMA, [Online image]. https://bitbucket.org/icl/magma/src/master/docs/

Docker, [Online]. https://docs.docker.com/get-started/overview/

Torchvision, [Online]. Available https://pytorch.org/vision/master/index.html?highlight=torchvision#
module-torchvision

30.4 TensorFlow Installation for ROCm

30.4.1 TensorFlow

TensorFlow is an open source library for solving Machine Learning, Deep Learning, and Artificial Intelligence prob-
lems. It can be used to solve many problems across different sectors and industries but primarily focuses on training
and inference in neural networks. It is one of the most popular and in-demand frameworks and is very active in open
source contribution and development.

30.4.1.1 Installing TensorFlow

The following sections contain options for installing TensorFlow.

30.4.1.1.1 Option 1: Install TensorFlow Using Docker Image

To install ROCm on bare metal, follow the section Installation (Linux). The recommended option to get a TensorFlow
environment is through Docker.

Using Docker provides portability and access to a prebuilt Docker container that has been rigorously tested within
AMD. This might also save compilation time and should perform as tested without facing potential installation issues.
Follow these steps:

1. Pull the latest public TensorFlow Docker image.

docker pull rocm/tensorflow:latest

2. Once you have pulled the image, run it by using the command below:

docker run -it --network=host --device=/dev/kfd --device=/dev/dri
--ipc=host --shm-size 16G --group-add video --cap-add=SYS_PTRACE
--security-opt seccomp=unconfined rocm/tensorflow:latest

202 Chapter 30. Deep Learning Guide

https://github.com/RadeonOpenCompute/ROCm/issues
https://pytorch.org/assets/brand-guidelines/PyTorch-Brand-Guidelines.pdf
https://www.tensorflow.org/extras/tensorflow_brand_guidelines.pdf
https://bitbucket.org/icl/magma/src/master/docs/
https://docs.docker.com/get-started/overview/
https://pytorch.org/vision/master/index.html?highlight=torchvision#module-torchvision
https://pytorch.org/vision/master/index.html?highlight=torchvision#module-torchvision

ROCm Documentation, Release 5.0.1

30.4.1.1.2 Option 2: Install TensorFlow Using Wheels Package

To install TensorFlow using the wheels package, follow these steps:

1. Check the Python version.

python3 --version

If: Then:
The Python version is less than 3.7 Upgrade Python.
The Python version is more than 3.7 Skip this step and go to Step 3.

Note: The supported Python versions are:

• 3.7

• 3.8

• 3.9

• 3.10

sudo apt-get install python3.7 # or python3.8 or python 3.9 or python 3.10

2. Set up multiple Python versions using update-alternatives.

update-alternatives --query python3
sudo update-alternatives --install
/usr/bin/python3 python3 /usr/bin/python[version] [priority]

Note: Follow the instruction in Step 2 for incompatible Python versions.

sudo update-alternatives --config python3

3. Follow the screen prompts, and select the Python version installed in Step 2.

4. Install or upgrade PIP.

sudo apt install python3-pip

To install PIP, use the following:

/usr/bin/python[version] -m pip install --upgrade pip

Upgrade PIP for Python version installed in step 2:

sudo pip3 install --upgrade pip

5. Install TensorFlow for the Python version as indicated in Step 2.

/usr/bin/python[version] -m pip install --user tensorflow-rocm==[wheel-version] --
→˓upgrade

30.4. TensorFlow Installation for ROCm 203

ROCm Documentation, Release 5.0.1

For a valid wheel version for a ROCm release, refer to the instruction below:

sudo apt install rocm-libs rccl

6. Update protobuf to 3.19 or lower.

/usr/bin/python3.7 -m pip install protobuf=3.19.0
sudo pip3 install tensorflow

7. Set the environment variable PYTHONPATH.

export PYTHONPATH="./.local/lib/python[version]/site-packages:$PYTHONPATH" #Use␣
→˓same python version as in step 2

8. Install libraries.

sudo apt install rocm-libs rccl

9. Test installation.

python3 -c 'import tensorflow' 2> /dev/null && echo 'Success' || echo 'Failure'

Note: For details on tensorflow-rocm wheels and ROCm version compatibility, see: https://github.com/
ROCmSoftwarePlatform/tensorflow-upstream/blob/develop-upstream/rocm_docs/tensorflow-rocm-release.md

30.4.1.2 Test the TensorFlow Installation

To test the installation of TensorFlow, run the container image as specified in the previous section Installing TensorFlow.
Ensure you have access to the Python shell in the Docker container.

python3 -c 'import tensorflow' 2> /dev/null && echo ‘Success’ || echo ‘Failure’

30.4.1.3 Run a Basic TensorFlow Example

The TensorFlow examples repository provides basic examples that exercise the framework’s functionality. The MNIST
database is a collection of handwritten digits that may be used to train a Convolutional Neural Network for handwriting
recognition.

Follow these steps:

1. Clone the TensorFlow example repository.

cd ~
git clone https://github.com/tensorflow/models.git

2. Install the dependencies of the code, and run the code.

#pip3 install requirement.txt
#python mnist_tf.py

204 Chapter 30. Deep Learning Guide

https://github.com/ROCmSoftwarePlatform/tensorflow-upstream/blob/develop-upstream/rocm_docs/tensorflow-rocm-release.md
https://github.com/ROCmSoftwarePlatform/tensorflow-upstream/blob/develop-upstream/rocm_docs/tensorflow-rocm-release.md

ROCm Documentation, Release 5.0.1

30.4.2 References

C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens and Z. Wojna, “Rethinking the Inception Architecture for Computer
Vision,” CoRR, p. abs/1512.00567, 2015

PyTorch, [Online]. Available: https://pytorch.org/vision/stable/index.html

PyTorch, [Online]. Available: https://pytorch.org/hub/pytorch_vision_inception_v3/

Stanford, [Online]. Available: http://cs231n.stanford.edu/

Wikipedia, [Online]. Available: https://en.wikipedia.org/wiki/Cross_entropy

AMD, “ROCm issues,” [Online]. Available: https://github.com/RadeonOpenCompute/ROCm/issues

PyTorch, [Online image]. https://pytorch.org/assets/brand-guidelines/PyTorch-Brand-Guidelines.pdf

TensorFlow, [Online image]. https://www.tensorflow.org/extras/tensorflow_brand_guidelines.pdf

MAGMA, [Online image]. https://bitbucket.org/icl/magma/src/master/docs/

Docker, [Online]. https://docs.docker.com/get-started/overview/

Torchvision, [Online]. Available https://pytorch.org/vision/master/index.html?highlight=torchvision#
module-torchvision

30.4. TensorFlow Installation for ROCm 205

https://pytorch.org/vision/stable/index.html
https://pytorch.org/hub/pytorch_vision_inception_v3/
http://cs231n.stanford.edu/
https://en.wikipedia.org/wiki/Cross_entropy
https://github.com/RadeonOpenCompute/ROCm/issues
https://pytorch.org/assets/brand-guidelines/PyTorch-Brand-Guidelines.pdf
https://www.tensorflow.org/extras/tensorflow_brand_guidelines.pdf
https://bitbucket.org/icl/magma/src/master/docs/
https://docs.docker.com/get-started/overview/
https://pytorch.org/vision/master/index.html?highlight=torchvision#module-torchvision
https://pytorch.org/vision/master/index.html?highlight=torchvision#module-torchvision

ROCm Documentation, Release 5.0.1

206 Chapter 30. Deep Learning Guide

CHAPTER

THIRTYONE

GPU-ENABLED MPI

The Message Passing Interface (MPI) is a standard API for distributed and parallel application development that can
scale to multi-node clusters. To facilitate the porting of applications to clusters with GPUs, ROCm enables various
technologies. These technologies allow users to directly use GPU pointers in MPI calls and enable ROCm-aware MPI
libraries to deliver optimal performance for both intra-node and inter-node GPU-to-GPU communication.

The AMD kernel driver exposes Remote Direct Memory Access (RDMA) through the PeerDirect interfaces to allow
Host Channel Adapters (HCA, a type of Network Interface Card or NIC) to directly read and write to the GPU device
memory with RDMA capabilities. These interfaces are currently registered as a peer_memory_client with Mellanox’s
OpenFabrics Enterprise Distribution (OFED) ib_core kernel module to allow high-speed DMA transfers between
GPU and HCA. These interfaces are used to optimize inter-node MPI message communication.

This chapter exemplifies how to set up Open MPI with the ROCm platform. The Open MPI project is an open source
implementation of the Message Passing Interface (MPI) that is developed and maintained by a consortium of academic,
research, and industry partners.

Several MPI implementations can be made ROCm-aware by compiling them with Unified Communication Framework
(UCX) support. One notable exception is MVAPICH2: It directly supports AMD GPUs without using UCX, and you
can download it here. Use the latest version of the MVAPICH2-GDR package.

The Unified Communication Framework, is an open source cross-platform framework whose goal is to provide a com-
mon set of communication interfaces that targets a broad set of network programming models and interfaces. UCX is
ROCm-aware, and ROCm technologies are used directly to implement various network operation primitives. For more
details on the UCX design, refer to it’s documentation.

31.1 Building UCX

The following section describes how to set up UCX so it can be used to compile Open MPI. The following environment
variables are set, such that all software components will be installed in the same base directory (we assume to install
them in your home directory; for other locations adjust the below environment variables accordingly, and make sure
you have write permission for that location):

export INSTALL_DIR=$HOME/ompi_for_gpu
export BUILD_DIR=/tmp/ompi_for_gpu_build
mkdir -p $BUILD_DIR

The following sequences of build commands assume either the ROCmCC or the AOMP
compiler is active in the environment, which will execute the commands.

207

https://www.mpi-forum.org
http://www.openucx.org/
http://mvapich.cse.ohio-state.edu/downloads/
http://www.openucx.org/documentation

ROCm Documentation, Release 5.0.1

31.2 Install UCX

The next step is to set up UCX by compiling its source code and install it:

export UCX_DIR=$INSTALL_DIR/ucx
cd $BUILD_DIR
git clone https://github.com/openucx/ucx.git -b v1.14.1
cd ucx
./autogen.sh
mkdir build
cd build
../contrib/configure-release -prefix=$UCX_DIR \

--with-rocm=/opt/rocm \
--without-cuda -enable-optimizations -disable-logging \
--disable-debug -disable-assertions \
--disable-params-check -without-java

make -j $(nproc)
make -j $(nproc) install

The following table documents the compatibility of UCX versions with ROCm versions.

31.3 Install Open MPI

These are the steps to build Open MPI:

export OMPI_DIR=$INSTALL_DIR/ompi
cd $BUILD_DIR
git clone --recursive https://github.com/open-mpi/ompi.git \

-b v5.0.x
cd ompi
./autogen.pl
mkdir build
cd build
../configure --prefix=$OMPI_DIR --with-ucx=$UCX_DIR \

--with-rocm=/opt/rocm \
--enable-mca-no-build=btl-uct --enable-mpi1-compatibility \
CC=clang CXX=clang++ FC=flang

make -j $(nproc)
make -j $(nproc) install

31.4 ROCm-enabled OSU

The OSU Micro Benchmarks v5.9 (OMB) can be used to evaluate the performance of various primitives with an AMD
GPU device and ROCm support. This functionality is exposed when configured with --enable-rocm option. We can
use the following steps to compile OMB:

export OSU_DIR=$INSTALL_DIR/osu
cd $BUILD_DIR
wget http://mvapich.cse.ohio-state.edu/download/mvapich/osu-micro-benchmarks-5.9.tar.gz

(continues on next page)

208 Chapter 31. GPU-Enabled MPI

ROCm Documentation, Release 5.0.1

(continued from previous page)

tar xfz osu-micro-benchmarks-5.9.tar.gz
cd osu-micro-benchmarks-5.9
./configure --prefix=$INSTALL_DIR/osu --enable-rocm \

--with-rocm=/opt/rocm \
CC=$OMPI_DIR/bin/mpicc CXX=$OMPI_DIR/bin/mpicxx \
LDFLAGS="-L$OMPI_DIR/lib/ -lmpi -L/opt/rocm/lib/ \
$(hipconfig -C) -lamdhip64" CXXFLAGS="-std=c++11"

make -j $(nproc)

31.5 Intra-node Run

Before running an Open MPI job, it is essential to set some environment variables to ensure that the correct version of
Open MPI and UCX is being used.

export LD_LIBRARY_PATH=$OMPI_DIR/lib:$UCX_DIR/lib:/opt/rocm/lib
export PATH=$OMPI_DIR/bin:$PATH

The following command runs the OSU bandwidth benchmark between the first two GPU devices (i.e., GPU 0 and GPU
1, same OAM) by default inside the same node. It measures the unidirectional bandwidth from the first device to the
other.

$OMPI_DIR/bin/mpirun -np 2 \
-x UCX_TLS=sm,self,rocm \
--mca pml ucx mpi/pt2pt/osu_bw -d rocm D D

To select different devices, for example 2 and 3, use the following command:

export HIP_VISIBLE_DEVICES=2,3
export HSA_ENABLE_SDMA=0

The following output shows the effective transfer bandwidth measured for inter-die data transfer between GPU device
2 and 3 (same OAM). For messages larger than 67MB, an effective utilization of about 150GB/sec is achieved, which
corresponds to 75% of the peak transfer bandwidth of 200GB/sec for that connection:

31.6 Collective Operations

Collective Operations on GPU buffers are best handled through the Unified Collective Communication Library (UCC)
component in Open MPI. For this, the UCC library has to be configured and compiled with ROCm support. An example
for configuring UCC and Open MPI with ROCm support is shown below:

export UCC_DIR=$INSTALL_DIR/ucc
git clone https://github.com/openucx/ucc.git
cd ucc
./configure --with-rocm=/opt/rocm \

--with-ucx=$UCX_DIR \
--prefix=$UCC_DIR

make -j && make install

Configure and compile Open MPI with UCX, UCC, and ROCm support
(continues on next page)

31.5. Intra-node Run 209

ROCm Documentation, Release 5.0.1

Fig. 31.1: Inter-GPU bandwidth with various payload sizes.

210 Chapter 31. GPU-Enabled MPI

ROCm Documentation, Release 5.0.1

(continued from previous page)

cd ompi
./configure --with-rocm=/opt/rocm \

--with-ucx=$UCX_DIR \
--with-ucc=$UCC_DIR
--prefix=$OMPI_DIR

To use the UCC component with an MPI application requires setting some additional parameters:

mpirun --mca pml ucx --mca osc ucx \
--mca coll_ucc_enable 1 \
--mca coll_ucc_priority 100 -np 64 ./my_mpi_app

31.6. Collective Operations 211

ROCm Documentation, Release 5.0.1

212 Chapter 31. GPU-Enabled MPI

CHAPTER

THIRTYTWO

SYSTEM DEBUGGING GUIDE

32.1 ROCm Language and System Level Debug, Flags, and Environ-
ment Variables

Kernel options to avoid: the Ethernet port getting renamed every time you change graphics cards, net.ifnames=0
biosdevname=0

32.2 ROCr Error Code

• 2 Invalid Dimension

• 4 Invalid Group Memory

• 8 Invalid (or Null) Code

• 32 Invalid Format

• 64 Group is too large

• 128 Out of VGPRs

• 0x80000000 Debug Options

32.3 Command to Dump Firmware Version and Get Linux Kernel Ver-
sion

sudo cat /sys/kernel/debug/dri/1/amdgpu_firmware_info

uname -a

213

ROCm Documentation, Release 5.0.1

32.4 Debug Flags

Debug messages when developing/debugging base ROCm driver. You could enable the printing from libhsakmt.so
by setting an environment variable, HSAKMT_DEBUG_LEVEL. Available debug levels are 3-7. The higher level you set,
the more messages will print.

• export HSAKMT_DEBUG_LEVEL=3 : Only pr_err() prints.

• export HSAKMT_DEBUG_LEVEL=4 : pr_err() and pr_warn() print.

• export HSAKMT_DEBUG_LEVEL=5 : We currently do not implement “notice”. Setting to 5 is same as setting to
4.

• export HSAKMT_DEBUG_LEVEL=6 : pr_err(), pr_warn(), and pr_info print.

• export HSAKMT_DEBUG_LEVEL=7 : Everything including pr_debug prints.

32.5 ROCr Level Environment Variables for Debug

HSA_ENABLE_SDMA=0

HSA_ENABLE_INTERRUPT=0

HSA_SVM_GUARD_PAGES=0

HSA_DISABLE_CACHE=1

32.6 Turn Off Page Retry on GFX9/Vega Devices

sudo -s

echo 1 > /sys/module/amdkfd/parameters/noretry

32.7 HIP Environment Variables 3.x

32.7.1 OpenCL Debug Flags

AMD_OCL_WAIT_COMMAND=1 (0 = OFF, 1 = On)

32.8 PCIe-Debug

Refer to ROCm PCIe Debug, https://rocmdocs.amd.com/en/latest/Other_Solutions/PCIe-Debug.html#pcie-debug. For
information on how to debug and profile HIP applications, see HIP Debugging

214 Chapter 32. System Debugging Guide

https://rocm.docs.amd.com/projects/HIP/en/docs-5.0.1/how_to_guides/debugging.html

CHAPTER

THIRTYTHREE

MACHINE LEARNING, DEEP LEARNING, AND ARTIFICIAL
INTELLIGENCE

Inception V3 with PyTorch A collection of detailed and guided examples for working with Inception V3 with PyTorch
on ROCm.

33.1 Inception V3 with PyTorch

33.1.1 Deep Learning Training

Deep Learning models are designed to capture the complexity of the problem and the underlying data. These models
are “deep,” comprising multiple component layers. Training is finding the best parameters for each model layer to
achieve a well-defined objective.

The training data consists of input features in supervised learning, similar to what the learned model is expected to see
during the evaluation or inference phase. The target output is also included, which serves to teach the model. A loss
metric is defined as part of training that evaluates the model’s performance during the training process.

Training also includes the choice of an optimization algorithm that reduces the loss by adjusting the model’s parameters.
Training is an iterative process where training data is fed in, usually split into different batches, with the entirety of the
training data passed during one training epoch. Training usually is run for multiple epochs.

215

ROCm Documentation, Release 5.0.1

33.1.2 Training Phases

Training occurs in multiple phases for every batch of training data. Table 33.1 provides an explanation of the types of
training phases.

Table 33.1: Types of Training Phases

Types
of
Phases
For-
ward
Pass

The input features are fed into the model, whose parameters may be randomly initialized initially. Ac-
tivations (outputs) of each layer are retained during this pass to help in the loss gradient computation
during the backward pass.

Loss
Compu-
tation

The output is compared against the target outputs, and the loss is computed.

Back-
ward
Pass

The loss is propagated backward, and the model’s error gradients are computed and stored for each
trainable parameter.

Opti-
miza-
tion
Pass

The optimization algorithm updates the model parameters using the stored error gradients.

Training is different from inference, particularly from the hardware perspective. Table 33.2 shows the contrast between
training and inference.

Table 33.2: Training vs. Inference

Training Inference
Training is measured in hours/days. The inference is measured in minutes.
Training is generally run offline in a data center
or cloud setting.

The inference is made on edge devices.

The memory requirements for training are higher
than inference due to storing intermediate data,
such as activations and error gradients.

The memory requirements are lower for inference than training.

Data for training is available on the disk before
the training process and is generally significant.
The training performance is measured by how
fast the data batches can be processed.

Inference data usually arrive stochastically, which may be
batched to improve performance. Inference performance is gen-
erally measured in throughput speed to process the batch of data
and the delay in responding to the input (latency).

Different quantization data types are typically chosen between training (FP32, BF16) and inference (FP16, INT8). The
computation hardware has different specializations from other datatypes, leading to improvement in performance if a
faster datatype can be selected for the corresponding task.

216 Chapter 33. Machine Learning, Deep Learning, and Artificial Intelligence

ROCm Documentation, Release 5.0.1

33.1.3 Case Studies

The following sections contain case studies for the Inception v3 model.

33.1.3.1 Inception v3 with PyTorch

Convolution Neural Networks are forms of artificial neural networks commonly used for image processing. One of the
core layers of such a network is the convolutional layer, which convolves the input with a weight tensor and passes the
result to the next layer. Inception v31 is an architectural development over the ImageNet competition-winning entry,
AlexNet, using more profound and broader networks while attempting to meet computational and memory budgets.

The implementation uses PyTorch as a framework. This case study utilizes torchvision2, a repository of popular
datasets and model architectures, for obtaining the model. torchvision also provides pre-trained weights as a starting
point to develop new models or fine-tune the model for a new task.

33.1.3.1.1 Evaluating a Pre-Trained Model

The Inception v3 model introduces a simple image classification task with the pre-trained model. This does not involve
training but utilizes an already pre-trained model from torchvision.

This example is adapted from the PyTorch research hub page on Inception v33.

Follow these steps:

1. Run the PyTorch ROCm-based Docker image or refer to the section Installing PyTorch for setting up a PyTorch
environment on ROCm.

docker run -it -v $HOME:/data --cap-add=SYS_PTRACE --security-opt␣
→˓seccomp=unconfined --device=/dev/kfd --device=/dev/dri --group-add video --
→˓ipc=host --shm-size 8G rocm/pytorch:latest

2. Run the Python shell and import packages and libraries for model creation.

import torch
import torchvision

3. Set the model in evaluation mode. Evaluation mode directs PyTorch not to store intermediate data, which would
have been used in training.

model = torch.hub.load('pytorch/vision:v0.10.0', 'inception_v3', pretrained=True)
model.eval()

4. Download a sample image for inference.

import urllib
url, filename = ("https://github.com/pytorch/hub/raw/master/images/dog.jpg", "dog.
→˓jpg")
try: urllib.URLopener().retrieve(url, filename)
except: urllib.request.urlretrieve(url, filename)

5. Import torchvision and PIL.Image support libraries.
1 C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens and Z. Wojna, “Rethinking the Inception Architecture for Computer Vision,” CoRR, p.

abs/1512.00567, 2015
2 PyTorch, [Online]. Available: https://pytorch.org/vision/stable/index.html
3 PyTorch, [Online]. Available: https://pytorch.org/hub/pytorch_vision_inception_v3/

33.1. Inception V3 with PyTorch 217

https://pytorch.org/vision/stable/index.html
https://pytorch.org/hub/pytorch_vision_inception_v3/

ROCm Documentation, Release 5.0.1

from PIL import Image
from torchvision import transforms
input_image = Image.open(filename)

6. Apply preprocessing and normalization.

preprocess = transforms.Compose([
transforms.Resize(299),
transforms.CenterCrop(299),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),

])

7. Use input tensors and unsqueeze them later.

input_tensor = preprocess(input_image)
input_batch = input_tensor.unsqueeze(0)
if torch.cuda.is_available():

input_batch = input_batch.to('cuda')
model.to('cuda')

8. Find out probabilities.

with torch.no_grad():
output = model(input_batch)

print(output[0])
probabilities = torch.nn.functional.softmax(output[0], dim=0)
print(probabilities)

9. To understand the probabilities, download and examine the ImageNet labels.

wget https://raw.githubusercontent.com/pytorch/hub/master/imagenet_classes.txt

10. Read the categories and show the top categories for the image.

with open("imagenet_classes.txt", "r") as f:
categories = [s.strip() for s in f.readlines()]

top5_prob, top5_catid = torch.topk(probabilities, 5)
for i in range(top5_prob.size(0)):

print(categories[top5_catid[i]], top5_prob[i].item())

33.1.3.1.2 Training Inception v3

The previous section focused on downloading and using the Inception v3 model for a simple image classification task.
This section walks through training the model on a new dataset.

Follow these steps:

1. Run the PyTorch ROCm Docker image or refer to the section Installing PyTorch for setting up a PyTorch envi-
ronment on ROCm.

docker pull rocm/pytorch:latest
docker run -it --cap-add=SYS_PTRACE --security-opt seccomp=unconfined --device=/dev/

(continues on next page)

218 Chapter 33. Machine Learning, Deep Learning, and Artificial Intelligence

ROCm Documentation, Release 5.0.1

(continued from previous page)

→˓kfd --device=/dev/dri --group-add video --ipc=host --shm-size 8G rocm/
→˓pytorch:latest

2. Download an ImageNet database. For this example, the tiny-imagenet-2004, a smaller ImageNet variant with
200 image classes and a training dataset with 100,000 images, was downsized to 64x64 color images.

wget http://cs231n.stanford.edu/tiny-imagenet-200.zip

3. Process the database to set the validation directory to the format expected by PyTorch’s DataLoader.

4. Run the following script:

import io
import glob
import os
from shutil import move
from os.path import join
from os import listdir, rmdir
target_folder = './tiny-imagenet-200/val/'
val_dict = {}
with open('./tiny-imagenet-200/val/val_annotations.txt', 'r') as f:

for line in f.readlines():
split_line = line.split('\t')
val_dict[split_line[0]] = split_line[1]

paths = glob.glob('./tiny-imagenet-200/val/images/*')
for path in paths:

file = path.split('/')[-1]
folder = val_dict[file]
if not os.path.exists(target_folder + str(folder)):

os.mkdir(target_folder + str(folder))
os.mkdir(target_folder + str(folder) + '/images')

for path in paths:
file = path.split('/')[-1]
folder = val_dict[file]
dest = target_folder + str(folder) + '/images/' + str(file)
move(path, dest)

rmdir('./tiny-imagenet-200/val/images')

5. Open a Python shell.

6. Import dependencies, including torch, os, and torchvision.

import torch
import os
import torchvision
from torchvision import transforms
from torchvision.transforms.functional import InterpolationMode

7. Set parameters to guide the training process.
4 Stanford, [Online]. Available: http://cs231n.stanford.edu/

33.1. Inception V3 with PyTorch 219

http://cs231n.stanford.edu/

ROCm Documentation, Release 5.0.1

Note: The device is set to "cuda". In PyTorch, "cuda" is a generic keyword to denote a GPU.

device = "cuda"

8. Set the data_path to the location of the training and validation data. In this case, the tiny-imagenet-200 is
present as a subdirectory to the current directory.

data_path = "tiny-imagenet-200"

The training image size is cropped for input into Inception v3.

train_crop_size = 299

9. To smooth the image, use bilinear interpolation, a resampling method that uses the distance weighted average of
the four nearest pixel values to estimate a new pixel value.

interpolation = "bilinear"

The next parameters control the size to which the validation image is cropped and resized.

val_crop_size = 299
val_resize_size = 342

The pre-trained Inception v3 model is chosen to be downloaded from torchvision.

model_name = "inception_v3"
pretrained = True

During each training step, a batch of images is processed to compute the loss gradient and perform the optimiza-
tion. In the following setting, the size of the batch is determined.

batch_size = 32

This refers to the number of CPU threads the data loader uses to perform efficient multi-process data loading.

num_workers = 16

The torch.optim package provides methods to adjust the learning rate as the training progresses. This example
uses the StepLR scheduler, which decays the learning rate by lr_gamma at every lr_step_size number of
epochs.

learning_rate = 0.1
momentum = 0.9
weight_decay = 1e-4
lr_step_size = 30
lr_gamma = 0.1

Note: One training epoch is when the neural network passes an entire dataset forward and backward.

epochs = 90

The train and validation directories are determined.

220 Chapter 33. Machine Learning, Deep Learning, and Artificial Intelligence

ROCm Documentation, Release 5.0.1

train_dir = os.path.join(data_path, "train")
val_dir = os.path.join(data_path, "val")

10. Set up the training and testing data loaders.

interpolation = InterpolationMode(interpolation)

TRAIN_TRANSFORM_IMG = transforms.Compose([
Normalizaing and standardardizing the image
transforms.RandomResizedCrop(train_crop_size, interpolation=interpolation),

transforms.PILToTensor(),
transforms.ConvertImageDtype(torch.float),
transforms.Normalize(mean=[0.485, 0.456, 0.406],

std=[0.229, 0.224, 0.225])
])

dataset = torchvision.datasets.ImageFolder(
train_dir,
transform=TRAIN_TRANSFORM_IMG

)
TEST_TRANSFORM_IMG = transforms.Compose([

transforms.Resize(val_resize_size, interpolation=interpolation),
transforms.CenterCrop(val_crop_size),
transforms.PILToTensor(),
transforms.ConvertImageDtype(torch.float),
transforms.Normalize(mean=[0.485, 0.456, 0.406],

std=[0.229, 0.224, 0.225])
])

dataset_test = torchvision.datasets.ImageFolder(
val_dir,
transform=TEST_TRANSFORM_IMG

)

print("Creating data loaders")
train_sampler = torch.utils.data.RandomSampler(dataset)
test_sampler = torch.utils.data.SequentialSampler(dataset_test)

data_loader = torch.utils.data.DataLoader(
dataset,
batch_size=batch_size,
sampler=train_sampler,
num_workers=num_workers,
pin_memory=True

)

data_loader_test = torch.utils.data.DataLoader(
dataset_test, batch_size=batch_size, sampler=test_sampler, num_workers=num_

→˓workers, pin_memory=True
)

Note: Use torchvision to obtain the Inception v3 model. Use the pre-trained model weights to speed up
training.

33.1. Inception V3 with PyTorch 221

ROCm Documentation, Release 5.0.1

print("Creating model")
print("Num classes = ", len(dataset.classes))
model = torchvision.models.__dict__[model_name](pretrained=pretrained)

11. Adapt Inception v3 for the current dataset. tiny-imagenet-200 contains only 200 classes, whereas Inception
v3 is designed for 1,000-class output. The last layer of Inception v3 is replaced to match the output features
required.

model.fc = torch.nn.Linear(model.fc.in_features, len(dataset.classes))
model.aux_logits = False
model.AuxLogits = None

12. Move the model to the GPU device.

model.to(device)

13. Set the loss criteria. For this example, Cross Entropy Loss5 is used.

criterion = torch.nn.CrossEntropyLoss()

14. Set the optimizer to Stochastic Gradient Descent.

optimizer = torch.optim.SGD(
model.parameters(),
lr=learning_rate,
momentum=momentum,
weight_decay=weight_decay

)

15. Set the learning rate scheduler.

lr_scheduler = torch.optim.lr_scheduler.StepLR(optimizer, step_size=lr_step_size,␣
→˓gamma=lr_gamma)

16. Iterate over epochs. Each epoch is a complete pass through the training data.

print("Start training")
for epoch in range(epochs):

model.train()
epoch_loss = 0
len_dataset = 0

17. Iterate over steps. The data is processed in batches, and each step passes through a full batch.

for step, (image, target) in enumerate(data_loader):

18. Pass the image and target to the GPU device.

image, target = image.to(device), target.to(device)

The following is the core training logic:

a. The image is fed into the model.

b. The output is compared with the target in the training data to obtain the loss.
5 Wikipedia, [Online]. Available: https://en.wikipedia.org/wiki/Cross_entropy

222 Chapter 33. Machine Learning, Deep Learning, and Artificial Intelligence

https://en.wikipedia.org/wiki/Cross_entropy

ROCm Documentation, Release 5.0.1

c. This loss is back propagated to all parameters that require optimization.

d. The optimizer updates the parameters based on the selected optimization algorithm.

output = model(image)
loss = criterion(output, target)
optimizer.zero_grad()
loss.backward()
optimizer.step()

The epoch loss is updated, and the step loss prints.

epoch_loss += output.shape[0] * loss.item()
len_dataset += output.shape[0];
if step % 10 == 0:

print('Epoch: ', epoch, '| step : %d' % step, '| train loss : %0.4f' %␣
→˓loss.item())

epoch_loss = epoch_loss / len_dataset
print('Epoch: ', epoch, '| train loss : %0.4f' % epoch_loss)

The learning rate is updated at the end of each epoch.

lr_scheduler.step()

After training for the epoch, the model evaluates against the validation dataset.

model.eval()
with torch.inference_mode():

running_loss = 0
for step, (image, target) in enumerate(data_loader_test):

image, target = image.to(device), target.to(device)

output = model(image)
loss = criterion(output, target)

running_loss += loss.item()
running_loss = running_loss / len(data_loader_test)
print('Epoch: ', epoch, '| test loss : %0.4f' % running_loss)

19. Save the model for use in inferencing tasks.

save model
torch.save(model.state_dict(), "trained_inception_v3.pt")

Plotting the train and test loss shows both metrics reducing over training epochs. This is demonstrated in Fig. 33.1.

33.1. Inception V3 with PyTorch 223

ROCm Documentation, Release 5.0.1

Fig. 33.1: Inception v3 Train and Loss Graph

33.1.3.2 Custom Model with CIFAR-10 on PyTorch

The CIFAR-10 (Canadian Institute for Advanced Research) dataset is a subset of the Tiny Images dataset (which con-
tains 80 million images of 32x32 collected from the Internet) and consists of 60,000 32x32 color images. The images
are labeled with one of 10 mutually exclusive classes: airplane, motor car, bird, cat, deer, dog, frog, cruise ship, stallion,
and truck (but not pickup truck). There are 6,000 images per class, with 5,000 training and 1,000 testing images per
class. Let us prepare a custom model for classifying these images using the PyTorch framework and go step-by-step as
illustrated below.

Follow these steps:

1. Import dependencies, including torch, os, and torchvision.

import torch
import torchvision
import torchvision.transforms as transforms
import matplotlib.pyplot as plot
import numpy as np

2. The output of torchvision datasets is PILImage images of range [0, 1]. Transform them to Tensors of nor-
malized range [-1, 1].

transform = transforms.Compose(
[transforms.ToTensor(),

transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))])

During each training step, a batch of images is processed to compute the loss gradient and perform the optimiza-
tion. In the following setting, the size of the batch is determined.

batch_size = 4

3. Download the dataset train and test datasets as follows. Specify the batch size, shuffle the dataset once, and

224 Chapter 33. Machine Learning, Deep Learning, and Artificial Intelligence

ROCm Documentation, Release 5.0.1

specify the number of workers to the number of CPU threads used by the data loader to perform efficient multi-
process data loading.

train_set = torchvision.datasets.CIFAR10(root='./data', train=True, download=True,␣
→˓transform=transform)
train_loader = torch.utils.data.DataLoader(train_set, batch_size=batch_size,␣
→˓shuffle=True, num_workers=2)

4. Follow the same procedure for the testing set.

test_set = TorchVision.datasets.CIFAR10(root='./data', train=False, download=True,␣
→˓transform=transform)
test_loader = torch.utils.data.DataLoader(test_set, batch_size=batch_size,␣
→˓shuffle=False, num_workers=2)
print ("teast set and test loader")

5. Specify the defined classes of images belonging to this dataset.

classes = ('Aeroplane', 'motorcar', 'bird', 'cat', 'deer', 'puppy', 'frog',
→˓'stallion', 'cruise', 'truck')
print("defined classes")

6. Denormalize the images and then iterate over them.

global image_number
image_number = 0
def show_image(img):

global image_number
image_number = image_number + 1
img = img / 2 + 0.5 # de-normalizing input image
npimg = img.numpy()
plot.imshow(np.transpose(npimg, (1, 2, 0)))
plot.savefig("fig{}.jpg".format(image_number))
print("fig{}.jpg".format(image_number))
plot.show()

data_iter = iter(train_loader)
images, labels = data_iter.next()
show_image(torchvision.utils.make_grid(images))
print(' '.join('%5s' % classes[labels[j]] for j in range(batch_size)))
print("image created and saved ")

7. Import the torch.nn for constructing neural networks and torch.nn.functional to use the convolution func-
tions.

import torch.nn as nn
import torch.nn.functional as F

8. Define the CNN (Convolution Neural Networks) and relevant activation functions.

class Net(nn.Module):
def __init__(self):

super().__init__()
self.conv1 = nn.Conv2d(3, 6, 5)
self.pool = nn.MaxPool2d(2, 2)

(continues on next page)

33.1. Inception V3 with PyTorch 225

ROCm Documentation, Release 5.0.1

(continued from previous page)

self.conv2 = nn.Conv2d(6, 16, 5)
self.pool = nn.MaxPool2d(2, 2)
self.conv3 = nn.Conv2d(3, 6, 5)

self.fc2 = nn.Linear(120, 84)
self.fc3 = nn.Linear(84, 10)

def forward(self, x):
x = self.pool(F.relu(self.conv1(x)))
x = self.pool(F.relu(self.conv2(x)))
x = torch.flatten(x, 1) # flatten all dimensions except batch
x = F.relu(self.fc1(x))
x = F.relu(self.fc2(x))
x = self.fc3(x)
return x

net = Net()
print("created Net() ")

9. Set the optimizer to Stochastic Gradient Descent.

import torch.optim as optim

10. Set the loss criteria. For this example, Cross Entropy LossPage 222, 5 is used.

criterion = nn.CrossEntropyLoss()
optimizer = optim.SGD(net.parameters(), lr=0.001, momentum=0.9)

11. Iterate over epochs. Each epoch is a complete pass through the training data.

for epoch in range(2): # loop over the dataset multiple times

running_loss = 0.0
for i, data in enumerate(train_loader, 0):

get the inputs; data is a list of [inputs, labels]
inputs, labels = data

zero the parameter gradients
optimizer.zero_grad()

forward + backward + optimize
outputs = net(inputs)
loss = criterion(outputs, labels)
loss.backward()
optimizer.step()

print statistics
running_loss += loss.item()
if i % 2000 == 1999: # print every 2000 mini-batches

print('[%d, %5d] loss: %.3f' % (epoch + 1, i + 1, running_loss / 2000))
running_loss = 0.0

print('Finished Training')

PATH = './cifar_net.pth'
(continues on next page)

226 Chapter 33. Machine Learning, Deep Learning, and Artificial Intelligence

ROCm Documentation, Release 5.0.1

(continued from previous page)

torch.save(net.state_dict(), PATH)
print("saved model to path :",PATH)
net = Net()
net.load_state_dict(torch.load(PATH))
print("loding back saved model")
outputs = net(images)
_, predicted = torch.max(outputs, 1)
print('Predicted: ', ' '.join('%5s' % classes[predicted[j]] for j in range(4)))
correct = 0
total = 0

As this is not training, calculating the gradients for outputs is not required.

calculate outputs by running images through the network
with torch.no_grad():

for data in test_loader:
images, labels = data
calculate outputs by running images through the network
outputs = net(images)
the class with the highest energy is what you can choose as prediction
_, predicted = torch.max(outputs.data, 1)
total += labels.size(0)
correct += (predicted == labels).sum().item()

print('Accuracy of the network on the 10000 test images: %d %%' % (100 * correct /␣
→˓total))
prepare to count predictions for each class
correct_pred = {classname: 0 for classname in classes}
total_pred = {classname: 0 for classname in classes}

again no gradients needed
with torch.no_grad():

for data in test_loader:
images, labels = data
outputs = net(images)
_, predictions = torch.max(outputs, 1)
collect the correct predictions for each class
for label, prediction in zip(labels, predictions):

if label == prediction:
correct_pred[classes[label]] += 1

total_pred[classes[label]] += 1
print accuracy for each class
for classname, correct_count in correct_pred.items():

accuracy = 100 * float(correct_count) / total_pred[classname]
print("Accuracy for class {:5s} is: {:.1f} %".format(classname,accuracy))

33.1. Inception V3 with PyTorch 227

ROCm Documentation, Release 5.0.1

33.1.3.3 Case Study: TensorFlow with Fashion MNIST

Fashion MNIST is a dataset that contains 70,000 grayscale images in 10 categories.

Implement and train a neural network model using the TensorFlow framework to classify images of clothing, like
sneakers and shirts.

The dataset has 60,000 images you will use to train the network and 10,000 to evaluate how accurately the network
learned to classify images. The Fashion MNIST dataset can be accessed via TensorFlow internal libraries.

Access the source code from the following repository:

https://github.com/ROCmSoftwarePlatform/tensorflow_fashionmnist/blob/main/fashion_mnist.py

To understand the code step by step, follow these steps:

1. Import libraries like TensorFlow, NumPy, and Matplotlib to train the neural network and calculate and plot
graphs.

import tensorflow as tf
import numpy as np
import matplotlib.pyplot as plt

2. To verify that TensorFlow is installed, print the version of TensorFlow by using the below print statement:

print(tf._version__) r

3. Load the dataset from the available internal libraries to analyze and train a neural network upon the MNIST Fash-
ion Dataset. Loading the dataset returns four NumPy arrays. The model uses the training set arrays, train_images
and train_labels, to learn.

4. The model is tested against the test set, test_images, and test_labels arrays.

fashion_mnist = tf.keras.datasets.fashion_mnist
(train_images, train_labels), (test_images, test_labels) = fashion_mnist.load_data()

Since you have 10 types of images in the dataset, assign labels from zero to nine. Each image is assigned one
label. The images are 28x28 NumPy arrays, with pixel values ranging from zero to 255.

5. Each image is mapped to a single label. Since the class names are not included with the dataset, store them, and
later use them when plotting the images:

class_names = ['T-shirt/top', 'Trouser', 'Pullover', 'Dress', 'Coat','Sandal',
→˓'Shirt', 'Sneaker', 'Bag', 'Ankle boot']

6. Use this code to explore the dataset by knowing its dimensions:

train_images.shape

7. Use this code to print the size of this training set:

print(len(train_labels))

8. Use this code to print the labels of this training set:

print(train_labels)

9. Preprocess the data before training the network, and you can start inspecting the first image, as its pixels will fall
in the range of zero to 255.

228 Chapter 33. Machine Learning, Deep Learning, and Artificial Intelligence

https://github.com/ROCmSoftwarePlatform/tensorflow_fashionmnist/blob/main/fashion_mnist.py

ROCm Documentation, Release 5.0.1

plt.figure()
plt.imshow(train_images[0])
plt.colorbar()
plt.grid(False)
plt.show()

10. From the above picture, you can see that values are from zero to 255. Before training this on the neural network,
you must bring them in the range of zero to one. Hence, divide the values by 255.

train_images = train_images / 255.0

test_images = test_images / 255.0

11. To ensure the data is in the correct format and ready to build and train the network, display the first 25 images
from the training set and the class name below each image.

plt.figure(figsize=(10,10))
for i in range(25):

plt.subplot(5,5,i+1)
plt.xticks([])
plt.yticks([])
plt.grid(False)
plt.imshow(train_images[i], cmap=plt.cm.binary)
plt.xlabel(class_names[train_labels[i]])

plt.show()

The basic building block of a neural network is the layer. Layers extract representations from the data fed into
them. Deep Learning consists of chaining together simple layers. Most layers, such as tf.keras.layers.
Dense, have parameters that are learned during training.

model = tf.keras.Sequential([
tf.keras.layers.Flatten(input_shape=(28, 28)),
tf.keras.layers.Dense(128, activation='relu'),
tf.keras.layers.Dense(10)

])

• The first layer in this network tf.keras.layers.Flatten transforms the format of the images from a
two-dimensional array (of 28 x 28 pixels) to a one-dimensional array (of 28 * 28 = 784 pixels). Think of
this layer as unstacking rows of pixels in the image and lining them up. This layer has no parameters to
learn; it only reformats the data.

• After the pixels are flattened, the network consists of a sequence of two tf.keras.layers.Dense layers.

33.1. Inception V3 with PyTorch 229

ROCm Documentation, Release 5.0.1

230 Chapter 33. Machine Learning, Deep Learning, and Artificial Intelligence

ROCm Documentation, Release 5.0.1

These are densely connected or fully connected neural layers. The first Dense layer has 128 nodes (or
neurons). The second (and last) layer returns a logits array with a length of 10. Each node contains a score
that indicates the current image belongs to one of the 10 classes.

12. You must add the Loss function, Metrics, and Optimizer at the time of model compilation.

model.compile(optimizer='adam',
loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True),
metrics=['accuracy'])

• Loss function —This measures how accurate the model is during training when you are looking to minimize
this function to “steer” the model in the right direction.

• Optimizer —This is how the model is updated based on the data it sees and its loss function.

• Metrics —This is used to monitor the training and testing steps.

The following example uses accuracy, the fraction of the correctly classified images.

To train the neural network model, follow these steps:

1. Feed the training data to the model. The training data is in the train_images and train_labels arrays in this
example. The model learns to associate images and labels.

2. Ask the model to make predictions about a test set—in this example, the test_images array.

3. Verify that the predictions match the labels from the test_labels array.

4. To start training, call the model.fit method because it “fits” the model to the training data.

model.fit(train_images, train_labels, epochs=10)

5. Compare how the model will perform on the test dataset.

test_loss, test_acc = model.evaluate(test_images, test_labels, verbose=2)

print('\nTest accuracy:', test_acc)

6. With the model trained, you can use it to make predictions about some images: the model’s linear outputs
and logits. Attach a softmax layer to convert the logits to probabilities, making it easier to interpret.

probability_model = tf.keras.Sequential([model,
tf.keras.layers.Softmax()])

predictions = probability_model.predict(test_images)

7. The model has predicted the label for each image in the testing set. Look at the first prediction:

predictions[0]

A prediction is an array of 10 numbers. They represent the model’s “confidence” that the image corresponds
to each of the 10 different articles of clothing. You can see which label has the highest confidence value:

np.argmax(predictions[0])

8. Plot a graph to look at the complete set of 10 class predictions.

def plot_image(i, predictions_array, true_label, img):
true_label, img = true_label[i], img[i]

(continues on next page)

33.1. Inception V3 with PyTorch 231

ROCm Documentation, Release 5.0.1

(continued from previous page)

plt.grid(False)
plt.xticks([])
plt.yticks([])

plt.imshow(img, cmap=plt.cm.binary)

predicted_label = np.argmax(predictions_array)
if predicted_label == true_label:

color = 'blue'
else:

color = 'red'

plt.xlabel("{} {:2.0f}% ({})".format(class_names[predicted_label],
100*np.max(predictions_array),
class_names[true_label]),
color=color)

def plot_value_array(i, predictions_array, true_label):
true_label = true_label[i]
plt.grid(False)
plt.xticks(range(10))
plt.yticks([])
thisplot = plt.bar(range(10), predictions_array, color="#777777")
plt.ylim([0, 1])
predicted_label = np.argmax(predictions_array)

thisplot[predicted_label].set_color('red')
thisplot[true_label].set_color('blue')

9. With the model trained, you can use it to make predictions about some images. Review the 0-th image
predictions and the prediction array. Correct prediction labels are blue, and incorrect prediction labels are
red. The number gives the percentage (out of 100) for the predicted label.

i = 0
plt.figure(figsize=(6,3))
plt.subplot(1,2,1)
plot_image(i, predictions[i], test_labels, test_images)
plt.subplot(1,2,2)
plot_value_array(i, predictions[i], test_labels)
plt.show()

i = 12
plt.figure(figsize=(6,3))
plt.subplot(1,2,1)
plot_image(i, predictions[i], test_labels, test_images)
plt.subplot(1,2,2)
plot_value_array(i, predictions[i], test_labels)
plt.show()

10. Use the trained model to predict a single image.

Grab an image from the test dataset.
(continues on next page)

232 Chapter 33. Machine Learning, Deep Learning, and Artificial Intelligence

ROCm Documentation, Release 5.0.1

(continued from previous page)

img = test_images[1]
print(img.shape)

11. tf.keras models are optimized to make predictions on a batch, or collection, of examples at once. Ac-
cordingly, even though you are using a single image, you must add it to a list.

Add the image to a batch where it's the only member.
img = (np.expand_dims(img,0))

print(img.shape)

12. Predict the correct label for this image.

predictions_single = probability_model.predict(img)

print(predictions_single)

plot_value_array(1, predictions_single[0], test_labels)
_ = plt.xticks(range(10), class_names, rotation=45)
plt.show()

13. tf.keras.Model.predict returns a list of lists—one for each image in the batch of data. Grab the
predictions for our (only) image in the batch.

np.argmax(predictions_single[0])

33.1. Inception V3 with PyTorch 233

ROCm Documentation, Release 5.0.1

33.1.3.4 Case Study: TensorFlow with Text Classification

This procedure demonstrates text classification starting from plain text files stored on disk. You will train a binary
classifier to perform sentiment analysis on an IMDB dataset. At the end of the notebook, there is an exercise for you to
try in which you will train a multi-class classifier to predict the tag for a programming question on Stack Overflow.

Follow these steps:

1. Import the necessary libraries.

import matplotlib.pyplot as plt
import os
import re
import shutil
import string
import tensorflow as tf

from tensorflow.keras import layers
from tensorflow.keras import losses

2. Get the data for the text classification, and extract the database from the given link of IMDB.

url = "https://ai.stanford.edu/~amaas/data/sentiment/aclImdb_v1.tar.gz"

dataset = tf.keras.utils.get_file("aclImdb_v1", url,
untar=True, cache_dir='.',
cache_subdir='')

Downloading data from https://ai.stanford.edu/~amaas/data/sentiment/aclImdb_v1.tar.
→˓gz
84131840/84125825 [==============================] – 1s 0us/step
84149932/84125825 [==============================] – 1s 0us/step

3. Fetch the data from the directory.

dataset_dir = os.path.join(os.path.dirname(dataset), 'aclImdb')
print(os.listdir(dataset_dir))

234 Chapter 33. Machine Learning, Deep Learning, and Artificial Intelligence

ROCm Documentation, Release 5.0.1

4. Load the data for training purposes.

train_dir = os.path.join(dataset_dir, 'train')
os.listdir(train_dir)

['labeledBow.feat',
'urls_pos.txt',
'urls_unsup.txt',
'unsup',
'pos',
'unsupBow.feat',
'urls_neg.txt',
'neg']

5. The directories contain many text files, each of which is a single movie review. To look at one of them, use the
following:

sample_file = os.path.join(train_dir, 'pos/1181_9.txt')
with open(sample_file) as f:
print(f.read())

6. As the IMDB dataset contains additional folders, remove them before using this utility.

remove_dir = os.path.join(train_dir, 'unsup')
shutil.rmtree(remove_dir)
batch_size = 32
seed = 42

7. The IMDB dataset has already been divided into train and test but lacks a validation set. Create a validation set
using an 80:20 split of the training data by using the validation_split argument below:

raw_train_ds=tf.keras.utils.text_dataset_from_directory('aclImdb/train',batch_
→˓size=batch_size, validation_split=0.2,subset='training', seed=seed)

8. As you will see in a moment, you can train a model by passing a dataset directly to model.fit. If you are new
to tf.data, you can also iterate over the dataset and print a few examples as follows:

for text_batch, label_batch in raw_train_ds.take(1):
for i in range(3):

print("Review", text_batch.numpy()[i])
print("Label", label_batch.numpy()[i])

9. The labels are zero or one. To see which of these correspond to positive and negative movie reviews, check the
class_names property on the dataset.

print("Label 0 corresponds to", raw_train_ds.class_names[0])
print("Label 1 corresponds to", raw_train_ds.class_names[1])

10. Next, create validation and test the dataset. Use the remaining 5,000 reviews from the training set for validation
into two classes of 2,500 reviews each.

raw_val_ds = tf.keras.utils.text_dataset_from_directory('aclImdb/train',
batch_size=batch_size,validation_split=0.2,subset='validation', seed=seed)

(continues on next page)

33.1. Inception V3 with PyTorch 235

ROCm Documentation, Release 5.0.1

(continued from previous page)

raw_test_ds =
tf.keras.utils.text_dataset_from_directory(

'aclImdb/test',
batch_size=batch_size)

To prepare the data for training, follow these steps:

1. Standardize, tokenize, and vectorize the data using the helpful tf.keras.layers.TextVectorization layer.

def custom_standardization(input_data):
lowercase = tf.strings.lower(input_data)
stripped_html = tf.strings.regex_replace(lowercase, '
', ' ')
return tf.strings.regex_replace(stripped_html, '[%s]
→˓' % re.escape(string.punctuation),'')

2. Create a TextVectorization layer. Use this layer to standardize, tokenize, and vectorize our data. Set the
output_mode to int to create unique integer indices for each token. Note that we are using the default split
function and the custom standardization function you defined above. You will also define some constants for the
model, like an explicit maximum sequence_length, which will cause the layer to pad or truncate sequences to
exactly sequence_length values.

max_features = 10000
sequence_length = 250
vectorize_layer = layers.TextVectorization(

standardize=custom_standardization,
max_tokens=max_features,
output_mode='int',
output_sequence_length=sequence_length)

3. Call adapt to fit the state of the preprocessing layer to the dataset. This causes the model to build an index of
strings to integers.

Make a text-only dataset (without labels), then call adapt
train_text = raw_train_ds.map(lambda x, y: x)
vectorize_layer.adapt(train_text)

4. Create a function to see the result of using this layer to preprocess some data.

def vectorize_text(text, label):
text = tf.expand_dims(text, -1)
return vectorize_layer(text), label

text_batch, label_batch = next(iter(raw_train_ds))
first_review, first_label = text_batch[0], label_batch[0]
print("Review", first_review)
print("Label", raw_train_ds.class_names[first_label])
print("Vectorized review", vectorize_text(first_review, first_label))

5. As you can see above, each token has been replaced by an integer. Look up the token (string) that each integer
corresponds to by calling get_vocabulary() on the layer.

print("1287 ---> ",vectorize_layer.get_vocabulary()[1287])
print(" 313 ---> ",vectorize_layer.get_vocabulary()[313])
print('Vocabulary size: {}'.format(len(vectorize_layer.get_vocabulary())))

236 Chapter 33. Machine Learning, Deep Learning, and Artificial Intelligence

ROCm Documentation, Release 5.0.1

6. You are nearly ready to train your model. As a final preprocessing step, apply the TextVectorization layer
we created earlier to train, validate, and test the dataset.

train_ds = raw_train_ds.map(vectorize_text)
val_ds = raw_val_ds.map(vectorize_text)
test_ds = raw_test_ds.map(vectorize_text)

The cache() function keeps data in memory after it is loaded off disk. This ensures the dataset does not become
a bottleneck while training your model. If your dataset is too large to fit into memory, you can also use this
method to create a performant on-disk cache, which is more efficient to read than many small files.

The prefetch() function overlaps data preprocessing and model execution while training.

AUTOTUNE = tf.data.AUTOTUNE

train_ds = train_ds.cache().prefetch(buffer_size=AUTOTUNE)
val_ds = val_ds.cache().prefetch(buffer_size=AUTOTUNE)
test_ds = test_ds.cache().prefetch(buffer_size=AUTOTUNE)

7. Create your neural network.

embedding_dim = 16
model = tf.keras.Sequential([layers.Embedding(max_features + 1, embedding_dim),
→˓layers.Dropout(0.2),layers.GlobalAveragePooling1D(),
layers.Dropout(0.2),layers.Dense(1)])
model.summary()

8. A model needs a loss function and an optimizer for training. Since this is a binary classification problem and the
model outputs a probability (a single-unit layer with a sigmoid activation), use losses.BinaryCrossentropy
loss function.

33.1. Inception V3 with PyTorch 237

https://www.tensorflow.org/api_docs/python/tf/keras/losses/BinaryCrossentropy

ROCm Documentation, Release 5.0.1

model.compile(loss=losses.BinaryCrossentropy(from_logits=True),
optimizer='adam',metrics=tf.metrics.BinaryAccuracy(threshold=0.0))

9. Train the model by passing the dataset object to the fit method.

epochs = 10
history = model.fit(train_ds,validation_data=val_ds,epochs=epochs)

10. See how the model performs. Two values are returned: loss (a number representing our error; lower values are
better) and accuracy.

loss, accuracy = model.evaluate(test_ds)

print("Loss: ", loss)
print("Accuracy: ", accuracy)

Note: model.fit() returns a History object that contains a dictionary with everything that happened during

238 Chapter 33. Machine Learning, Deep Learning, and Artificial Intelligence

ROCm Documentation, Release 5.0.1

training.

history_dict = history.history
history_dict.keys()

11. Four entries are for each monitored metric during training and validation. Use these to plot the training and
validation loss for comparison, as well as the training and validation accuracy:

acc = history_dict['binary_accuracy']
val_acc = history_dict['val_binary_accuracy']
loss = history_dict['loss']
val_loss = history_dict['val_loss']

epochs = range(1, len(acc) + 1)

"bo" is for "blue dot"
plt.plot(epochs, loss, 'bo', label='Training loss')
b is for "solid blue line"
plt.plot(epochs, val_loss, 'b', label='Validation loss')
plt.title('Training and validation loss')
plt.xlabel('Epochs')
plt.ylabel('Loss')
plt.legend()

plt.show()

Fig. 33.2 and Fig. 33.3 illustrate the training and validation loss and the training and validation accuracy.

Fig. 33.2: Training and Validation Loss

12. Export the model.

33.1. Inception V3 with PyTorch 239

ROCm Documentation, Release 5.0.1

Fig. 33.3: Training and Validation Accuracy

export_model = tf.keras.Sequential([
vectorize_layer,
model,
layers.Activation('sigmoid')
])

export_model.compile(
loss=losses.BinaryCrossentropy(from_logits=False), optimizer="adam", metrics=[

→˓'accuracy']
)

Test it with `raw_test_ds`, which yields raw strings
loss, accuracy = export_model.evaluate(raw_test_ds)
print(accuracy)

13. To get predictions for new examples, call model.predict().

examples = [
"The movie was great!",
"The movie was okay.",
"The movie was terrible..."
]

export_model.predict(examples)

240 Chapter 33. Machine Learning, Deep Learning, and Artificial Intelligence

ROCm Documentation, Release 5.0.1

33.1.4 References

33.1. Inception V3 with PyTorch 241

ROCm Documentation, Release 5.0.1

242 Chapter 33. Machine Learning, Deep Learning, and Artificial Intelligence

CHAPTER

THIRTYFOUR

ABOUT ROCM DOCUMENTATION

ROCm documentation is made available under open source licenses. Documentation is built using open source
toolchains. Contributions to our documentation is encouraged and welcome. As a contributor, please familiarize
yourself with our documentation toolchain.

34.1 ReadTheDocs

ReadTheDocs is our front end for the our documentation. By front end, this is the tool that serves our HTML based
documentation to our end users.

34.2 Doxygen

Doxygen is the most common inline code documentation standard. ROCm projects are use Doxygen for public API
documentation (unless the upstream project is using a different tool).

34.3 Sphinx

Sphinx is a documentation generator originally used for python. It is now widely used in the Open Source community.
Originally, sphinx supported RST based documentation. Markdown support is now available. ROCm documentation
plans to default to markdown for new projects. Existing projects using RST are under no obligation to convert to
markdown. New projects that believe markdown is not suitable should contact the documentation team prior to selecting
RST.

34.3.1 MyST

Markedly Structured Text (MyST) is an extended flavor of Markdown (CommonMark) influenced by reStructuredText
(RST) and Sphinx. It is integrated via myst-parser. A cheat sheet that showcases how to use the MyST syntax is
available over at the Jupyter reference.

243

https://docs.readthedocs.io/en/stable/
https://www.doxygen.nl/
https://www.sphinx-doc.org/en/master/
https://myst-tools.org/docs/spec
https://commonmark.org/
https://myst-parser.readthedocs.io/en/latest/
https://jupyterbook.org/en/stable/reference/cheatsheet.html

ROCm Documentation, Release 5.0.1

34.3.2 Sphinx Theme

ROCm is using the Sphinx Book Theme. This theme is used by Jupyter books. ROCm documentation applies some
customization include a header and footer on top of the Sphinx Book Theme. A future custom ROCm theme will be
part of our documentation goals.

34.3.3 Sphinx Design

Sphinx Design is an extension for sphinx based websites that add design functionality. Please see the documentation
here. ROCm documentation uses sphinx design for grids, cards, and synchronized tabs. Other features may be used in
the future.

34.3.4 Sphinx External TOC

ROCm uses the sphinx-external-toc for our navigation. This tool allows a YAML file based left navigation menu. This
tool was selected due to its flexibility that allows scripts to operate on the YAML file. Please transition to this file for
the project’s navigation. You can see the _toc.yml.in file in this repository in the docs/sphinx folder for an example.

34.3.5 Breathe

Sphinx uses Breathe to integrate Doxygen content.

34.4 rocm-docs-core pip package

rocm-docs-core is an AMD maintained project that applies customization for our documentation. This project is the
tool most ROCm repositories will use as part of the documentation build.

244 Chapter 34. About ROCm Documentation

https://sphinx-book-theme.readthedocs.io/en/latest/
https://sphinx-design.readthedocs.io/en/latest/index.html
https://sphinx-external-toc.readthedocs.io/en/latest/intro.html
https://www.breathe-doc.org/
https://github.com/RadeonOpenCompute/rocm-docs-core

CHAPTER

THIRTYFIVE

CONTRIBUTING TO ROCM DOCS

AMD values and encourages the ROCm community to contribute to our code and documentation. This repository
is focused on ROCm documentation and this contribution guide describes the recommend method for creating and
modifying our documentation.

While interacting with ROCm Documentation, we encourage you to be polite and respectful in your contributions,
content or otherwise. Authors, maintainers of these docs act on good intentions and to the best of their knowledge.
Keep that in mind while you engage. Should you have issues with contributing itself, refer to discussions on the GitHub
repository.

35.1 Supported Formats

Our documentation includes both markdown and rst files. Markdown is encouraged over rst due to the lower bar-
rier to participation. GitHub flavored markdown is preferred for all submissions as it will render accurately on our
GitHub repositories. For existing documentation, MyST markdown is used to implement certain features unsupported
in GitHub markdown. This is not encouraged for new documentation. AMD will transition to stricter use of GitHub
flavored markdown with a few caveats. ROCm documentation also uses sphinx-design in our markdown and rst files.
We also will use breathe syntax for doxygen documentation in our markdown files. Other design elements for effective
HTML rendering of the documents may be added to our markdown files. Please see GitHub’s guide on writing and
formatting on GitHub as a starting point.

ROCm documentation adds additional requirements to markdown and rst based files as follows:

• Level one headers are only used for page titles. There must be only one level 1 header per file for both Markdown
and Restructured Text.

• Pass markdownlint check via our automated github action on a Pull Request (PR).

35.2 Filenames and folder structure

Please use snake case for file names. Our documentation follows pitchfork for folder structure. All documentation is in
/docs except for special files like the contributing guide in the / folder. All images used in the documentation are place
in the /docs/data folder.

245

https://github.com/RadeonOpenCompute/ROCm/discussions
https://myst-parser.readthedocs.io/en/latest/intro.html
https://sphinx-design.readthedocs.io/en/latest/index.html
https://docs.github.com/en/get-started/writing-on-github/getting-started-with-writing-and-formatting-on-github
https://github.com/markdownlint/markdownlint

ROCm Documentation, Release 5.0.1

35.3 How to provide feedback for for ROCm documentation

There are three standard ways to provide feedback for this repository.

35.3.1 Pull Request

All contributions to ROCm documentation should arrive via the GitHub Flow targetting the develop branch of the
repository. If you are unable to contribute via the GitHub Flow, feel free to email us. TODO, confirm email address.

35.3.2 GitHub Issue

Issues on existing or absent docs can be filed as GitHub issues .

35.3.3 Email Feedback

35.4 Language and Style

Adopting Microsoft CPP-Docs guidelines for Voice and Tone .

ROCm documentation templates to be made public shortly. ROCm templates dictate the recommended structure and
flow of the documentation. Guidelines on how to integrate figures, equations, and tables are all based off MyST.

Font size and selection, page layout, white space control, and other formatting details are controlled via rocm-docs-core,
sphinx extention. Please raise issues in rocm-docs-core for any formatting concerns and changes requested.

35.5 Building Documentation

While contributing, one may build the documentation locally on the command-line or rely on Continuous Integration
for previewing the resulting HTML pages in a browser.

35.5.1 Command line documentation builds

Python versions known to build documentation:

• 3.8

To build the docs locally using Python Virtual Environment (venv), execute the following commands from the project
root:

python3 -mvenv .venv
Windows
.venv/Scripts/python -m pip install -r docs/sphinx/requirements.txt
.venv/Scripts/python -m sphinx -T -E -b html -d _build/doctrees -D language=en docs _
→˓build/html
Linux
.venv/bin/python -m pip install -r docs/sphinx/requirements.txt
.venv/bin/python -m sphinx -T -E -b html -d _build/doctrees -D language=en docs _
→˓build/html

Then open up _build/html/index.html in your favorite browser.

246 Chapter 35. Contributing to ROCm Docs

https://docs.github.com/en/get-started/quickstart/github-flow
https://github.com/RadeonOpenCompute/ROCm/issues
https://github.com/MicrosoftDocs/cpp-docs/blob/main/styleguide/voice-tone.md
https://myst-parser.readthedocs.io/en/latest/intro.html

ROCm Documentation, Release 5.0.1

35.5.2 Pull Requests documentation builds

When opening a PR to the develop branch on GitHub, the page corresponding to the PR (https://github.com/
RadeonOpenCompute/ROCm/pull/<pr_number>) will have a summary at the bottom. This requires the user be
logged in to GitHub.

• There, click Show all checks and Details of the Read the Docs pipeline. It will take you to https://
readthedocs.com/projects/advanced-micro-devices-rocm/ builds/<some_build_num>/

– The list of commands shown are the exact ones used by CI to produce a render of the documentation.

• There, click on the small blue link View docs (which is not the same as the bigger button with
the same text). It will take you to the built HTML site with a URL of the form https://
advanced-micro-devices-demo--<pr_number>.com.readthedocs.build/projects/alpha/en
/<pr_number>/.

35.5.3 Build the docs using VS Code

One can put together a productive environment to author documentation and also test it locally using VS Code with
only a handful of extensions. Even though the extension landscape of VS Code is ever changing, here is one example
setup that proved useful at the time of writing. In it, one can change/add content, build a new version of the docs using
a single VS Code Task (or hotkey), see all errors/ warnings emitted by Sphinx in the Problems pane and immediately
see the resulting website show up on a locally serving web server.

35.5.3.1 Configuring VS Code

1. Install the following extensions:

• Python (ms-python.python)

• Live Server (ritwickdey.LiveServer)

2. Add the following entries in .vscode/settings.json

{
"liveServer.settings.root": "/.vscode/build/html",
"liveServer.settings.wait": 1000,
"python.terminal.activateEnvInCurrentTerminal": true

}

The settings in order are set for the following reasons:

• Sets the root of the output website for live previews. Must be changed alongside the tasks.json command.

• Tells live server to wait with the update to give time for Sphinx to regenerate site contents and not refresh
before all is don. (Empirical value)

• Automatic virtual env activation is a nice touch, should you want to build the site from the integrated
terminal.

3. Add the following tasks in .vscode/tasks.json

{
"version": "2.0.0",
"tasks": [
{
"label": "Build Docs",

(continues on next page)

35.5. Building Documentation 247

ROCm Documentation, Release 5.0.1

(continued from previous page)

"type": "process",
"windows": {
"command": "${workspaceFolder}/.venv/Scripts/python.exe"

},
"command": "${workspaceFolder}/.venv/bin/python3",
"args": [
"-m",
"sphinx",
"-j",
"auto",
"-T",
"-b",
"html",
"-d",
"${workspaceFolder}/.vscode/build/doctrees",
"-D",
"language=en",
"${workspaceFolder}/docs",
"${workspaceFolder}/.vscode/build/html"

],
"problemMatcher": [
{
"owner": "sphinx",
"fileLocation": "absolute",
"pattern": {
"regexp": "^(?:.*\\.{3}\\s+)?(\\/[^:]*|[a-zA-Z]:\\\\[^:]*):(\\d+):\\

→˓s+(WARNING|ERROR):\\s+(.*)$",
"file": 1,
"line": 2,
"severity": 3,
"message": 4

},
},
{
"owner": "sphinx",
"fileLocation": "absolute",
"pattern": {
"regexp": "^(?:.*\\.{3}\\s+)?(\\/[^:]*|[a-zA-Z]:\\\\[^:]*):{1,2}\\

→˓s+(WARNING|ERROR):\\s+(.*)$",
"file": 1,
"severity": 2,
"message": 3

}
}

],
"group": {
"kind": "build",
"isDefault": true

}
},

],
}

248 Chapter 35. Contributing to ROCm Docs

ROCm Documentation, Release 5.0.1

(Implementation detail: two problem matchers were needed to be defined, because VS Code doesn’t
tolerate some problem information being potentially absent. While a single regex could match all
types of errors, if a capture group remains empty (the line number doesn’t show up in all warning/error
messages) but the pattern references said empty capture group, VS Code discards the message
completely.)

4. Configure Python virtual environment (venv)

• From the Command Palette, run Python: Create Environment

– Select venv environment and the docs/sphinx/requirements.txt file. (Simply pressing enter
while hovering over the file from the dropdown is insufficient, one has to select the radio button with
the ‘Space’ key if using the keyboard.)

5. Build the docs

• Launch the default build Task using either:

– a hotkey (default is ‘Ctrl+Shift+B’) or

– by issuing the Tasks: Run Build Task from the Command Palette.

6. Open the live preview

• Navigate to the output of the site within VS Code, right-click on .vscode/build/html/index.html and
select Open with Live Server. The contents should update on every rebuild without having to refresh
the browser.

35.5. Building Documentation 249

ROCm Documentation, Release 5.0.1

250 Chapter 35. Contributing to ROCm Docs

INDEX

Symbols
--gpu-max-threads-per-block

command line option, 84
--offload-arch

command line option, 84
-a

offload-arch command line option, 92
-c

offload-arch command line option, 92
-f

offload-arch command line option, 92
-ffast-math

command line option, 84
-fgpu-rdc

command line option, 84
-fno-gpu-rdc

command line option, 84
-fopenmp

command line option, 84
-fopenmp-targets

command line option, 84
-g

command line option, 84
-m

offload-arch command line option, 92
-mcumode

command line option, 84
-mno-wavefrontsize64

command line option, 84
-munsafe-fp-atomics

command line option, 84
-mwavefrontsize64

command line option, 84
-n

offload-arch command line option, 92
-t

offload-arch command line option, 92
-v

offload-arch command line option, 92
-x

command line option, 84

C
command line option

--gpu-max-threads-per-block, 84
--offload-arch, 84
-ffast-math, 84
-fgpu-rdc, 84
-fno-gpu-rdc, 84
-fopenmp, 84
-fopenmp-targets, 84
-g, 84
-mcumode, 84
-mno-wavefrontsize64, 84
-munsafe-fp-atomics, 84
-mwavefrontsize64, 84
-x, 84

O
offload-arch command line option

-a, 92
-c, 92
-f, 92
-m, 92
-n, 92
-t, 92
-v, 92

251

	What is ROCm?
	Quick Start (Linux)
	Add Repositories
	Install Drivers
	Install ROCm Runtimes
	Reboot the system

	Deploy ROCm on Linux
	Prepare to Install
	Choose your install method
	See Also
	ROCm Installation Options (Linux)
	Package Manager versus AMDGPU Installer?
	Single Version ROCm install versus Multi-Version
	Single-version Installation
	Multi-version Installation

	Installation Prerequisites (Linux)
	Confirm the System Has a Supported Linux Distribution Version
	Check the Linux Distribution and Kernel Version on Your System
	Linux Distribution Information
	Kernel Information

	Additional package repositories
	Kernel headers and development packages
	Setting Permissions for Groups

	Installation via Package manager
	See Also
	Installation (Linux)
	Understanding the Release-specific AMDGPU and ROCm Repositories on Linux Distributions
	Step by Step Instructions
	Post-install Actions and Verification Process
	Post-install Actions
	Verifying Kernel-mode Driver Installation
	Verifying ROCm Installation
	Verifying Package Installation

	Upgrade ROCm with the package manager
	Upgrade Steps
	Update the AMDGPU repository
	Upgrade the kernel-mode driver & reboot
	Update the ROCm repository
	Upgrade the ROCm packages

	Verification Process

	Uninstallation with package manager (Linux)
	Package Manager Integration
	ROCm Package Naming Conventions
	Components of ROCm Programming Models
	Packages in ROCm Programming Models

	AMDGPU Install Script
	See Also
	Installation with install script
	Download the Installer Script
	Use cases
	Single-version ROCm Installation
	Multi-version ROCm Installation
	Add Required Repositories
	Install packages

	Additional options
	Unattended installation
	Skipping kernel mode driver installation

	Upgrading with the Installer Script (Linux)
	Installer Script Uninstallation (Linux)

	Deploy ROCm Docker containers
	Prerequisites
	Accessing GPUs in containers
	Restricting a container to a subset of the GPUs
	Additional Options

	Docker images in the ROCm ecosystem
	Base images
	Applications

	Release Notes
	ROCm 5.0.1
	Deprecations and Warnings
	Refactor of HIPCC/HIPCONFIG

	Release Notes
	ROCm 5.0.1
	Deprecations and Warnings
	Refactor of HIPCC/HIPCONFIG

	Library Changes in ROCM 5.0.1

	ROCm 5.0.0
	What’s New in This Release
	HIP Enhancements
	HIP Installation Guide Updates
	Managed Memory Allocation

	New Environment Variable

	Breaking Changes
	Runtime Breaking Change

	Known Issues
	Incorrect dGPU Behavior When Using AMDVBFlash Tool
	Issue with START Timestamp in ROCProfiler
	Issue
	Current behavior
	Expected behavior
	Recommended Workaround

	Radeon Pro V620 and W6800 Workstation GPUs
	No Support for SMI and ROCDebugger on SRIOV

	Deprecations and Warnings
	ROCm Libraries Changes – Deprecations and Deprecation Removal
	HIP API Deprecations and Warnings
	Warning - Arithmetic Operators of HIP Complex and Vector Types

	Warning - Compiler-Generated Code Object Version 4 Deprecation
	Warning - MIOpenTensile Deprecation

	Library Changes in ROCM 5.0.0
	hipBLAS 0.49.0
	Added
	Fixed

	hipCUB 2.10.13
	Fixed
	Added
	Changed

	hipFFT 1.0.4
	Fixed
	Added

	hipSOLVER 1.2.0
	Added
	Fixed

	hipSPARSE 2.0.0
	Added

	rccl 2.10.3
	Added
	Known Issues

	rocALUTION 2.0.1
	Changed
	Improved

	rocBLAS 2.42.0
	Added
	Optimizations
	Changed
	Fixed

	rocFFT 1.0.13
	Optimizations
	Added
	Fixed

	rocPRIM 2.10.12
	Fixed
	Added
	Changed
	Known Issues

	rocRAND 2.10.12
	Changed

	rocSOLVER 3.16.0
	Added
	Optimized
	Changed
	Fixed

	rocSPARSE 2.0.0
	Added
	Changed
	Improved

	rocThrust 2.13.0
	Added
	Changed

	Tensile 4.31.0
	Added
	Optimized
	Changed
	Removed
	Fixed

	GPU and OS Support (Linux)
	Supported Distributions
	Virtualization Support
	GPU Support Table
	Support Status

	CPU Support

	Compatibility
	User/Kernel-Space Support Matrix
	Docker Image Support Matrix
	ROCm 5.6
	PyTorch
	Ubuntu+ rocm5.6_internal_testing +169530b
	CentOS7+ rocm5.6_internal_testing +169530b
	1.13 +bfeb431
	1.12 +05d5d04

	TensorFlow
	tensorflow_develop-upstream-QA-rocm56 +c88a9f4
	r2.11-rocm-enhanced +5be4141
	r2.10-rocm-enhanced +72789a3

	3rd Party Support Matrix
	Deep Learning
	Communication libraries
	Algorithm libraries

	Licensing Terms
	Package Licensing

	All Reference Material
	ROCm Software Groups

	Compilers and Tools
	See Also
	Compiler Reference Guide
	Introduction to Compiler Reference Guide
	ROCm Compiler Interfaces

	Compiler Options and Features
	AMD GPU Compilation
	AMD Optimizations for Zen Architectures
	-famd-opt
	-fstruct-layout=[1,2,3,4,5,6,7]
	-fitodcalls
	-fitodcallsbyclone
	-fremap-arrays
	-finline-aggressive
	-fnt-store (non-temporal store)
	-fnt-store=aggressive
	Optimizations Through Driver -mllvm <options>
	-enable-partial-unswitch
	-aggressive-loop-unswitch
	-enable-strided-vectorization
	-enable-epilog-vectorization
	-enable-redundant-movs
	-merge-constant
	-function-specialize
	-lv-function-specialization
	-enable-vectorize-compares
	-inline-recursion=[1,2,3,4]
	-reduce-array-computations=[1,2,3]
	-global-vectorize-slp={true,false}
	-region-vectorize
	-enable-x86-prefetching
	-suppress-fmas
	-enable-icm-vrp
	-loop-splitting
	-enable-ipo-loop-split
	-compute-interchange-order
	-convert-pow-exp-to-int={true,false}
	-do-lock-reordering={none,normal,aggressive}
	-fuse-tile-inner-loop
	-Hz,1,0x1 [Fortran]

	Inline ASM Statements
	Miscellaneous OpenMP Compiler Features
	Offload-arch Tool
	Command-Line Simplification Using offload-arch Flag
	Target ID Support for OpenMP
	Multi-image Fat Binary for OpenMP
	Unified Shared Memory (USM)

	Support Status of Other Clang Options

	HIP
	HIP Runtime
	Porting tools

	OpenMP Support in ROCm
	Introduction
	Installation

	OpenMP: Usage
	Using rocprof with OpenMP
	Using Tracing Options
	Environment Variables

	OpenMP: Features
	Unified Shared Memory
	Prerequisites
	Xnack Capability
	Unified Shared Memory Pragma

	OMPT Target Support
	Floating Point Atomic Operations
	Address Sanitizer (ASan) Tool
	No-loop Kernel Generation
	Cross-Team Optimized Reductions

	Math Libraries
	rocLIB vs. hipLIB
	Linear Algebra Libraries
	Fast Fourier Transforms
	Random Numbers

	C++ Primitive Libraries
	Communication Libraries
	AI Libraries
	Computer Vision
	Management Tools
	Validation Tools
	All Explanation Material
	ROCm Compilers Disambiguation
	Compiler Terms

	Using CMake
	Finding Dependencies
	Using HIP in CMake
	Using the HIP single-source programming model
	Consuming ROCm C/C++ Libraries
	Consuming the HIP API in C++ code
	Compiling device code in C++ language mode
	ROCm CMake Packages

	Using CMake Presets
	Using HIP with presets

	Linux Folder Structure Reorganization
	Introduction
	Changes from earlier ROCm versions
	ROCm File reorganization transition plan
	Wrapper header files
	Executable files
	Library files
	CMake Config files

	Changes required in applications using ROCm
	References

	GPU Isolation Techniques
	Environment Variables
	ROCR_VISIBLE_DEVICES
	GPU_DEVICE_ORDINAL
	HIP_VISIBLE_DEVICES
	CUDA_VISIBLE_DEVICES
	OMP_DEFAULT_DEVICE

	Docker
	GPU Passthrough to Virtual Machines

	GPU Architectures
	Architecture Guides
	ISA Documentation
	White Papers
	AMD Instinct Hardware
	AMD CDNA 2 Micro-architecture
	Node-level Architecture

	AMD Instinct™ MI100 Hardware
	System Architecture
	Micro-architecture

	How ROCm uses PCIe Atomics
	ROCm PCIe Feature and Overview BAR Memory
	BAR Memory Overview

	Excepts form Overview of Changes to PCI Express 3.0
	By Mike Jackson, Senior Staff Architect, MindShare, Inc.
	Atomic Operations – Goal:
	ID-based Ordering – Goal:

	All How-To Material
	Tuning Guides
	High Performance Computing
	Workstation
	MI200 High Performance Computing and Tuning Guide
	System Settings
	System BIOS Settings
	NBIO Link Clock Frequency
	Memory Configuration

	Operating System Settings
	CPU Core State - “C States”
	AMD-IOPM-UTIL
	Systems with 256 CPU Threads - IOMMU Configuration

	System Management
	Hardware Verification with ROCm
	Testing Inter-device Bandwidth

	MI100 High Performance Computing and Tuning Guide
	System Settings
	System BIOS Settings
	NBIO Link Clock Frequency
	Memory Configuration

	Operating System Settings
	CPU Core State - “C States”
	AMD-IOPM-UTIL
	Systems with 256 CPU Threads - IOMMU Configuration

	System Management
	Hardware Verification with ROCm
	Testing Inter-device Bandwidth

	RDNA2 Workstation Tuning Guide
	System Settings
	System BIOS Settings
	Operating System Settings
	Guest OS installation

	Deep Learning Guide
	Frameworks Installation
	Magma Installation for ROCm
	MAGMA for ROCm
	Using MAGMA for PyTorch
	Build MAGMA from Source

	References

	PyTorch Installation for ROCm
	PyTorch
	Installing PyTorch
	Option 1 (Recommended): Use Docker Image with PyTorch Pre-Installed
	Option 2: Install PyTorch Using Wheels Package
	Option 3: Install PyTorch Using PyTorch ROCm Base Docker Image
	Option 4: Install Using PyTorch Upstream Docker File

	Test the PyTorch Installation
	Run a Basic PyTorch Example

	References

	TensorFlow Installation for ROCm
	TensorFlow
	Installing TensorFlow
	Option 1: Install TensorFlow Using Docker Image
	Option 2: Install TensorFlow Using Wheels Package

	Test the TensorFlow Installation
	Run a Basic TensorFlow Example

	References

	GPU-Enabled MPI
	Building UCX
	Install UCX
	Install Open MPI
	ROCm-enabled OSU
	Intra-node Run
	Collective Operations

	System Debugging Guide
	ROCm Language and System Level Debug, Flags, and Environment Variables
	ROCr Error Code
	Command to Dump Firmware Version and Get Linux Kernel Version
	Debug Flags
	ROCr Level Environment Variables for Debug
	Turn Off Page Retry on GFX9/Vega Devices
	HIP Environment Variables 3.x
	OpenCL Debug Flags

	PCIe-Debug

	Machine Learning, Deep Learning, and Artificial Intelligence
	Inception V3 with PyTorch
	Deep Learning Training
	Training Phases
	Case Studies
	Inception v3 with PyTorch
	Evaluating a Pre-Trained Model
	Training Inception v3

	Custom Model with CIFAR-10 on PyTorch
	Case Study: TensorFlow with Fashion MNIST
	Case Study: TensorFlow with Text Classification

	References

	About ROCm Documentation
	ReadTheDocs
	Doxygen
	Sphinx
	MyST
	Sphinx Theme
	Sphinx Design
	Sphinx External TOC
	Breathe

	rocm-docs-core pip package

	Contributing to ROCm Docs
	Supported Formats
	Filenames and folder structure
	How to provide feedback for for ROCm documentation
	Pull Request
	GitHub Issue
	Email Feedback

	Language and Style
	Building Documentation
	Command line documentation builds
	Pull Requests documentation builds
	Build the docs using VS Code
	Configuring VS Code

	Index

